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Abstract: For prostate cancer patients, large organ deformations occurring between radiotherapy
treatment sessions create uncertainty about the doses delivered to the tumor and surrounding healthy
organs. Segmenting those regions on cone beam CT (CBCT) scans acquired on treatment day would
reduce such uncertainties. In this work, a 3D U-net deep-learning architecture was trained to segment
the bladder, rectum, and prostate on CBCT scans. Due to the scarcity of contoured CBCT scans,
the training set was augmented with CT scans already contoured in the current clinical workflow.
Our network was then tested on 63 CBCT scans. The Dice similarity coefficient (DSC) increases
significantly with the number of CBCT and CT scans in the training set, reaching 0.8744-0.096,
0.814+0.055, and 0.758+0.101 for the bladder, rectum, and prostate respectively. This is about 10%
better than conventional approaches based on deformable image registration between planning CT
and treatment CBCT scans, except for the prostate. Interestingly, adding 74 CT scans to the CBCT
training set allowed to maintain high DSCs, while halving the number of CBCT scans. Hence, our
work shows that although CBCT scans include artifacts, cross-domain augmentation of the training
set is effective and can rely on large datasets available for planning CT scans.

Keywords: segmentation; deep learning; deformable image registration; cone beam CT; pelvis;
prostate cancer; radiotherapy; CNN; U-net

1. Introduction

Fractionated external beam radiotherapy (EBRT) cancer treatment relies on two steps. In the
treatment planning phase, clinicians delineate the tumor and surrounding healthy organs’ volumes on
a computed tomography (CT) scan and compute the dose distribution. In the treatment delivery phase,
the patient is aligned with a specific treatment planning position and the dose fraction is delivered.
Patient positioning relies on a daily cone beam computed tomography (CBCT) scan acquired in the
treatment position before each treatment fraction is delivered.

CT and CBCT are both based on X-ray propagation through the patient’s body. However, the
CBCT scans are of lower quality than CT scans due to different types of artifact, including noise, beam
hardening, and scattering, as shown in Figure 1. In particular, scattering is an important limitation that
could rule out the use of CBCT for radiotherapy treatment planning [1]. However, CBCT scans are
currently used in order to detect daily variations in patient anatomy, which are particularly large in
the pelvic region due to physiological function (e.g., bladder and rectal filling and voiding). Detecting
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such variations is important since they can impair treatment dose conformity, which means delivering
too large a dose to the healthy organs (e.g., the bladder and rectum in the case of prostate cancer)
and too low a dose to the clinical target volume (which simply corresponds to the prostate itself for
a significant proportion of patients) [2]. To improve treatment dose conformity in the pelvic region
further, proposals have been made to change treatment plan delivery as a function of time based on
observed anatomic variations [3,4].

However, a step towards better adaptive radiotherapy would require automatic segmentation
of the pelvic organs on daily CBCT scans in order measure the anatomical variations accurately.
Automating this segmentation is necessary to be able to integrate it in the clinical workflow, as
delineating the organs manually on daily scans is excessively time-consuming. Measuring anatomical
variations is particularly important in proton therapy because the proton dose distribution is highly
sensitive to changes in patient geometry [5,6].

Currently, organ segmentation is classically performed by deformable image registration (DIR)
algorithms between the planning CT and daily CBCT scans [7,8]. These algorithms include such
clinical software packages as MIM [9] and RayStation [10]. Although the results are better than those
of rigid registration, these intensity-based DIR algorithms fail in the presence of large deformations
between the registered scans, as is the case in the pelvic region [11,12]. Zambrano et al. [11] and
Thor et al. [12] implemented a featurelet-based algorithm [13] and the demons DIR algorithm [14],
respectively. As a result, more complex DIR approaches, such as a B-spline DIR algorithm relying
on mutual information, have been proposed [15]. This last approach implements a 6-pass DIR with
progressively finer resolution and, after visual inspection, an optional final pass using a narrow
region around the region of interest. Another approach uses a DIR framework where a locally rigid
deformation is enforced for bone and/or the prostate, while surrounding tissue is still allowed to
deform elastically [16]. Alternatively, statistical shape models can capture shape variations and have
also been considered for bladder segmentation on CBCT scans [17,18]. However, those methods
require the definition of landmarks or meshes. Moreover, several delineated CBCT scans must be
available to build a patient-specific shape model. That thwarts the application of such methods at
the start of treatment. So, none of these methods accomplishes the challenging task of pelvic organ
segmentation on CBCT scans. In parallel, recent advances in computing capabilities, the availability of
representative datasets, and the great versatility of deep-learning (DL) approaches have enabled DL
algorithms to achieve impressive segmentation performance. Unlike the aforementioned techniques,
DL algorithms are supposed to be robust to variations in shape and appearance if those variations
are captured in the training database and do not require landmark definition. DL algorithms have
already been used successfully to segment pelvic organs on CT scans [19,20]. The 3D U-net fully
convolutional neural network [21] has been used to segment female pelvic organs on CBCT scans
[22,23]. Concurrently, we showed that adding annotated CT scans to the training set improved
bladder segmentation on CBCT scans [24]. This approach was motivated by the scarcity of annotated
CBCT scans, compared with annotated CT scans, and the fact that CBCT scans can be roughly
considered to be noisy, distorted CT scans from a segmentation perspective, hence sharing shape and
contextual information with the CT scans. The current paper extends our previous conference paper
[24] in that it considers additional male pelvic organs (the rectum and prostate), and presents more
comparative results (including the morphons deformable registration algorithm). It also involves
data from an additional hospital and provides a more detailed discussion. Segmentation of male
pelvic organs (bladder, rectum, prostate, and seminal vesicles) on CBCT and CT scans using a DL
approach was the subject of a recent paper [25]. These authors’ contribution consists mainly of the use
of artificially-generated pseudo CBCT scans in the training set along with a high segmentation quality.
Our approach adds training on real CBCT scans and provides a new and larger test set as well as more
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extensive comparison with clinically-used registration tools.

The main contributions of this work are to provide (i) a DL-based segmentation method for male
pelvic organs on CBCT scans and (ii) a detailed comparison of state-of-the-art segmentation tools in
order to guide the choice of method in clinical practice. The impacts of the number of training scans
and addition of CT scans to the training database were studied in order to provide detailed information
on the amount of annotations required for use in clinical practice.

(a) Slice of a CT scan. (b) Slice of a CBCT scan.
Figure 1. Comparison of CT and CBCT scans.

2. Materials and Methods

2.1. Data and preprocessing

Our data consist of (i) a set S1 of 74 patients for whom we have delineated CT scans and (ii) a
set Sy of 63 patients (different from the 74 patients mentioned above) for whom we have delineated
planning CT scans and delineated daily CBCT scans. The contours of the bladder, rectum, and prostate
were delineated on the CT scans during the clinical workflow. The contours on the CBCT scans were
delineated by a trained expert specifically for this study. Within set 51, 18 and 56 patients underwent
EBRT for prostate cancer at two teaching hospitals, CHU-Charleroi Hopital André Vésale and
CHU-UCL-Namur, respectively. Within set S;, 23 and 40 patients underwent EBRT for prostate cancer
at CHU-Charleroi Hopital André Vésale (CBCT scans acquired with a Varian TrueBeam STx version
1.5) and CHU-UCL-Namur (CBCT scans acquired with a Varian OBI cone beam CT), respectively.
The use of these retrospective, anonymized data for this study has been approved by each hospital’s
ethics committee (dates of approval: May 24, 2017 for CHU-Charleroi Hopital André Vésale and May
12, 2017 for CHU-UCL-Namur). In order to ensure data uniformity across the entire dataset, all the
3D CT and CBCT scans (as well as the 3D binary masks representing the manual segmentations)
were re-sampled on a 1.2x1.2x1.5 mm regular grid. All re-sampled image volumes and binary mask
volumes were cropped to volumes of 160x160x128 voxels containing the bladder, rectum, and prostate.

The case selection procedure is described in Figure 2. Patients with an artificial hip were excluded
from this study because the presence of an artificial hip degrades the image too much for the organs
to be segmented accurately by a human expert. Patients for whom the prostate was not contoured
on the planning CT scan were also excluded. This corresponds to patients for whom the clinical
target volume (CTV) differed from that of the prostate, either because this organ had been surgically
removed or because the CTV included other areas in addition to the prostate. Note that it is common in
radiotherapy to inject contrast media into the bladder. Different inter-subject levels of contrast product
increased the variability of this organ’s appearance, making its automatic contouring more challenging.
Since our case selection procedure includes all patients regardless of the use of contrast media, our
method is supposed to be robust to such variability.
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Patients treated at CHU-Charleroi Hopital André Vésale Patients treated at C_HU-UCL-Namur
77 patients 148 patients
Artificial hip degrading Yes | 0 patient Artificial hip degrading Yes | 5 patients -
image quality image quality Excluded

Prostate contoured on
planning CT

No | 77 patients

Yes | 41 patients

S,

Planning CT used for
training set enlargement
18 patients (18 scans)

| s,
Planning CT used for
registration baselines,

CBCT manually contoured

specifically for our study
23 patients (46 scans)

No | 36 patients

No | 143 patients

Prostate contoured on
planning CT

Yes | 96 patients

S l S,

1

No | 47 patients

Planning CT used for
registration baselines,
CBCT manually contoured
specifically for our study
40 patients (80 scans)

Planning CT used for
training set enlargement
56 patients (56 scans)

Figure 2. Case selection from CHU-Charleroi Hopital André Vésale and CHU-UCL-Namur.

2.2. Model architecture and learning strategy

The bladder, rectum, and prostate were segmented on CBCT scans using the 3D U-net fully
convolutional neural network [21,26]. The 3D input goes through a contracting path to capture context
and an expanding path to enable precise localization. In the last layer, a softmax is applied and the
network outputs the probability of each voxel’s belonging to the bladder, rectum, prostate, or none of
these organs. The network architecture is shown in Figure 3. To obtain a binary mask for each organ,
the most probable class label was assigned to each pixel individually. In practice, each organ was
segmented as a single region of connected voxels. No disconnected region of the same organ was
observed. The main advantage of fully convolutional neural networks is that they output predictions
at the same resolution as the input. One output channel was considered per organ. The network
was trained with the Dice loss. The Adam optimization algorithm was used with a learning rate of
10~*. The number of epochs was chosen such that convergence was reached. The hyper-parameters
mentioned here are the same as in Brion et al. [24] and proved satisfactory on the data used in this
work. For this reason and to keep data available for training and testing, no validation set was
considered here. Training data were augmented online using rotation (between —5° and 5° along each
of the three axes), shift (between -5 and 5 pixels along each axes), and shear (reasonable values for the
affine transformation matrix). The batch size was set to two, which is the maximum size affordable on
our 11 Gb graphical processing units (GPU).

We performed 3-fold cross-validation with the 63 CBCT scans of set Sy, where 2 folds (ncper < 42
volumes in total) were used as the training set and one fold (21 volumes) as the test set, as shown in
Table 1. The number of training CBCT scans ncpcr was varied such that ncger € {0,6,10,20,30,42}.
The training set was augmented with ncp annotated CT scans from set Sy such that ner € {0,20,74}.
The same CT scans were added to the training CBCT scans independently on the considered training
folds. Hence, the training set contains #ncpct + 1t volumes in total. Note that the test set contains no
CT scans (since our goal was to segment CBCT scans only). The source code is publicly available on
https:/ / github.com/eliottbrion/pelvis_segmentation.

Table 1. Three-fold cross-validation. To train the model, we used ncp CT scans from S; and the ncger
first volumes from the CBCT folds labeled "train." To test the model, we used all 21 volumes from the
CBCT fold labeled "test."

S S, (CBCT)

(CT) foldl fold2 fold3
train train train test
train train test train
train test train train
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2.3. Validation and comparison baselines

In order to evaluate our contouring results, we used four metrics comparing the predicted and
manual segmentations. The Dice similarity coefficient (DSC) and the Jaccard index (JI) measure the
overlap between two binary masks, while the symmetric mean boundary distance (SMBD) assesses
the distance between the contours (i.e., the sets of points located at the boundary of the binary masks)
delineating those binary masks. We also computed the difference between the manual and predicted
volumes for all the organs considered. More specifically,

2|MN P
DSC = ————, 1
|M] + |P|
MNP
sMBD . DM, P) +D(P, M) ®

5 /
where M and P are the sets containing the matricial indices of the manual and predicted segmentation
3D binary masks, respectively; D(M, P) is the mean of D(M, P) over the voxels of Qy; and D(M, P) =
{minycn, |[s ® (x = y)||, ¥y € QOum}, where Qp, Qp are the boundaries extracted from M and P,
respectively, and s " = (1.2,1.2,1.5) is the pixel spacing in mm. Comparing the manual and predicted
organ volumes was motivated by the field of application of this study. Indeed, from the perspective
of adaptive radiotherapy, the organs’ volumes are needed in order to compare the initial CT plan
dose-volume histograms for the bladder, rectum, and prostate with the doses actually delivered as
determined from CBCT scans acquired during the image-guided treatment [27]. The manual and
predicted organ volumes were compared using a Bland-Altman plot, which allows quantification of
the agreement between two quantitative measurements (i.e., the manual and predicted organ volumes)
by studying their mean difference and constructing limits of agreement [28]. We computed the bias as

n

. 1
Bias = — Z(Pi —m;), 4)
n &
i=1
where 7 is the number of patients in the test set and p; = s1 X sy X s3 X |M;|, m; = s1 X sp X s3 X |P;| are
the volumes of the manual and predicted segmentations of the i-th patient. It provides the systematic
under- or overestimation of the predicted volumes. We also computed the precision,

1 n
Precision = — P — m;|, 5
" 1; |pi il )
which measures the difference between manual and predicted volume (in absolute value).

The DL-based segmentation was compared with different alternative approaches as summarized
in Table 2. Two segmentation methods based on deformable image registration (denoted DIR in Table
2, second column) were applied to our dataset. First, the contours from the planning CT scans of set Sp
were mapped to the follow-up CBCT scans of the same patient by using a rigid registration followed
by DIR with the ANACONDA algorithm without controlling regions of interest (ROIs) in RayStation'
(version 5.99.50.22) [29]. This algorithm adopts an intensity-based registration. Second, the contour
was mapped from the planning CT scan to the follow-up CBCT scan using the diffeomorphic
morphons DIR algorithm implemented in OpenReggui? [30]. This method exploits the local phase of

https:/ /www.raysearchlabs.com/raystation/.

2 https:/ /openreggui.org/.
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the image volumes to perform the registration. Therefore, it is suited for registering image volumes
with different contrast enhancement, such as CT and CBCT scans. The diffeomorphic version of the
algorithm forces anatomically plausible deformations. We also compared our DL method with the
Mattes mutual information rigid registration algorithm [31], as implemented in OpenReggui.

16 +
16 16 16 16 16 4
Input > = = = | Output
160x160x128
¥ 32+
16 32 32 32 32 32
Ld L4
80x80x64
¥ 64 +
32 64 64 64 64 64
» Ld g
40x40x32
3 128 +
64 128 128 128 128 128
Ld 4
20x20x16
3 256 + Conv 3x3x3, ReLu, “same” padding

128 256 256 256 256 256

= Copy
10x10x8 I I I I:I"I"I 3 Maxpooling 2x2x2
$

Transpose conv 2x2x2, “same” padding
256 512 512

= Conv 3x3x3, ReLu, “same” padding
5x5x4 I l l = Conv 1x1x1, Softmax

Figure 3. 3D U-Net model architecture. Each blue rectangle represents the feature maps resulting from

a convolution operation, while white rectangles represent copied feature maps. For the convolutions,
the zero padding was chosen such that the volume size was preserved ("same" padding). The output
size is 4: one per segmentation (bladder, rectum, and prostate) and one for the background.

3. Results

In this section, we assess the performance of our algorithm in terms of overlap (i.e., DSC and
JI), distance (i.e., SMBD), and volume agreement measurements. In the first part, we compare the
overlaps and distances measured between our algorithm in different settings and the considered
DIR-based segmentation approaches. In the second part, we further evaluate the performance
of our best algorithm (i.e., 3D U-net trained with all available CT and CBCT scans) by assessing
whether the predicted organ volumes are in good agreement with the volumes determined by manual
segmentation. This is done by Bland-Altman analysis.

In Figure 4, the DSC between the segmentation output of the fully convolutional neural network
(FCN) and the ground truth segmentation were computed and averaged over all 63 CBCT scans from
the three test folds. This was done for different numbers of training CBCT and CT scans. The results
were then compared with the RayStation DIR algorithm, diffeomorphic morphons algorithm, and rigid
registration. Table 2 completes the plots in Figure 4 by providing the means and standard deviations
of the DSC, JI, and SMBD for different numbers of training CBCT scans and different numbers of
training CT scans. The statistical model used for comparing the performances is a mixed model with a
random intercept on the patient. It showed significant differences between algorithms’ performance
for all organs regarding their DSC (bladder, rectum, prostate p < 10~3), JI (bladder, rectum, prostate



Version February 5, 2020 submitted to Appl. Sci. 7 of 17

p < 107%), and SMBD (bladder, rectum, prostate p < 10~3). In the following paragraphs, the notation
Ours(ncpcer, ner) stands for the 3D U-net proposed in this study with ncper CBCT scans and ner CT
scans in the training set. The P-values provided below were obtained by performing a Tukey’s range
test on the DSCs. The following observations can be made based on Figure 4 and Table 2.

First, CBCT scans are more valuable than CT scans to train a CBCT segmentation model. This is
not surprising, and supported by the observation that a model trained on 40 CBCT and 0 CT scans
performed significantly better than a model trained on 0 CBCT and 40 CT scans for all organs (bladder,
rectum, prostate p < 1073). The DSCs reached 0.634, 0.286, and 0.525 with Ours(0, 40) and 0.845, 0.754,
and 0.722 with Ours(40, 0), for the bladder, rectum, and prostate, respectively. Also, a model trained
only on 74 CT scans reached approximately the same performance as a network trained on only 6 to 10
CBCT scans for all the organs. Moreover, the more CBCT scans there were in the training set, the higher
the DSCs on the test set were. This result makes sense since adding new CBCT scans to the training set
allows the network to generalize on the test set (exclusively composed of CBCT scans) better. More
surprisingly, we observed that once a sufficient number (typically 20) of CBCT scans were part of the
training set, the benefit of adding CBCT or CT scans was practically the same. Indeed, compared with a
model trained on 20 CBCT and 20 CT scans, the model trained on 40 CBCT and 0 CT scans did not lead
to a significant improvement in performance (bladder p = 0.877, rectum p = 0.700, prostate p = 0.629).
The DSCs reached 0.815, 0.731, and 0.682 with Ours(20, 20) for the bladder, rectum, and prostate,
respectively. This confirms that augmenting a CBCT training set with CT scans might be quite valuable.

Second, from the CT perspective, we clearly observed that the more CT scans there were in the
training set, the higher the mean DSC became. Indeed, Ours(20, 74) is significantly better than Ours(20,
0) for all organs (bladder, rectum p < 1073, prostate p < 1072). We explain this improvement by the
learning of more generic features, leading to better generalization. However, we observed that the
difference in the average DSC between Ours(20, 0) and Ours(20, 20) was approximately equal to the
difference the in average DSC between Ours(20, 20) and Ours(20, 74), whereas 20 new CT scans were
added to the training set in the first case, and 54 new CT scans, in the second case. This may indicate
saturation of the performance improvement produced by adding CT scans to the training set. Moreover,
when the number of training CBCT scans was large, adding training CT scans improved performance
for the rectum only (p < 0.01): no statistically significant incremental change in performance was
observed for the bladder or prostate (p = 0.780 and p = 0.630, respectively) when Ours(42, 74) and
Ours(42, 0) were compared. A plausible interpretation is that most of the useful information present in
the CT scans was already captured in the relatively large CBCT training set. More importantly, in
line with our objective of limiting the annotation of CBCT scans, we observed that the performance
obtained with 42 CBCT and 0 CT scans could be reached with 20 CBCT and 74 CT scans for all organs
(bladder p = 0.940, rectum p = 0.882, prostate p = 0.994). Hence, the availability of 74 annotated
CT scans reduced the number of annotated CBCT scans significantly (by a factor of approximately two).

Third, when all available CT and CBCT scans (42 CBCT and 74 CT scans) were used for training,
our approach significantly outperformed the rigid registration, RayStation DIR algorithm, and
diffeomorphic morphons algorithm for the bladder and rectum (p < 10~3) but not for the prostate
(p = 0.911). These conclusions are illustrated on a representative patient in Figure 5. The results also
show that the rigid registration is outperformed by the ANACONDA algorithm, which is in turn
outperformed by the diffeomorphic morphons algorithm for the bladder and rectum. As mentioned
above, both DIR methods are statistically similar to the rigid registration approach when it comes to
segmenting the prostate. This supports the hypothesis that the prostate undergoes less deformation
than the bladder and rectum, which are subject to regular influxes and voiding of matter. Although
our analysis is based on the DSC, both the JI and the SMBD lead to the same conclusions.
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Figure 6 presents Bland-Altman plots comparing the organ volumes reached manually and by
our DL-based predictions (obtained with Ours(42, 74)), using the bias, precision, and 95% limits of
agreements (LoA). The bias normalized by the manual volume is below 5 % for all organs (bladder
4.78%, rectum 1.21%, prostate 2.51%). The precision normalized by the manual volume is similar for
the bladder and the rectum (bladder 13.3%, rectum 13.9%) and larger for the prostate (27.9%). The LoA
of the bladder are also close to the LoA of the rectum (-32% and 41% for the bladder and -33% and
35% for the rectum), whereas they are larger for the prostate (-65% and 70%). Table 3 completes the
Bland-Altman plots by providing the means and standard deviations for the manual and predicted
organ volumes. Moreover, a one-sample ¢-test was performed on the differences between the manual
and predicted volumes normalized by the manual volume for each organ. The resulting P-values
for all organs are presented in Table 3 and are not significantly different (bladder p = 0.285, rectum
p = 0.897, prostate p = 0.438). This means that the predicted and manual contours are similar in
means according to the t-test.

Computational cost analysis was performed by measuring the running time on our machine
equipped with a 11Gb GeForce GTX 1080 Ti graphics card. The rigid registration of one image ran in
1.05 min. The deformable image registration with the ANACONDA and morphons algorithms ran in
1.92 min and 8.33 min, respectively. The inference time for one image with the DL approaches was
much lower. It reached 0.15 s independently of the learning strategy. Indeed, the number of images in
the training set has no impact on the inference time. The training time needed to reach convergence
depends on the size of the training set. Hence, Ours(20, 0), Ours(20, 74), Ours(42, 0), and Ours(42, 74)
were trained in 17.3, 224, 167, and 220 min, respectively.
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Figure 5. Comparison of manual, 3D U-net, and morphons DIR-based segmentation for a representative

patient. Each column corresponds to a slice of the same CBCT scan. Dark colors represent reference
segmentations (both second and third rows), while light colors show 3D U-net segmentation (second
row) and morphons DIR-based segmentation (third row). The predicted bladder, in pink, has a DSC
of 0.940 (U-net) and 0.864 (morphons); the rectum, in light green, has a DSC of 0.791 and 0.759; the
prostate, in light blue, has a DSC of 0.780 and 0.730.
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Figure 6. Bland-Altman plots for the bladder, rectum, and prostate derived from the differences
between the predicted and manual segmentations. The solid lines represent no difference; the dotted
lines depict the mean difference (bias) and 95% limits of agreements (LoA).

Table 3. Absolute and relative differences between manual and predicted organs volumes. P-values
are calculated using a one-sample t-test on percentage differences.

Differences between manual and predicted volumes

Organ Volumes (x10* mL) Absolute (x10% mL) Percentage (%)
Manual Predicted Bias Precision Bias Precision P-value
Bladder 21.9+129 2074114 1.18 246 4.78 13.3 .285
Rectum 596 +1.66 5.87+155 .094 .826 1.21 13.9 .897
Prostate 5.87 £298 553 +207 .340 1.64 2.51 27.9 438

4. Discussion

Based on Table 2 (first part) and Figure 4, 3D U-net approach is the most satisfactory approach for
automatic segmentation of the bladder and rectum on CBCT scans. This supports the initial hypothesis
that registration-based approaches fail in the case of large deformation and alternative approaches
using the statistics of the target image (i.e., the CBCT scan) are more suitable. This observation is also
consistent with the state-of-the-art algorithms shown in Table 2 (second part), where DL approaches
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outperform alternative approaches for the bladder and rectum.

Still based on Table 2 (first part) and Figure 4, the 3D U-net slightly outperforms the
registration-based approaches for the prostate, but this improvement is not statistically significant. 3D
U-net’s lower performances for the prostate than for the bladder and rectum is further supported by
the Bland-Altman analysis of the manual and predicted volumes. Indeed, this analysis provides less
than 5% bias for all organs but higher precision (i.e., a larger spread of the predictions, as defined
in (5)) for the prostate than for the bladder and rectum. Also, most other state-of-the-art DIR-based
algorithms outperform our approach for the prostate. This shows that DIR-based approaches are still
valuable in situations with limited organ deformation and where poor contrast makes the use of
vanilla DL models challenging. A first way to improve the segmentation results for the prostate and
outperform DIR-based approaches without annotating more CBCT scans might be to generate pseudo
CBCT scans as in Schreier et al., but our study shows that increasing the number of already annotated
CT scans further is a valuable alternative, albeit with a risk of saturation. If few data are available, a
second option could be to promote a desired shape or structure in the deep model prediction [32,33].
A third option could be to perform unsupervised domain adaptation [34]. This approach requires
annotations in a source domain (CT) but not in the target domain (CBCT). This will be the subject of
future research.

From an application point of view, the study shows that the more CBCT scans are contoured, the
better the DSC on the predicted contours. However, contouring CBCT scans is not part of the clinical
workflow, is time-consuming, and is not easy because of the poor contrast between the different
regions of interest. Hence, we have shown that expanding the training set with CT scans improves the
segmentation performances for all considered organs, especially when few contoured CBCT scans are
available. Our 3D U-net that reached the best segmentation performances was trained with 42 CBCT
and 74 CT scans.

Most cases of failure have been observed for the prostate, which has the lowest DSC of the organs.
This may be due to the fact that the prostate is hard to see on CBCT scans and often pushes on the
bladder as we can see in Figure 5. Hence, some upper parts of the prostate are often wrongly classified
as bladder, which decreases the DSC for the prostate. Since the bladder is larger than the prostate,
misclassification at the boundary between the two organs has less impact on the DSC of the bladder. A
second case of failure occurs at the top and bottom slices of the rectum, which is wrongly classified
as background (or inversely, background is wrongly classified as rectum). This makes sense since
there are few differences in contrast between the rectum, anal canal, and colon. The impact of such
errors on the prostate and rectum, as well as the required contour quality for clinical use in adaptive
radiotherapy, is such that additional quality assessment with a contours review process is needed.
This should be done by radiation oncologists and will be the subject of future research.

Our DL approach also outperforms or achieves the same performance as patient specific
models for the bladder. Those models rely on PCA to extract principal modes of deformation from
landmarks placed on the bladder’s contour and across several contoured images for each patient
being considered. The drawback for clinical use of such approaches is that (i) a different model
is required for every patient and organ and (ii) several images per patient are needed to build the model.

Concerning alternative DL methods, the current work slightly outperforms our initial conference
paper, Brion et al. [24], on bladder segmentation with 3D U-net. This is probably due to the larger
training database and/or the multi-class formulation used in this work, since three organs were
segmented instead of one. Only 41 of the patients used in our conference paper were kept in this
study. This is because the remaining patients had either had their prostates removed or lacked fully
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annotated scans. New patients were also added. The two datasets are thus different. However,
Schreier et al.’s work is the closest to this study. Hence, we did a more thorough comparison with
their findings. They obtained a higher DSC than we did for all the organs considered in this study.
This might be explained by the fact that they used more samples in their training set (300 CT and
300 pseudo CBCT scans compared with 74 CT and 42 CBCT scans). However, it is hard to determine
whether this is the only explanation for their better results. Indeed, in Figure 4, we see that the
DSC increases more slowly as the number of training samples increases. Interestingly, they ran the
patch-wise 3D U-net proposed by Hénsch et al. on their test set and got DSCs of 0.927, 0.860, and 0.816
for the bladder, rectum, and prostate, respectively. Those results are higher than the results obtained
on the bladder (DSC = 0.88) and rectum (DSC = 0.71) by Hansch et al. So, their test set might be of a
higher quality than ours, which can be a limitation on their approach in clinical practice, where low
quality images are common. Another shortcoming is that they report their results on a dataset that
includes both CBCT and CT scans (10%). It is therefore unclear how well their method would perform
on a dataset containing only CBCT scans (such as ours). As a final remark, their proposed generation
of pseudo CBCT scans from clinically contoured CT scans is a powerful tool for solving the problem of
CBCT annotations. However, such knowledge of artificial data generation might not be present in all
hospitals. To summarize this comparison, we consider the two publications to be complementary, with
our strengths being the size of our test set, detailed comparison with registration approaches, and
detailed study of the impact of additional CT scans in the training database.

5. Conclusions

In this work, a 3D U-net DL model was trained on CBCT an CT scans in order to segment the
bladder, rectum, and prostate on CBCT scans. The proposed approach significantly outperformed all
the DIR-based segmentation methods applied on our dataset in terms of DSC, JI, and SMBD for the
bladder and rectum. The conclusions are more mitigated concerning the prostate, where the DL-based
segmentation did not significantly outperform alternative approaches. A Bland-Altman analysis on the
manual and predicted organs volumes revealed a low bias on the predicted volumes for all organs but
higher precision (i.e., a larger spread of the volumes) for the prostate than for the other organs. Also,
the study shows that the cross-domain data augmentation consisting in adding CT to the CBCT scans
in the training set significantly improved the segmentation results. A further step will be to highlight
these improvements by showing the better tumor coverage and reduction in the doses delivered to
organs at risk that it allows.
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CBCT Cone beam computed tomography

CT Computed tomography

CTV Clinical target volume

DIR Deformable image registration

DL Deep learning

DSC Dice similarity coefficient

DVF Deformation vector field

EBRT  External beam radiation therapy

FCN Fully convolutional neural network

GPU Graphical processing unit

JI Jaccard index

LoA Limit of agreement

OAR  Organ at risk

ROI Region of interest

SMBD  Symmetric mean boundary distance
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