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Abstract: For prostate cancer patients, large organ deformations occurring between radiotherapy1

treatment sessions create uncertainty about the doses delivered to the tumor and surrounding healthy2

organs. Segmenting those regions on cone beam CT (CBCT) scans acquired on treatment day would3

reduce such uncertainties. In this work, a 3D U-net deep-learning architecture was trained to segment4

the bladder, rectum, and prostate on CBCT scans. Due to the scarcity of contoured CBCT scans,5

the training set was augmented with CT scans already contoured in the current clinical workflow.6

Our network was then tested on 63 CBCT scans. The Dice similarity coefficient (DSC) increases7

significantly with the number of CBCT and CT scans in the training set, reaching 0.874±0.096,8

0.814±0.055, and 0.758±0.101 for the bladder, rectum, and prostate respectively. This is about 10%9

better than conventional approaches based on deformable image registration between planning CT10

and treatment CBCT scans, except for the prostate. Interestingly, adding 74 CT scans to the CBCT11

training set allowed to maintain high DSCs, while halving the number of CBCT scans. Hence, our12

work shows that although CBCT scans include artifacts, cross-domain augmentation of the training13

set is effective and can rely on large datasets available for planning CT scans.14

Keywords: segmentation; deep learning; deformable image registration; cone beam CT; pelvis;15

prostate cancer; radiotherapy; CNN; U-net16

1. Introduction17

Fractionated external beam radiotherapy (EBRT) cancer treatment relies on two steps. In the18

treatment planning phase, clinicians delineate the tumor and surrounding healthy organs’ volumes on19

a computed tomography (CT) scan and compute the dose distribution. In the treatment delivery phase,20

the patient is aligned with a specific treatment planning position and the dose fraction is delivered.21

Patient positioning relies on a daily cone beam computed tomography (CBCT) scan acquired in the22

treatment position before each treatment fraction is delivered.23

24

CT and CBCT are both based on X-ray propagation through the patient’s body. However, the25

CBCT scans are of lower quality than CT scans due to different types of artifact, including noise, beam26

hardening, and scattering, as shown in Figure 1. In particular, scattering is an important limitation that27

could rule out the use of CBCT for radiotherapy treatment planning [1]. However, CBCT scans are28

currently used in order to detect daily variations in patient anatomy, which are particularly large in29

the pelvic region due to physiological function (e.g., bladder and rectal filling and voiding). Detecting30
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such variations is important since they can impair treatment dose conformity, which means delivering31

too large a dose to the healthy organs (e.g., the bladder and rectum in the case of prostate cancer)32

and too low a dose to the clinical target volume (which simply corresponds to the prostate itself for33

a significant proportion of patients) [2]. To improve treatment dose conformity in the pelvic region34

further, proposals have been made to change treatment plan delivery as a function of time based on35

observed anatomic variations [3,4].36

37

However, a step towards better adaptive radiotherapy would require automatic segmentation38

of the pelvic organs on daily CBCT scans in order measure the anatomical variations accurately.39

Automating this segmentation is necessary to be able to integrate it in the clinical workflow, as40

delineating the organs manually on daily scans is excessively time-consuming. Measuring anatomical41

variations is particularly important in proton therapy because the proton dose distribution is highly42

sensitive to changes in patient geometry [5,6].43

44

Currently, organ segmentation is classically performed by deformable image registration (DIR)45

algorithms between the planning CT and daily CBCT scans [7,8]. These algorithms include such46

clinical software packages as MIM [9] and RayStation [10]. Although the results are better than those47

of rigid registration, these intensity-based DIR algorithms fail in the presence of large deformations48

between the registered scans, as is the case in the pelvic region [11,12]. Zambrano et al. [11] and49

Thor et al. [12] implemented a featurelet-based algorithm [13] and the demons DIR algorithm [14],50

respectively. As a result, more complex DIR approaches, such as a B-spline DIR algorithm relying51

on mutual information, have been proposed [15]. This last approach implements a 6-pass DIR with52

progressively finer resolution and, after visual inspection, an optional final pass using a narrow53

region around the region of interest. Another approach uses a DIR framework where a locally rigid54

deformation is enforced for bone and/or the prostate, while surrounding tissue is still allowed to55

deform elastically [16]. Alternatively, statistical shape models can capture shape variations and have56

also been considered for bladder segmentation on CBCT scans [17,18]. However, those methods57

require the definition of landmarks or meshes. Moreover, several delineated CBCT scans must be58

available to build a patient-specific shape model. That thwarts the application of such methods at59

the start of treatment. So, none of these methods accomplishes the challenging task of pelvic organ60

segmentation on CBCT scans. In parallel, recent advances in computing capabilities, the availability of61

representative datasets, and the great versatility of deep-learning (DL) approaches have enabled DL62

algorithms to achieve impressive segmentation performance. Unlike the aforementioned techniques,63

DL algorithms are supposed to be robust to variations in shape and appearance if those variations64

are captured in the training database and do not require landmark definition. DL algorithms have65

already been used successfully to segment pelvic organs on CT scans [19,20]. The 3D U-net fully66

convolutional neural network [21] has been used to segment female pelvic organs on CBCT scans67

[22,23]. Concurrently, we showed that adding annotated CT scans to the training set improved68

bladder segmentation on CBCT scans [24]. This approach was motivated by the scarcity of annotated69

CBCT scans, compared with annotated CT scans, and the fact that CBCT scans can be roughly70

considered to be noisy, distorted CT scans from a segmentation perspective, hence sharing shape and71

contextual information with the CT scans. The current paper extends our previous conference paper72

[24] in that it considers additional male pelvic organs (the rectum and prostate), and presents more73

comparative results (including the morphons deformable registration algorithm). It also involves74

data from an additional hospital and provides a more detailed discussion. Segmentation of male75

pelvic organs (bladder, rectum, prostate, and seminal vesicles) on CBCT and CT scans using a DL76

approach was the subject of a recent paper [25]. These authors’ contribution consists mainly of the use77

of artificially-generated pseudo CBCT scans in the training set along with a high segmentation quality.78

Our approach adds training on real CBCT scans and provides a new and larger test set as well as more79
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extensive comparison with clinically-used registration tools.80

81

The main contributions of this work are to provide (i) a DL-based segmentation method for male82

pelvic organs on CBCT scans and (ii) a detailed comparison of state-of-the-art segmentation tools in83

order to guide the choice of method in clinical practice. The impacts of the number of training scans84

and addition of CT scans to the training database were studied in order to provide detailed information85

on the amount of annotations required for use in clinical practice.86

(a) Slice of a CT scan. (b) Slice of a CBCT scan.
Figure 1. Comparison of CT and CBCT scans.

2. Materials and Methods87

2.1. Data and preprocessing88

Our data consist of (i) a set S1 of 74 patients for whom we have delineated CT scans and (ii) a89

set S2 of 63 patients (different from the 74 patients mentioned above) for whom we have delineated90

planning CT scans and delineated daily CBCT scans. The contours of the bladder, rectum, and prostate91

were delineated on the CT scans during the clinical workflow. The contours on the CBCT scans were92

delineated by a trained expert specifically for this study. Within set S1, 18 and 56 patients underwent93

EBRT for prostate cancer at two teaching hospitals, CHU-Charleroi Hôpital André Vésale and94

CHU-UCL-Namur, respectively. Within set S2, 23 and 40 patients underwent EBRT for prostate cancer95

at CHU-Charleroi Hôpital André Vésale (CBCT scans acquired with a Varian TrueBeam STx version96

1.5) and CHU-UCL-Namur (CBCT scans acquired with a Varian OBI cone beam CT), respectively.97

The use of these retrospective, anonymized data for this study has been approved by each hospital’s98

ethics committee (dates of approval: May 24, 2017 for CHU-Charleroi Hôpital André Vésale and May99

12, 2017 for CHU-UCL-Namur). In order to ensure data uniformity across the entire dataset, all the100

3D CT and CBCT scans (as well as the 3D binary masks representing the manual segmentations)101

were re-sampled on a 1.2x1.2x1.5 mm regular grid. All re-sampled image volumes and binary mask102

volumes were cropped to volumes of 160x160x128 voxels containing the bladder, rectum, and prostate.103

104

The case selection procedure is described in Figure 2. Patients with an artificial hip were excluded105

from this study because the presence of an artificial hip degrades the image too much for the organs106

to be segmented accurately by a human expert. Patients for whom the prostate was not contoured107

on the planning CT scan were also excluded. This corresponds to patients for whom the clinical108

target volume (CTV) differed from that of the prostate, either because this organ had been surgically109

removed or because the CTV included other areas in addition to the prostate. Note that it is common in110

radiotherapy to inject contrast media into the bladder. Different inter-subject levels of contrast product111

increased the variability of this organ’s appearance, making its automatic contouring more challenging.112

Since our case selection procedure includes all patients regardless of the use of contrast media, our113

method is supposed to be robust to such variability.114
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Patients treated at CHU-Charleroi Hôpital André Vésale
77 patients

Artificial hip degrading 
image quality

Yes | 0 patient
N/A

Prostate contoured on 
planning CT Excluded

No | 36 patients

No | 77 patients

Planning CT used for 
registration baselines,

CBCT manually contoured 
specifically for our study 
23 patients (46 scans)

Planning CT used for 
training set enlargement
18 patients (18 scans)

Patients treated at CHU-UCL-Namur
148 patients

Artificial hip degrading 
image quality

Yes | 5 patients
Excluded

Prostate contoured on 
planning CT Excluded

No | 47 patients

No | 143 patients

Planning CT used for 
registration baselines,

CBCT manually contoured 
specifically for our study 
40 patients (80 scans)

Planning CT used for 
training set enlargement
56 patients (56 scans)

Yes | 41 patients Yes | 96 patients

S2S1
S1

S2

Figure 2. Case selection from CHU-Charleroi Hôpital André Vésale and CHU-UCL-Namur.

2.2. Model architecture and learning strategy115

The bladder, rectum, and prostate were segmented on CBCT scans using the 3D U-net fully116

convolutional neural network [21,26]. The 3D input goes through a contracting path to capture context117

and an expanding path to enable precise localization. In the last layer, a softmax is applied and the118

network outputs the probability of each voxel’s belonging to the bladder, rectum, prostate, or none of119

these organs. The network architecture is shown in Figure 3. To obtain a binary mask for each organ,120

the most probable class label was assigned to each pixel individually. In practice, each organ was121

segmented as a single region of connected voxels. No disconnected region of the same organ was122

observed. The main advantage of fully convolutional neural networks is that they output predictions123

at the same resolution as the input. One output channel was considered per organ. The network124

was trained with the Dice loss. The Adam optimization algorithm was used with a learning rate of125

10−4. The number of epochs was chosen such that convergence was reached. The hyper-parameters126

mentioned here are the same as in Brion et al. [24] and proved satisfactory on the data used in this127

work. For this reason and to keep data available for training and testing, no validation set was128

considered here. Training data were augmented online using rotation (between −5◦ and 5◦ along each129

of the three axes), shift (between -5 and 5 pixels along each axes), and shear (reasonable values for the130

affine transformation matrix). The batch size was set to two, which is the maximum size affordable on131

our 11 Gb graphical processing units (GPU).132

133

We performed 3-fold cross-validation with the 63 CBCT scans of set S2, where 2 folds (nCBCT ≤ 42134

volumes in total) were used as the training set and one fold (21 volumes) as the test set, as shown in135

Table 1. The number of training CBCT scans nCBCT was varied such that nCBCT ∈ {0, 6, 10, 20, 30, 42}.136

The training set was augmented with nCT annotated CT scans from set S1 such that nCT ∈ {0, 20, 74}.137

The same CT scans were added to the training CBCT scans independently on the considered training138

folds. Hence, the training set contains nCBCT + nCT volumes in total. Note that the test set contains no139

CT scans (since our goal was to segment CBCT scans only). The source code is publicly available on140

https://github.com/eliottbrion/pelvis_segmentation.141

Table 1. Three-fold cross-validation. To train the model, we used nCT CT scans from S1 and the nCBCT

first volumes from the CBCT folds labeled "train." To test the model, we used all 21 volumes from the
CBCT fold labeled "test."

S1 S2 (CBCT)

(CT) fold1 fold2 fold3

train train train test
train train test train
train test train train

https://github.com/eliottbrion/pelvis_segmentation
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2.3. Validation and comparison baselines142

In order to evaluate our contouring results, we used four metrics comparing the predicted and143

manual segmentations. The Dice similarity coefficient (DSC) and the Jaccard index (JI) measure the144

overlap between two binary masks, while the symmetric mean boundary distance (SMBD) assesses145

the distance between the contours (i.e., the sets of points located at the boundary of the binary masks)146

delineating those binary masks. We also computed the difference between the manual and predicted147

volumes for all the organs considered. More specifically,148

DSC =
2|M ∩ P|
|M|+ |P| , (1)

JI =
|M ∩ P|
|M ∪ P| , (2)

SMBD =
D(M, P) + D(P, M)

2
, (3)

where M and P are the sets containing the matricial indices of the manual and predicted segmentation149

3D binary masks, respectively; D(M, P) is the mean of D(M, P) over the voxels of ΩM; and D(M, P) =150

{minx∈ΩP ||s � (x − y)||, y ∈ ΩM}, where ΩM, ΩP are the boundaries extracted from M and P,151

respectively, and s> = (1.2, 1.2, 1.5) is the pixel spacing in mm. Comparing the manual and predicted152

organ volumes was motivated by the field of application of this study. Indeed, from the perspective153

of adaptive radiotherapy, the organs’ volumes are needed in order to compare the initial CT plan154

dose-volume histograms for the bladder, rectum, and prostate with the doses actually delivered as155

determined from CBCT scans acquired during the image-guided treatment [27]. The manual and156

predicted organ volumes were compared using a Bland-Altman plot, which allows quantification of157

the agreement between two quantitative measurements (i.e., the manual and predicted organ volumes)158

by studying their mean difference and constructing limits of agreement [28]. We computed the bias as159

Bias =
1
n

n

∑
i=1

(pi −mi), (4)

where n is the number of patients in the test set and pi = s1× s2× s3× |Mi|, mi = s1× s2× s3× |Pi| are160

the volumes of the manual and predicted segmentations of the i-th patient. It provides the systematic161

under- or overestimation of the predicted volumes. We also computed the precision,162

Precision =
1
n

n

∑
i=1
|pi −mi|, (5)

which measures the difference between manual and predicted volume (in absolute value).163

164

The DL-based segmentation was compared with different alternative approaches as summarized165

in Table 2. Two segmentation methods based on deformable image registration (denoted DIR in Table166

2, second column) were applied to our dataset. First, the contours from the planning CT scans of set S2167

were mapped to the follow-up CBCT scans of the same patient by using a rigid registration followed168

by DIR with the ANACONDA algorithm without controlling regions of interest (ROIs) in RayStation1
169

(version 5.99.50.22) [29]. This algorithm adopts an intensity-based registration. Second, the contour170

was mapped from the planning CT scan to the follow-up CBCT scan using the diffeomorphic171

morphons DIR algorithm implemented in OpenReggui2 [30]. This method exploits the local phase of172

1 https://www.raysearchlabs.com/raystation/.
2 https://openreggui.org/.

https://www.raysearchlabs.com/raystation/
https://openreggui.org/.
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the image volumes to perform the registration. Therefore, it is suited for registering image volumes173

with different contrast enhancement, such as CT and CBCT scans. The diffeomorphic version of the174

algorithm forces anatomically plausible deformations. We also compared our DL method with the175

Mattes mutual information rigid registration algorithm [31], as implemented in OpenReggui.176

177

16   16

Input

160x160x128

16    32    32

32    64     64

128 256 256

128 + 
128  128  128

Conv 3x3x3, ReLu, “same” padding

Copy

Maxpooling 2x2x2

Transpose conv 2x2x2, “same” padding

Conv 3x3x3, ReLu, “same” padding

Conv 1x1x1, Softmax

Output

16 +
16   16   16     4

32 +
32   32   32

64 +
64     64    64

256      512        512

256 256256

80x80x64

40x40x32

20x20x16

10x10x8

5x5x4

256 + 

64  128   128

Figure 3. 3D U-Net model architecture. Each blue rectangle represents the feature maps resulting from
a convolution operation, while white rectangles represent copied feature maps. For the convolutions,
the zero padding was chosen such that the volume size was preserved ("same" padding). The output
size is 4: one per segmentation (bladder, rectum, and prostate) and one for the background.

3. Results178

In this section, we assess the performance of our algorithm in terms of overlap (i.e., DSC and179

JI), distance (i.e., SMBD), and volume agreement measurements. In the first part, we compare the180

overlaps and distances measured between our algorithm in different settings and the considered181

DIR-based segmentation approaches. In the second part, we further evaluate the performance182

of our best algorithm (i.e., 3D U-net trained with all available CT and CBCT scans) by assessing183

whether the predicted organ volumes are in good agreement with the volumes determined by manual184

segmentation. This is done by Bland-Altman analysis.185

186

In Figure 4, the DSC between the segmentation output of the fully convolutional neural network187

(FCN) and the ground truth segmentation were computed and averaged over all 63 CBCT scans from188

the three test folds. This was done for different numbers of training CBCT and CT scans. The results189

were then compared with the RayStation DIR algorithm, diffeomorphic morphons algorithm, and rigid190

registration. Table 2 completes the plots in Figure 4 by providing the means and standard deviations191

of the DSC, JI, and SMBD for different numbers of training CBCT scans and different numbers of192

training CT scans. The statistical model used for comparing the performances is a mixed model with a193

random intercept on the patient. It showed significant differences between algorithms’ performance194

for all organs regarding their DSC (bladder, rectum, prostate p < 10−3), JI (bladder, rectum, prostate195
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p < 10−3), and SMBD (bladder, rectum, prostate p < 10−3). In the following paragraphs, the notation196

Ours(nCBCT , nCT) stands for the 3D U-net proposed in this study with nCBCT CBCT scans and nCT CT197

scans in the training set. The P-values provided below were obtained by performing a Tukey’s range198

test on the DSCs. The following observations can be made based on Figure 4 and Table 2.199

200

First, CBCT scans are more valuable than CT scans to train a CBCT segmentation model. This is201

not surprising, and supported by the observation that a model trained on 40 CBCT and 0 CT scans202

performed significantly better than a model trained on 0 CBCT and 40 CT scans for all organs (bladder,203

rectum, prostate p < 10−3). The DSCs reached 0.634, 0.286, and 0.525 with Ours(0, 40) and 0.845, 0.754,204

and 0.722 with Ours(40, 0), for the bladder, rectum, and prostate, respectively. Also, a model trained205

only on 74 CT scans reached approximately the same performance as a network trained on only 6 to 10206

CBCT scans for all the organs. Moreover, the more CBCT scans there were in the training set, the higher207

the DSCs on the test set were. This result makes sense since adding new CBCT scans to the training set208

allows the network to generalize on the test set (exclusively composed of CBCT scans) better. More209

surprisingly, we observed that once a sufficient number (typically 20) of CBCT scans were part of the210

training set, the benefit of adding CBCT or CT scans was practically the same. Indeed, compared with a211

model trained on 20 CBCT and 20 CT scans, the model trained on 40 CBCT and 0 CT scans did not lead212

to a significant improvement in performance (bladder p = 0.877, rectum p = 0.700, prostate p = 0.629).213

The DSCs reached 0.815, 0.731, and 0.682 with Ours(20, 20) for the bladder, rectum, and prostate,214

respectively. This confirms that augmenting a CBCT training set with CT scans might be quite valuable.215

216

Second, from the CT perspective, we clearly observed that the more CT scans there were in the217

training set, the higher the mean DSC became. Indeed, Ours(20, 74) is significantly better than Ours(20,218

0) for all organs (bladder, rectum p < 10−3, prostate p < 10−2). We explain this improvement by the219

learning of more generic features, leading to better generalization. However, we observed that the220

difference in the average DSC between Ours(20, 0) and Ours(20, 20) was approximately equal to the221

difference the in average DSC between Ours(20, 20) and Ours(20, 74), whereas 20 new CT scans were222

added to the training set in the first case, and 54 new CT scans, in the second case. This may indicate223

saturation of the performance improvement produced by adding CT scans to the training set. Moreover,224

when the number of training CBCT scans was large, adding training CT scans improved performance225

for the rectum only (p < 0.01): no statistically significant incremental change in performance was226

observed for the bladder or prostate (p = 0.780 and p = 0.630, respectively) when Ours(42, 74) and227

Ours(42, 0) were compared. A plausible interpretation is that most of the useful information present in228

the CT scans was already captured in the relatively large CBCT training set. More importantly, in229

line with our objective of limiting the annotation of CBCT scans, we observed that the performance230

obtained with 42 CBCT and 0 CT scans could be reached with 20 CBCT and 74 CT scans for all organs231

(bladder p = 0.940, rectum p = 0.882, prostate p = 0.994). Hence, the availability of 74 annotated232

CT scans reduced the number of annotated CBCT scans significantly (by a factor of approximately two).233

234

Third, when all available CT and CBCT scans (42 CBCT and 74 CT scans) were used for training,235

our approach significantly outperformed the rigid registration, RayStation DIR algorithm, and236

diffeomorphic morphons algorithm for the bladder and rectum (p < 10−3) but not for the prostate237

(p = 0.911). These conclusions are illustrated on a representative patient in Figure 5. The results also238

show that the rigid registration is outperformed by the ANACONDA algorithm, which is in turn239

outperformed by the diffeomorphic morphons algorithm for the bladder and rectum. As mentioned240

above, both DIR methods are statistically similar to the rigid registration approach when it comes to241

segmenting the prostate. This supports the hypothesis that the prostate undergoes less deformation242

than the bladder and rectum, which are subject to regular influxes and voiding of matter. Although243

our analysis is based on the DSC, both the JI and the SMBD lead to the same conclusions.244

245
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Figure 6 presents Bland-Altman plots comparing the organ volumes reached manually and by246

our DL-based predictions (obtained with Ours(42, 74)), using the bias, precision, and 95% limits of247

agreements (LoA). The bias normalized by the manual volume is below 5 % for all organs (bladder248

4.78%, rectum 1.21%, prostate 2.51%). The precision normalized by the manual volume is similar for249

the bladder and the rectum (bladder 13.3%, rectum 13.9%) and larger for the prostate (27.9%). The LoA250

of the bladder are also close to the LoA of the rectum (-32% and 41% for the bladder and -33% and251

35% for the rectum), whereas they are larger for the prostate (-65% and 70%). Table 3 completes the252

Bland-Altman plots by providing the means and standard deviations for the manual and predicted253

organ volumes. Moreover, a one-sample t-test was performed on the differences between the manual254

and predicted volumes normalized by the manual volume for each organ. The resulting P-values255

for all organs are presented in Table 3 and are not significantly different (bladder p = 0.285, rectum256

p = 0.897, prostate p = 0.438). This means that the predicted and manual contours are similar in257

means according to the t-test.258

259

Computational cost analysis was performed by measuring the running time on our machine260

equipped with a 11Gb GeForce GTX 1080 Ti graphics card. The rigid registration of one image ran in261

1.05 min. The deformable image registration with the ANACONDA and morphons algorithms ran in262

1.92 min and 8.33 min, respectively. The inference time for one image with the DL approaches was263

much lower. It reached 0.15 s independently of the learning strategy. Indeed, the number of images in264

the training set has no impact on the inference time. The training time needed to reach convergence265

depends on the size of the training set. Hence, Ours(20, 0), Ours(20, 74), Ours(42, 0), and Ours(42, 74)266

were trained in 17.3, 224, 167, and 220 min, respectively.267
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Figure 4. Influence of the number of training CBCT and CT scans on the DSC. Bars indicate one
standard deviation for the group of 63 patients. DSC: Dice similarity coefficient.
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Figure 5. Comparison of manual, 3D U-net, and morphons DIR-based segmentation for a representative
patient. Each column corresponds to a slice of the same CBCT scan. Dark colors represent reference
segmentations (both second and third rows), while light colors show 3D U-net segmentation (second
row) and morphons DIR-based segmentation (third row). The predicted bladder, in pink, has a DSC
of 0.940 (U-net) and 0.864 (morphons); the rectum, in light green, has a DSC of 0.791 and 0.759; the
prostate, in light blue, has a DSC of 0.780 and 0.730.
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Figure 6. Bland–Altman plots for the bladder, rectum, and prostate derived from the differences
between the predicted and manual segmentations. The solid lines represent no difference; the dotted
lines depict the mean difference (bias) and 95% limits of agreements (LoA).

Table 3. Absolute and relative differences between manual and predicted organs volumes. P-values
are calculated using a one-sample t-test on percentage differences.

Differences between manual and predicted volumes

Organ Volumes (×104 mL) Absolute (×104 mL) Percentage (%)

Manual Predicted Bias Precision Bias Precision P-value

Bladder 21.9 ± 12.9 20.7 ± 11.4 1.18 2.46 4.78 13.3 .285
Rectum 5.96 ± 1.66 5.87 ± 1.55 .094 .826 1.21 13.9 .897
Prostate 5.87 ± 2.98 5.53 ± 2.07 .340 1.64 2.51 27.9 .438

4. Discussion268

Based on Table 2 (first part) and Figure 4, 3D U-net approach is the most satisfactory approach for269

automatic segmentation of the bladder and rectum on CBCT scans. This supports the initial hypothesis270

that registration-based approaches fail in the case of large deformation and alternative approaches271

using the statistics of the target image (i.e., the CBCT scan) are more suitable. This observation is also272

consistent with the state-of-the-art algorithms shown in Table 2 (second part), where DL approaches273
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outperform alternative approaches for the bladder and rectum.274

275

Still based on Table 2 (first part) and Figure 4, the 3D U-net slightly outperforms the276

registration-based approaches for the prostate, but this improvement is not statistically significant. 3D277

U-net’s lower performances for the prostate than for the bladder and rectum is further supported by278

the Bland-Altman analysis of the manual and predicted volumes. Indeed, this analysis provides less279

than 5% bias for all organs but higher precision (i.e., a larger spread of the predictions, as defined280

in (5)) for the prostate than for the bladder and rectum. Also, most other state-of-the-art DIR-based281

algorithms outperform our approach for the prostate. This shows that DIR-based approaches are still282

valuable in situations with limited organ deformation and where poor contrast makes the use of283

vanilla DL models challenging. A first way to improve the segmentation results for the prostate and284

outperform DIR-based approaches without annotating more CBCT scans might be to generate pseudo285

CBCT scans as in Schreier et al., but our study shows that increasing the number of already annotated286

CT scans further is a valuable alternative, albeit with a risk of saturation. If few data are available, a287

second option could be to promote a desired shape or structure in the deep model prediction [32,33].288

A third option could be to perform unsupervised domain adaptation [34]. This approach requires289

annotations in a source domain (CT) but not in the target domain (CBCT). This will be the subject of290

future research.291

292

From an application point of view, the study shows that the more CBCT scans are contoured, the293

better the DSC on the predicted contours. However, contouring CBCT scans is not part of the clinical294

workflow, is time-consuming, and is not easy because of the poor contrast between the different295

regions of interest. Hence, we have shown that expanding the training set with CT scans improves the296

segmentation performances for all considered organs, especially when few contoured CBCT scans are297

available. Our 3D U-net that reached the best segmentation performances was trained with 42 CBCT298

and 74 CT scans.299

300

Most cases of failure have been observed for the prostate, which has the lowest DSC of the organs.301

This may be due to the fact that the prostate is hard to see on CBCT scans and often pushes on the302

bladder as we can see in Figure 5. Hence, some upper parts of the prostate are often wrongly classified303

as bladder, which decreases the DSC for the prostate. Since the bladder is larger than the prostate,304

misclassification at the boundary between the two organs has less impact on the DSC of the bladder. A305

second case of failure occurs at the top and bottom slices of the rectum, which is wrongly classified306

as background (or inversely, background is wrongly classified as rectum). This makes sense since307

there are few differences in contrast between the rectum, anal canal, and colon. The impact of such308

errors on the prostate and rectum, as well as the required contour quality for clinical use in adaptive309

radiotherapy, is such that additional quality assessment with a contours review process is needed.310

This should be done by radiation oncologists and will be the subject of future research.311

312

Our DL approach also outperforms or achieves the same performance as patient specific313

models for the bladder. Those models rely on PCA to extract principal modes of deformation from314

landmarks placed on the bladder’s contour and across several contoured images for each patient315

being considered. The drawback for clinical use of such approaches is that (i) a different model316

is required for every patient and organ and (ii) several images per patient are needed to build the model.317

318

Concerning alternative DL methods, the current work slightly outperforms our initial conference319

paper, Brion et al. [24], on bladder segmentation with 3D U-net. This is probably due to the larger320

training database and/or the multi-class formulation used in this work, since three organs were321

segmented instead of one. Only 41 of the patients used in our conference paper were kept in this322

study. This is because the remaining patients had either had their prostates removed or lacked fully323
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annotated scans. New patients were also added. The two datasets are thus different. However,324

Schreier et al.’s work is the closest to this study. Hence, we did a more thorough comparison with325

their findings. They obtained a higher DSC than we did for all the organs considered in this study.326

This might be explained by the fact that they used more samples in their training set (300 CT and327

300 pseudo CBCT scans compared with 74 CT and 42 CBCT scans). However, it is hard to determine328

whether this is the only explanation for their better results. Indeed, in Figure 4, we see that the329

DSC increases more slowly as the number of training samples increases. Interestingly, they ran the330

patch-wise 3D U-net proposed by Hänsch et al. on their test set and got DSCs of 0.927, 0.860, and 0.816331

for the bladder, rectum, and prostate, respectively. Those results are higher than the results obtained332

on the bladder (DSC = 0.88) and rectum (DSC = 0.71) by Hänsch et al. So, their test set might be of a333

higher quality than ours, which can be a limitation on their approach in clinical practice, where low334

quality images are common. Another shortcoming is that they report their results on a dataset that335

includes both CBCT and CT scans (10%). It is therefore unclear how well their method would perform336

on a dataset containing only CBCT scans (such as ours). As a final remark, their proposed generation337

of pseudo CBCT scans from clinically contoured CT scans is a powerful tool for solving the problem of338

CBCT annotations. However, such knowledge of artificial data generation might not be present in all339

hospitals. To summarize this comparison, we consider the two publications to be complementary, with340

our strengths being the size of our test set, detailed comparison with registration approaches, and341

detailed study of the impact of additional CT scans in the training database.342

343

5. Conclusions344

In this work, a 3D U-net DL model was trained on CBCT an CT scans in order to segment the345

bladder, rectum, and prostate on CBCT scans. The proposed approach significantly outperformed all346

the DIR-based segmentation methods applied on our dataset in terms of DSC, JI, and SMBD for the347

bladder and rectum. The conclusions are more mitigated concerning the prostate, where the DL-based348

segmentation did not significantly outperform alternative approaches. A Bland-Altman analysis on the349

manual and predicted organs volumes revealed a low bias on the predicted volumes for all organs but350

higher precision (i.e., a larger spread of the volumes) for the prostate than for the other organs. Also,351

the study shows that the cross-domain data augmentation consisting in adding CT to the CBCT scans352

in the training set significantly improved the segmentation results. A further step will be to highlight353

these improvements by showing the better tumor coverage and reduction in the doses delivered to354

organs at risk that it allows.355
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CBCT Cone beam computed tomography
CT Computed tomography
CTV Clinical target volume
DIR Deformable image registration
DL Deep learning
DSC Dice similarity coefficient
DVF Deformation vector field
EBRT External beam radiation therapy
FCN Fully convolutional neural network
GPU Graphical processing unit
JI Jaccard index
LoA Limit of agreement
OAR Organ at risk
ROI Region of interest
SMBD Symmetric mean boundary distance
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