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Abstract
A number of data mining problems on probabilistic
networks can be modeled as Stochastic Constraint
Optimization and Satisfaction Problems, i.e., prob-
lems that involve objectives or constraints with a
stochastic component. Earlier methods for solving
these problems used Ordered Binary Decision Di-
agrams (OBDDs) to represent constraints on prob-
ability distributions, which were decomposed into
sets of smaller constraints and solved by Constraint
Programming (CP) or Mixed Integer Programming
(MIP) solvers. For the specific case of monotonic
distributions, we propose an alternative method:
a new propagator for a global OBDD-based con-
straint. We show that this propagator is (sub-)linear
in the size of the OBDD, and maintains domain
consistency. We experimentally evaluate the ef-
fectiveness of this global constraint in comparison
to existing decomposition-based approaches, and
show how this propagator can be used in combi-
nation with another data mining specific constraint
present in CP systems. As test cases we use prob-
lems from the data mining literature.

1 Introduction
Making decisions under uncertainty is an important problem
in business, governance and science. Examples are found in
the fields of planning and scheduling, but also occur naturally
in fields like data mining and bioinformatics.

Consider for example a viral marketing problem, as stud-
ied in the data mining literature [Kempe et al., 2003]. We are
given a social network of people (vertices) that have stochas-
tic relationships (edges). We want to rely on word-of-mouth
advertisement to turn acquaintances of people who buy our
product into new product-buyers. How can we find the k most
influential nodes in this social network?

Or consider the problem of signaling-regulatory pathway
inference [De Raedt et al., 2008; Ourfali et al., 2007]. We
are given a network of probabilistic protein-gene interactions
(edges). We are also given (protein, gene) pairs representing
relationships of interest to a particular biologist. How can we
select a small subset of edges from the network to provide
insight in how the (protein, gene) pairs relate to each other?

Myriad variations of these problems exist. Consider this
variation of influence spreading in citation networks: next
to the network, we are given a database of papers and their
authors. How can we enumerate all sets of authors that co-
authored many papers, and that had a minimum level of in-
fluence in the network? Here, we extend the viral marketing
problem with an extra requirement formalized over a second
database, and no longer solve an optimization problem.

We observe that these problems are instances of a gen-
eral class of problems, which we call stochastic constraint
optimization or satisfaction problems on monotonic distribu-
tions (SCPMD). These constraint satisfaction or optimization
problems have the following characteristics: (1) they can be
formulated on probabilistic networks and involve the calcula-
tion of a probability or an expectation on such networks; (2)
the probabilities and expectations are higher if more nodes
or edges are selected; (3) constraints limit these selections.
While characteristic (2) seems limiting, problems with this
characteristic are plentyful. Examples include the two ap-
plications mentioned above, but also an optimisation variant
of the network reliability [Dueñas-Osorio et al., 2017] and
a variant on landscape connectivity [Xue et al., 2017]. Sec-
tion 7 discusses the relation of SCPMDs to other problems.

In this work we develop a generic approach for solving
such SCPMDs. SCPMDs are not easy to solve. The calcu-
lation of a probability in probabilistic networks requires solv-
ing a counting problem. This counting problem is known to
be hard (#P complete) [Roth, 1996]; well-known instances
of SCPMDs, such as spread-of-influence problems, are NP-
hard [Kempe et al., 2003]. Overall, SCPMDs require solving
both constraint satisfaction and counting problems.

There is limited earlier work on solving SCPMDs. Our
work continues the line of our earlier work ([Latour et al.,
2017]), which proposed to solve SCPMDs as follows: (1) a
probabilistic programming language, SC-ProbLog, was intro-
duced to model these problems; this language extends a prob-
abilistic logic programming language, ProbLog [De Raedt et
al., 2007], that has often been used in the literature to model
distributions over networks; (2) statements in this language
are used to compile decision diagrams, either Ordered Bi-
nary Decision Diagrams (OBDDs) or Sentential Decision Di-
agrams (SDDs), that represent the distributions; (3) the dia-
grams are decomposed to create inputs for existing generic
solvers: either Constraint Programming (CP) or Mixed Inte-
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ger linear Programming (MIP) solvers.
Our main contributions in this work are the following. We

show that the earlier CP decomposition approach is not gen-
eralized arc consistent (GAC), and that a straightforward arc
consistent modification of this earlier approach does not per-
form well. To solve this, we introduce a constraint propaga-
tion algorithm for a global constraint on OBDD representa-
tions of monotonic distributions, which we call the Stochas-
tic Constraint on Monotonic Distributions (SCMD), and we
demonstrate the benefits of this global constraint.

In summary, the benefits of our global constraint are: (1) it
guarantees generalized arc consistent (GAC), contrary to the
decomposition method described above (Section 4); (2) it has
a worst-case complexity of O(m + n) with OBDD size m
and n decision variables (Section 5); (3) it outperforms ex-
isting CP-based methods and complements MIP-based meth-
ods, while scaling better with OBDD size than MIP-based
methods (Section 6); as a result, the costly process of OBDD
or SDD minimization is less important using our constraint;
and (4) it supports modeling a larger range of SCPMDs than
MIP-based methods can (e.g., enumeration problems).

Note that a number of approaches in the literature are not
related to this work. We do not use OBDDs as a compact rep-
resentation for satisfying assignments to a global constraint;
we use them as a representation of a probability distribution
(Sections 3, 5 and 7), which means that we are not able to
build on existing propagators for OBDDs. Note also that
we do not solve problems that can be solved using maxSAT
solvers, since maxSAT has no concept of counting (Sec-
tion 3), which we require to solve SCPMD problems.

2 Modeling SCPMDs
We consider constraint satisfaction and optimization prob-
lems that are defined on Boolean decision variables. We are
interested in finding one or more assignments to these deci-
sion variables, such that given constraints are satisfied, and,
if provided, an optimization criterion is optimized. We also
refer to such assignments as strategies. The specific feature
of stochastic constraint satisfaction problems is that the con-
straints, as well as the optimization criterion, may be stochas-
tic and require some form of counting.

The stochastic constraint studied in this work is this:∑
φ∈Φ

ρφP (φ | σ) ≥ θ. (1)

The sum represents an expected utility, in which Φ is a set
of stochastic events, P (φ | σ) represents the probability of
an event φ happening, given a strategy σ; ρφ ∈ R+ is a re-
ward for this event. For simplicity we will assume ρφ = 1 in
this work. Note that generalizing our approach to ρφ 6= 1 is
trivial: in only involves multiplying conditional probabilities
with the appropriate reward before summing and comparing
to threshold θ ∈ R+.

In SCPMDs, we require each probability P (φ | σ) to be
monotonic: for any strategy σ, switching the value of any de-
cision variable from false to true, will yield a probability that
is not smaller: P (φ | σ′) ≥ P (φ | σ), if σ′ differs from σ by
one variable that is true in σ′ but false in σ. This condition is

a
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Figure 1: A network of four nodes (a, b, c and e) and four undirected
edges with mutually independent probabilities.

met in the example problems mentioned earlier. We will re-
fer to our constraint as a Stochastic Constraint on Monotonic
Distributions (SCMD).

Our results are straightforwardly expanded towards maxi-
mization problems over expected utilities.

Example 2.1 (Viral Marketing: SCPMD). Problems on net-
works, e.g. viral marketing problems, can be seen as SCP-
MDs such as defined earlier. Consider the network in Fig-
ure 1. Suppose that the edges represent probabilistic mutual
trust relationships, meaning that individuals u and v trust each
other with the probability puv that is the label on edge (u, v),
and do not trust each other with probability (1− puv).

For the sake of this example, we make the following sim-
plifying assumptions: (1) once someone gets a free product
sample, they will certainly buy the product; (2) if a trusted
friend buys the product, they will also buy the product. The
problem is to maximize the expected number of people buy-
ing our product, given a limited number k of free samples to
distribute to people in the network.

We model this as follows:

• with each node i in the network we associate a Boolean
decision variable di, representing if person i gets a free
sample;

• the events considered are φa, φb, φc and φe, where φi
expresses the event of person i buying our product;

• our objective is to find a strategy σ that maximizes the
expected utility

∑
i∈{a,b,c,e} P (φi | σ);

• constraint:
∑
i∈{a,b,c,e} di ≤ k (threshold k ∈ N+).

Note that in this example, we have a stochastic objective
function rather than a stochastic constraint, like the one in
Equation (1). However: we can maximise the expected utility
by solving

∑
i∈{a,b,c,e} P (φi | σ) > θ, increasing θ to the

best expected utility for a solution found so far, each time we
find such a solution, until no new solution can be found.

We also need to define the probability of events φi, given a
strategy. While there are many formalisms for defining these
conditional probabilities, we use a Weighted Model Counting
(WMC) approach in this work, where weighted propositional
formulas define the distributions; this approach generalizes
many other well-known approaches.

Example 2.2 (Viral Marketing: WMC). The situations in
which the event φe is considered to take place are de-
fined by the propositional formula φe = de ∨ (dc ∧ tcd) ∨
(db ∧ tbc ∧ dce)∨ (da ∧ tac ∧ dce)∨ (db ∧ tba ∧ tbc ∧ dce)∨
(da ∧ tab ∧ tbc ∧ dce). The logical formula represents all the
different situations in which e will finally buy the product.
We use two types of variables: (1) the di variables are the
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decision variables of the SCPMD; (2) the tij variables are as-
sociated to each edge (i, j) in the network and represent trust.
In our example, one possibility for event φd to happen is when
person c gets a free sample and person e trusts person c.

To define a distribution over the network, we associate a
probability p (tij) with each Boolean variable tij that this
variable is true. We call tij a stochastic variable. The proba-
bility P (φe | σ) is then defined as the sum of the probabilities
of all the (logical) models of this formula, given the strategy.
Given strategy σ = (da = >, db = dc = de = ⊥), one model
is for instance tac = tce = >, tab = tbc = ⊥, of which the
probability is 0.8 · 0.3 · (1− 0.4) · (1− 0.1) = 0.1296.

Ensuring that distributions are monotonic is relatively easy
in the WMC approach: if our logic formula is equivalent to
a formula without negation, the distribution defined by it is
monotonic. There are various methods for obtaining propo-
sitional formulas like φe. We use ProbLog [De Raedt et al.,
2007; Fierens et al., 2015].

3 Solving SCPMDs
We discuss briefly how OBDDs [Bryant, 1986] have been
used to solve SCPMDs in earlier work. OBDDs are com-
pact representations for the satisfying assignments of a con-
straint. While this property was used for constraint propaga-
tion before [Gange et al., 2010; Hawkins and Stuckey, 2006],
we employ OBDDs differently. We compile formulas such
as the one in Example 2.2 to OBDDs to perform weighted
model counting (WMC). While compilation and minimization
of OBDDs is time-consuming, it allows for more tractable in-
ference afterwards. Other types of diagrams, such as Senten-
tial Decision Diagrams (SDDs) [Darwiche, 2011], can also
be used for model counting. While these representations may
be smaller, the compilation procedure can be time consum-
ing. We will show experimentally that compiling smaller di-
agrams may not always yield better overall running times.

To see how we can compute P (φ | σ) using an OBDD,
consider Figure 2. It shows an OBDD that represents the
probability of the formula in Example 2 evaluating to true.
The weights on the outgoing arcs of nodes that represent
stochastic variables (those labeled with tij) correspond to the
probability that that variable is true (for the solid, or hi, arcs)
or false (dashed, or lo, arcs). A strategy σ is projected on the
OBDD by adding weights of 0 and 1 to the outgoing arcs of
the nodes labeled with decision variables. For example: if
we choose da = ⊥, we label the outgoing hi arcs of nodes
labeled with da with 0, and their outgoing lo arcs with 1.

Given a strategy σ and arcs labeled accordingly, the OBDD
can straightforwardly be mapped to an Arithmetic Circuit
(AC). We can compute P (φe | σ) as follows. In a bottom-
up traversal, each OBDD node r takes the value

v(r) = w(r) · v
(
r+
)

+ (1− w(r)) · v
(
r−
)
, (2)

where 0 ≤ w(r) ≤ 1 represents the weight of the variable that
labels r, r+ (r−) is the hi (lo) child of r, i.e., the child con-
nected through the solid (dashed) outgoing arc of r; v(r) = 0
for the negative leaf and v(r) = 1 for the positive leaf. Ob-
serve that v(root) = P (φ | σ).

P (φe)
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Figure 2: An OBDD representing the probability that e buys the
product in Figure 1, i.e. the probability that formula φd in Example
2 evaluates to true given any strategy σ. The variable order corre-
sponding to this OBDD is de < tce < dc < tac < tbc < tab <
da < db. Circular nodes represent stochastic variables, squares rep-
resent decision variables. No specific strategy is reflected here.

The complexity of evaluating P (φ | σ) is thus linear in the
size of the OBDD, but the number of strategies is 2n, with n
the number of decision variables. A naı̈ve way of solving a
SCPMD that involves enumerating all possible strategies and
evaluating their quality using the OBDD does not scale well.

Since SCPMDs are constraint optimization problems, one
obvious approach to improving on the enumeration method is
to leverage existing CP solvers. The tool chain described in
our earlier work [Latour et al., 2017] decomposes an OBDD
into a set of linear constraints that can be put into a MIP solver
or CP solver; auxiliary variables represent the value at each
node of the OBDD according to Equation (2).

4 CP, Decomposition and GAC
We recall a few basic concepts of CP. A comprehensive
overview can be found in the literature [Rossi et al., 2006].

4.1 Seach, Propagation, Consistency
Discrete optimization problems in CP are modeled using a set
of variables X = {x1, . . . , xn}, each of which is associated
with a domain dom(xi) ⊆ D (with D = {a1, . . . , ad} a
set of values), a set of constraints on the variables C and an
objective function f(X).

CP solvers use a depth-first traversal through a search tree
to find an optimal solution. The solver repeatedly selects an
unbound variable x and assigns to it a value a ∈ dom(x) (or
a range or interval of values in case, e.g., dom(x) ⊆ R), thus
building a partial solution. Selecting an unbound variable
and assigning a value to it is called branching.

After each time the solver branches, propagation updates
the domains of the remaining unbound variables by remov-
ing values that would violate the constraints of the problem,
given the current partial solution. If the size of a variable x’s
domain is reduced to 1 in this process, we consider x fixed to
the remaining value in dom(x). If for any variable x we find
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P (φ)
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P (φ | σ) ≥ 0.4

0.1 · zy1 + 0.9 · zx ≥ 0.4

zx = (1− x) · zy1 + x · zy2
zy1 = 0.6 · y
zy2 = 0.6 · y + 0.3 · (1− y)

x, y ∈ {0, 1}
0 ≤ P (φ | σ) ≤ 0.6

0 ≤ zx ≤ 0.6

0 ≤ zy1 ≤ 0.6

0.3 ≤ zy2 ≤ 0.6

Figure 3: A small OBDD (left) with three stochastic variables (cir-
cles) and two decision variables x and y (squares). The two nodes
corresponding to decision variable y are indexed for clarity. The
decomposition on the right is constructed using Equation (2).

|dom(x)| = 0, we have encountered a failure: a partial as-
signment that cannot be extended to a solution. A (variable,
value) pair (x, a) with a ∈ dom(x) is considered General-
ized Arc Consistent (GAC) with respect to a constraint c ∈ C
iff there exists an assignment in which x = a, that satisfies c.

In general, variables have different kinds of domains (dis-
crete, categorical, continuous, etcetera). The propagation al-
gorithm we present in this work operates on constraints that
involve only Boolean decision variables.

4.2 GAC Guarantees of Decomposition
Unfortunately, our earlier approach, that decomposes the
OBDD into a set of linear constraints [Latour et al., 2017],
is not GAC:

Theorem 4.1. Propagation on the decomposed representa-
tion of the Stochastic Constraint on Monotonic Distributions
as described in [Latour et al., 2017] is not GAC.

Proof. Let us assume that propagation in the decomposition
method from [Latour et al., 2017] would be GAC. Then, the
following counter example leads to a contradiciton.

Consider the OBDD in Figure 3 and the associated con-
straint P (φ | σ) ≥ 0.4. Observe that the four possible strate-
gies yield the following conditional probabilities:

P (φ | x = y = 0) = 0 P (φ | x = 1, y = 0) = 0.3

P (φ | x = y = 1) = 0.6 P (φ | x = 0, y = 1) = 0.6

From this we conclude that only those strategies in which y =
1 holds, can possibly satisfy the constraint. A propagator that
ensures GAC on the Boolean variables will detect this before
the start of the search and fix y to 1.

The circuit decomposition method uses Equation (2) to
translate this constraint on the OBDD in a CP model, which
is also given in Figure 3. Note that this model introduces
auxiliary variables z with domains that include real numbers.

Suppose a propagator is called on this decomposed model,
before the search starts. This propagator may start by trying
to infer the minimum value that zy1 needs to take if zx takes

its maximum possible value. To do this, the propagator as-
sumes that zx = 0.6 holds. Now it can infer that, in order for
the constraint to be satisfied, zy1 ≥ (0.4− 0.9 · 0.6)/0.1 = −1.4
should hold. Unfortunately, it already knew that dom(y) =
{0, 1} and thus does not include −1.4. Based on this, it can-
not remove 0 from dom(y). Repeating a similar procedure to
determine a bound for zx, zy1 and zy2 does not yield conclu-
sive evidence to deduce that y must be fixed to 1, either.

As a result, the search tree of a CP system is unnecessar-
ily large. One solution may seem to create a decomposed
representation that is GAC. We can do this by making two
modifications to the decomposition method. First, we replace
the encoding of the value of OBDD node rd,

v(rd) =

{
v(r+

d ) if d = 1

v(r−d ) if d = 0,

with v(rd) = max
(
d · v(r+

d ), (1− d) · v(r−d )
)
, because this

improves propagation in cases where d is yet unassigned.
Additionally, we add the (redundant) constraint

v|d=0(root) < θ → d = 1 to the decomposition for
each decision variable d. Here, v|d=0(root) represents
the expression at the root of the diagram as obtained with
Equation (2), conditioned on d = ⊥. The downside of this
approach is that we need to add a large number of linear
constraints to the model, resulting in a space complexity of
this approach of O(|X| · |OBDD| · τ), with X the set of
decision variables, |OBDD| the size of the OBDD and τ
the depth of the search tree. We demonstrate the practical
inferiority of this approach in Section 6.

5 Approach
We intend to improve upon the existing approach by allowing
an OBDD-based SCMD to be added directly to a CP solver
as a global constraint. We first define the SCMD and then
introduce a propagator for OBDDs that guarantees GAC.

5.1 Stochastic Constraint on Monotonic
Distributions

We define a monotonic distribution as follows:
Definition 5.1. Let φ(X,T ) be a propositional formula on
Boolean decision variables X and Boolean stochastic vari-
ables T . Let P (φ | σ) be the probability that φ evaluates to
>, given strategy σ that assigns truth values to decision vari-
ables d ∈ X . We call the probability distribution P (φ | σ) a
monotonic distribution if there exists an OBDD for φ, whose
score at the root equals P (φ | σ) and for which the following
property holds for any projected σ (see Section 3):

v(r−d ) ≤ v(r+
d ) (3)

for each OBDD node rd that is labeled with decision variable
d ∈ X , where v() is computed using Equation (2).

We now define a corresponding SCMD as follows:
Definition 5.2. For a set of propositional formulas Φ on
Boolean decision variables X and Boolean stochastic vari-
ables T , threshold θ ∈ R+ and utilities ρφ ∈ R+, we call∑

φ∈Φ

ρφP (φ | σ) ≥ θ (4)
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a Stochastic Constraint on Monotonic Distributions (SCMD)
if all P (φ | σ) are monotonic distributions.

Given a partial strategy σ, a GAC-guaranteeing propagator
for the SCMD will, for each unbound decision variable d ∈
X , remove the value ⊥ from dom(d) if∑

φ∈Φ

ρφP (φ | σ′) < θ (5)

holds for each possible extension of σ to a full strategy σ′ that
includes d = ⊥.

5.2 Naı̈ve (Quadratic) OBDD Propagation
For maintaining GAC, a key observation is that our scoring
function (the expected utility in Equation (4)) is monotonic;
hence, the largest possible score is obtained by assigning the
value true to all unbound decision variables. The following
process for each unbound decision variable d would be GAC:
(1) fix variable d to the value false; (2) fix all remaining un-
bound variables to the value true; (3) calculate the score for
the resulting assignment; (4) if the score is lower than the
desired threshold, remove the value false from dom(d).

The score calculated in step 3 is an upper bound for the
value of the OBDD, given the current partial assignment and
that d = ⊥. Note that this algorithm does not require us to put
constraints on the variable order of the OBDD to obtain the
strict bound in step 3, contrary to previous work using SDDs
and d-DNNFs [Pipatsrisawat and Darwiche, 2009].

Let n be the number of unbound decision variables, and let
m be the size of the OBDD. Then the complexity of this naı̈ve
OBDD propagator is O(mn): for every unbound variable we
perform a bottom-up traversal of the OBDD. Since propaga-
tion is the most computationally intensive part of search algo-
rithms under our constraint, it is important to obtain a better
performance. We will improve this complexity to O(n+m).

5.3 Linear OBDD Propagation
The key idea behind improving the propagator is that we cal-
culate a derivative ∂f(d,σ′\d)

∂d = f (σ′) − f (d = ⊥, σ′ \ d)
for every unbound decision variable d; σ′ represents an as-
signment to all decision variables obtained by taking a partial
assignment σ and assigning true to each unbound variable in
σ. Function f represents the function defined by Equation (2)
on the root of the OBDD.

We use the derivative to remove the value false from the
domains of variables that do not meet the following condition:

f(σ′)− ∂f(d, σ′ \ d)

∂d
≥ θ. (6)

The main question becomes how to calculate the partial
derivative for all unbound variables efficiently. Here, we
build on ideas introduced by Darwiche [Darwiche, 2001;
Darwiche, 2003] to build a linear algorithm that can further-
more maintain derivatives incrementally. We first need to de-
fine the concept of path weight:

Definition 5.3. Let rm be a node labeled with variable xm in
an OBDD with variable order x1 < . . . < xn. We define the

path weight of rm:

π(rm) =
∑
`∈Lrm

∏
ri∈`

u(i), (7)

where ` is a path from the root of the OBDD to rm, and Lrm
is the set of all such paths that are valid. A path is valid if
it does not include the hi (lo) arc from a node labeled with a
decision variable that is false (true or unbound).

We define u(i) as follows. For the outgoing arcs of deci-
sion nodes that can be part of a valid path, we use u(i) = 1.
For the outgoing arcs of stochastic nodes labeled with a
stochastic variable xi that has weight w(i), we use:

u(i) =

{
w(i) if we take the hi arc of ri;
1− w(i) if we take the lo arc of ri.

(8)

The path weight π(rm) is expressed in terms of variables
xi < xm only.

Our algorithm is based on the following observation:

Theorem 5.1. The derivative of the OBDD with respect to a
decision variable can be calculated as follows:

∂f(d, σ′ \ d)

∂d
=

∑
rd∈OBDDd

π(rd)
(
v(r+

d )− v(r−d )
)
, (9)

with OBDDd the set of OBDD nodes labeled with variable d.

To prove the theorem, we simply write down an expression
for f(x1, . . . , xm, . . . , xn) (with x1 ≤ xm ≤ xn in the vari-
able order) using Equation (2). Then we rearrange the terms
according to variable order such that they can be separated in
an expression for the path weight π(rm) for a node rm and
its value. Finally, we take the partial derivative, and show that
this equals Equation (9).

We use the observation above to create an O(m) algo-
rithm for calculating all derivatives in two stages: (1) a top-
down pass over the complete OBDD for calculating all path
weights; (2) a bottom-up pass for calculating the values for
all nodes in the complete OBDD, calculating the derivatives
for each variable in the process.

The top-down pass operates as follows. We initialize the
path weight π(r) of each node with 0. We update the path
weight of its children r+ and r− as follows if r is labeled
with a decision variable d:

π
(
r+
)
← π

(
r+
)

+ π(r) if d is unbound or true;

π
(
r−
)
← π

(
r−
)

+ π(r) if d is false;
(10)

If r is labeled with a stochastic variable with weight w, we
assign π (r+) + wπ(r) to π (r+) and π (r−) + (1− w)π(r)
to π (r−).

We compute the node values in a bottom-up pass, using
Equation (2) with w(r) = 0 if r corresponds to a decision
variable that is false, and w(r) = 1 otherwise.

During this bottom-up pass, we can recompute the deriva-
tives for all decision variables that are still unbound using
Equation (9), and evaluate Equation (6) for each of those to
see if we can remove false from their domain.

Clearly, the overall calculation finishes in O(n+m) time.
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5.4 Sub-linear OBDD Propagation
We can reduce the complexity of the algorithm above further
by avoiding the traversal of unnecessary parts of the OBDD.
These observations allow for more efficient propagation:

(O1) As noted before, the expression for the path weight of
an OBDD node labeled with variable xm (Equation (7))
only contains variables xi < xm. We conclude that fix-
ing a decision variable d can only affect the path weights
of nodes below the nodes labeled with that variable d.

(O2) Path weights below unbound decision nodes are not
changed when we fix an unbound decision node to true.
Therefore: our propagator only needs to update path
weights if we fix a decision variable to false.

(O3) Similarly, fixing a variable can only affect the values
of the nodes labeled with that variable themselves, and
those above them in the OBDD. Again: only fixing a
variable to false requires the propagator to update values.

(O4) We do not need to maintain the values for any of the
nodes in the OBDD above the decision nodes closest to
the root, as we will never need to calculate the derivative
for any variable in that part of the diagram.

(O5) Similarly, we do not need to maintain path weights for
the descendants of the variable closest to the leaves.
It can be shown that by only maintaining the part of the
OBDD between two borders of unbound decision vari-
ables (the active part of the OBDD), one can calculate
the derivatives exactly, as well as calculate the value of
the solution.

(O6) Some parts of the OBDD will no longer be connected
to the root as a consequence of partial assignments. We
thus do not need to update those parts of the OBDD.

(O7) Derivatives can be used in variable branching heuris-
tics to guide our search, as can (O4) and (O5). If we al-
ways branch on the variable with the largest derivative,
we are likely to find failing partial strategies quickly. By
branching on the highest or lowest decision variable, we
reduce the size of the active part of the OBDD.

We improve the two-sweep linear OBDD propagation al-
gorithm by addressing these observations. (O1–3) are easily
addressed by implementing queues and smartly initializing
and updating them such that we start traversing the OBDD
downwards (upwards) at the places where path weights (val-
ues) may change due to decision variable assignments.

We maintain for each OBDD node r three counters. The
first indicates if there is a path from an unbound node above
r to r. If there are no such paths, there is no need to update
values of nodes above r if the value of r changes (O4). The
second indicates if there is a path from r to an unbound node
below r. If not, any changes in r’s path weight need not be
propagated down from r (O5). The third indicates if there
is a valid path from the root to r. If not, r’s path weight is
0, and changes in its value need not propagate (O6). Main-
taining these counters requires two extra passes through the
OBDD each time the propagator is called. But: they allow us
to traverse an ever decreasing part of the OBDD in each pass.

name |OBDD| |OBDDmin| tmin[s] Nt Nd

hep-th47 10, 815 6, 504 901 51 20
hep-th5 52, 009 4, 708 7, 357 90 33
spine27a 1, 898 1, 898 78 60 60
spine27b 9, 350 9, 322 474 55 55
spine16 80 80 0.86 33 33

Table 1: Some characteristics of our data sets. In particular: the
OBBD size before and after minimization, minimization time tmin,
and the number Nt (Nd) of stochastic (decision) variables.

Finally, we address (O7) by implementing different vari-
able branching heuristics: top, which always branches on
the unbound variable highest in the OBDD, and its counter-
part bottom. Each can be combined with a value branch-
ing heuristics: either branch first on value 0, or on value 1.
We also implement two regret-based [Caseau and Laburthe,
2000] branching heuristics that use the calculated derivatives:
derivative1 and derivative0. The former (latter) selects the
unbound decision variable with the largest (smallest) abso-
lute derivative and first branches on 1 (0).

Observe that, compared to the GAC-guaranteeing decom-
position method described in Section 4.2, the space complex-
ity of this approach is only O(|OBDD| · τ).

6 Experiments
We evaluate the performances of the linear and sub-linear
OBDD propagation algorithms (Sections 5.3 and 5.4).
Questions. Our experiments are guided by these questions:
(Q1) How do solving times depend on the CP encoding of

the constraint (decomposed versus global)?
(Q2) How do branching heuristics affect solving times for

the global encoding?
(Q3) How do solving times for our global constraint for a

CP solver compare to those of a decomposed constraint
solved with a MIP solver?

(Q4) How does our propagator’s performance depend on
OBDD size?

(Q5) How does our propagator perform when other con-
straints are added?

6.1 Experimental setup
The implementations of our propagation algorithms and all
the code for reproducing our experiments, are available at
github.com/latower/SCMD.
Test Data. Since we aim to improve on the performance
of our earlier decomposition-based approach [Latour et al.,
2017], we evaluate our methods on datasets used in this
earlier work: DNA-protein interaction networks spine16,
spine27a, spine27b [Ourfali et al., 2007] and collaboration
networks datasets hep-th47 and hep-th5 [Kempe et al., 2003;
Newman, 2001].1 We refer the reader there for a description.
Dataset characteristics are given in Table 1.

1The dataset spine27a in this work corresponds to spine27
in [Latour et al., 2017]. spine27b is a problem on the same network,
but optimizing over a different function.
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Constraint Optimization Setting. Our OBDD propagators
support the optimization task of maximizing an expectation.
This is combined with a linear constraint that enforces an up-
per bound k on the number of decision variables that can be
set to true (the cardinality of the solution) in our experiments.

Software. We implemented the OBDD propagators pro-
posed in Sections 5.3 and 5.4 in the Scala 2.12 library
OscaR 4.0.0 [OscaR Team, 2012], because we need the
state-of-the-art CoverSize 1.0.0 constraint [Schaus et
al., 2017] for itemset mining to answer (Q5).2 We use CP
solver Gecode 6.0.1 and MIP solver Gurobi 8.0.0
for comparison experiments.3 Since OscaR does not support
floating point variables, we could not implement the decom-
position methods in OscaR. Instead, we implemented them
in award-winning Gecode, believing it to be a fair choice
for comparison. For modeling we use a SC-ProbLog version
based on ProbLog 2.1 [DTAI Research Group, KU Leu-
ven, 2015 2019], running in Python 3.6.4 We use the dd
0.5.4 library for the OBDD compilation.5

Configuration. Unless indicated otherwise, we use the de-
fault settings for all software. In our experiments to answer
(Q1), we constrain both CP solvers to branch on the variables
in lexicographical order. For the other experiments, our prop-
agator uses the branching heuristic derivative1 (Section 5.4).

Hardware. Our experiments ran on a machine with eight
Xeon E5540 processors and 24GB RAM, under CentOS
Linux 7.4.1708. Our results are averaged over two runs, to ac-
count for small variations in hardware performance. OBDD
minimization times are averaged over five runs instead of two.

6.2 Results
In addition to the results presented here, more experimental
results are available at github.com/latower/SCMD.

We address (Q1) by comparing the solver search times of
the implementations of the linear and sub-linear versions of
our propagator with two decomposed approaches in Gecode:
one from [Latour et al., 2017] that does not guarantee GAC
and the one described in Section 4.2 that does. We keep the
branching order for the search process fixed to a lexicograph-
ical one. The constraint threshold k indicates the maximum
allowed cardinality of the solution: from small (strict) to large
(loose). Figure 4a shows that the global OBDD propagator
outperforms both decomposition methods on these testcases.
While the sub-linear version of our propagator outperforms
the linear one, this difference is less pronounced.

We answer (Q2) by evaluating the performance of the
branching heuristics described in Section 5.4. In an experi-
ment on the four settings from [Latour et al., 2017], the av-
erage runtimes for the different heuristics were as follows.
top0: 194s, top1: 1, 030s, bottom0: 233s, bottom1: 229s,
derivative0: 1, 206s and derivative1: 87s. Both top1 and
derivative0 had one instance timeout after 1 hour, which is
the time that is included in these averages.

2Available at sites.uclouvain.be/cp4dm/fim.
3Available at www.gecode.org and www.gurobi.com.
4Available at bitbucket.org/problog/problog/src/sc-problog.
5Available at pypi.org/project/dd/.

Figure 4b compares the performance of our sub-linear
OBDD propagator to two methods that use MIP solver
Gurobi for solving the problem. One takes the same OBDD
as input as our propagator and decomposes it to a MIP. The
other is one of our methods from [Latour et al., 2017], which
takes an SDD as input and decomposes that to a MIP. The fig-
ure shows that the OBDD-based methods outperform SDD-
based methods. We also observe that our propagator outper-
forms the OBDD-to-MIP method on the more difficult test
cases, answering (Q3). We conclude that the CP based and
MIP based approaches are complementary in these tasks, CP
scaling better in the more time consuming cases.

An important aspect in the creation of OBDDs is whether
or not to minimize their size. As stated in Section 3, min-
imization is time-consuming. Our propagator provides the
same level of consistency independent of the shape of the cir-
cuit. In Figure 4c we compare search time on minimized
and big (unminimized) OBDDs. The time necessary for
OBDD minimization for hep-th47 is 901s, and 7, 357s for
hep-th5 (averages over five runs). Size reductions are about
60% and 90%, respectively. We see that our propagator’s
performance scales indeed (sub-)linearly with OBDD sizes,
answering (Q4), while the decomposed approach’s solving
times increase more rapidly. Hence, a pipeline that builds an
unminimized OBDD and searches using our propagator can
be more efficient than alternative MIP pipelines that either use
an unminimized OBDD or perform OBDD minimization. In
this experiment Gurobi uses eight threads while the sub-linear
OBDD propagator uses only one. The lack of scaling of the
OBDD-to-MIP approach is even more pronounced when the
solvers are compared on the same number of threads.

To answer (Q5), we ran experiments on the enumeration
setting described in Section 1, succesfully demonstrating the
applicability of our constraint propagator on Itemset Enumer-
ation problems, which were shown to be solved efficiently by
CP [Schaus et al., 2017]. We are given a citation network
and a database with sets of co-authors. The problem is to
find all sets of co-authors that have collaborated at least k
times and who have influenced a minimum expected num-
ber of other authors by being cited. For a citation network
of the International Conference on Inductive Logic Program-
ming, examples of such sets are {Luc De Raedt} and
{Ganesh Ramakrishnan,Ashwin Srinivasan}.

7 Related Work
SCPMDs are related to chance constraint optimiza-
tion [Charnes and Cooper, 1959], probabilistic CP [Tarim
et al., 2009], stochastic constraint satisfaction problems
(SCSPs) [Walsh, 2002] and functional E-MAJSAT [Littman
et al., 1998; Pipatsrisawat and Darwiche, 2009].

The main difference between SCPMDs and these problems
is that SCPMDs are defined on monotonic distributions. We
exploit this property to optimize the constraint propagation
process for SCMDs, distinguishing our method from more
general approaches taken earlier [Walsh, 2002]. While our
propagator can only be applied to monotonic distributions, it
does allow us to obtain strict bounds during constraint prop-
agation. These strict bounds can only be achieved in alter-
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(a) CP-based decomposition methods and global OBDD propagators on minimized OBDDs, with a lexico-
graphical branching order.
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Figure 4: Experimental results. Timeout in all experiments is 1 hour. ‘GAC decomp.’ is the GAC-guaranteeing decomposition method
(Section 4.2), ‘no GAC decomp.’ is the decomposition method from [Latour et al., 2017], both are implemented in Gecode. ‘lin. prop.’
and ‘sub-lin. prop.’ are the linear and sub-linear OBDD propagation algorithms from Sections 5.3 and 5.4, respectively. ‘SDD2MIP’ and
‘OBDD2MIP’ are implementations from [Latour et al., 2017] that convert an SDD and OBDD into a MIP, solving it with Gurobi.

native methods [Pipatsrisawat and Darwiche, 2009] by con-
straining the underlying variable order of the decision dia-
grams. The variable order of a diagram determines its size,
and the efficiency of constraint propagators depends on the
size of the diagrams they are operating on. Therefore, having
extra constraints on the variable order that limit possibilities
of obtaining a sufficiently small diagram, is disadvantageous.

Our approach of keeping (global) constraints (such as a lin-
ear constraint on cardinality) separated has the advantage that
it avoids the complexity of encoding this combination of con-
straints in one diagram, if we were to follow the approach
of [Pipatsrisawat and Darwiche, 2009]. Consequently, we
avoid the blow-up of the diagram, we exploit the structure
of these constraints and thus leverage the power of dedicated
constraint solvers. Finally, modeling constraints separately
allows the user to add constraints that cannot be (trivially)
encoded in CNF. This allows for larger expressiveness than
the method in [Pipatsrisawat and Darwiche, 2009].

The main feature that distinguishes our work from similar
works on stochastic constraint satisfaction and optimization is
that we exploit the structure of the probability distribution in
our solving method. The majority of existing methods sample
scenarios from a distribution, and hence ignore such struc-
tures [Hemmi et al., 2018]. Some other studies make strong
simplifying assumptions about the structure of distribution,
e.g. that all random variables are independent [Walsh, 2002].

In the CP literature, OBDDs and the similar Multi-valued
Decision Diagrams (MDDs) are often used to encode all so-
lutions for a constraint, and efficient propagation algorithms
for these datastructures have been developed [Hawkins and

Stuckey, 2006; Gange et al., 2010; Verhaeghe et al., 2018].
By associating MDD arcs in such encodings with probabil-
ities, one can sample solutions to a constraint [Perez and
Régin, 2017]. Note that, while this datastructure is similar
to our OBDDs, it is used to solve a fundamentally different
problem than the one we solve in this work.

8 Conclusion
We proposed a new method for solving SCPMDs whose con-
strained probability distributions are represented by OBDDs,
based on sub-linear arc consistent propagation.

We showed that our approach is complementary to apply-
ing a MIP solver on a decomposed representation. In par-
ticular, we showed that the runtimes of our propagator scale
much more favorably than the MIP solver’s with increasing
size of the OBDD. This is important as minimizing the size
of an OBDD is time consuming.

The introduction of these stochastic constraints to the
realm of CP solvers opens up the possibility of combining
different types of constraints, such as the minimum support
constraint from the data mining literature.
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[Perez and Régin, 2017] Guillaume Perez and Jean-Charles
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