User menu

Transparent conducting materials discovery using high-throughput computing

  • Open access
  • PDF
  • 1.71 M
  1. Morales-Masis Monica, De Wolf Stefaan, Woods-Robinson Rachel, Ager Joel W., Ballif Christophe, Transparent Electrodes for Efficient Optoelectronics, 10.1002/aelm.201600529
  2. Ellmer Klaus, Past achievements and future challenges in the development of optically transparent electrodes, 10.1038/nphoton.2012.282
  3. Liu Huiyong, Avrutin V., Izyumskaya N., Özgür Ü., Morkoç H., Transparent conducting oxides for electrode applications in light emitting and absorbing devices, 10.1016/j.spmi.2010.08.011
  4. Beyer W., Hüpkes J., Stiebig H., Transparent conducting oxide films for thin film silicon photovoltaics, 10.1016/j.tsf.2007.08.110
  5. Gordon Roy G., Criteria for Choosing Transparent Conductors, 10.1557/mrs2000.151
  6. Ohira Shigeo, Suzuki Norihito, Arai Naoki, Tanaka Masahiko, Sugawara Takamasa, Nakajima Kazuo, Shishido Toetsu, Characterization of transparent and conducting Sn-doped β-Ga2O3 single crystal after annealing, 10.1016/j.tsf.2007.10.083
  7. Suzuki N., Ohira S., Tanaka M., Sugawara T., Nakajima K., Shishido T., Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystal, 10.1002/pssc.200674884
  8. Prakash Abhinav, Xu Peng, Faghaninia Alireza, Shukla Sudhanshu, Ager Joel W., Lo Cynthia S., Jalan Bharat, Wide bandgap BaSnO3 films with room temperature conductivity exceeding 104 S cm−1, 10.1038/ncomms15167
  9. Paik Hanjong, Chen Zhen, Lochocki Edward, Seidner H. Ariel, Verma Amit, Tanen Nicholas, Park Jisung, Uchida Masaki, Shang ShunLi, Zhou Bi-Cheng, Brützam Mario, Uecker Reinhard, Liu Zi-Kui, Jena Debdeep, Shen Kyle M., Muller David A., Schlom Darrell G., Adsorption-controlled growth of La-doped BaSnO3 by molecular-beam epitaxy, 10.1063/1.5001839
  10. Zhang, K. H. L., Xi, K., Blamire, M. G. & Egdell, R. G. P-type transparent conducting oxides. J. Phys. 28, 383002 (2016).
  11. Wang Zhenwei, Nayak Pradipta K., Caraveo-Frescas Jesus A., Alshareef Husam N., Recent Developments in p-Type Oxide Semiconductor Materials and Devices, 10.1002/adma.201503080
  12. Fortunato E., Barquinha P., Martins R., Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances, 10.1002/adma.201103228
  13. Chen Le, Yang Jinhui, Klaus Shannon, Lee Lyman J., Woods-Robinson Rachel, Ma Jie, Lum Yanwei, Cooper Jason K., Toma Francesca M., Wang Lin-Wang, Sharp Ian D., Bell Alexis T., Ager Joel W., p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation, 10.1021/jacs.5b03536
  14. Bandara J, Yasomanee J P, p-type oxide semiconductors as hole collectors in dye-sensitized solid-state solar cells, 10.1088/0268-1242/22/2/004
  15. Chou, C.-S., Hsiung, C.-M., Wang, C.-P., Yang, R.-Y. & Guo, M.-G. Preparation of a counter electrode with P-type NiO and its applications in dye-sensitized solar cell. Int. J. Photoenergy. 2010, 9 (2010).
  16. Curtarolo Stefano, Hart Gus L. W., Nardelli Marco Buongiorno, Mingo Natalio, Sanvito Stefano, Levy Ohad, The high-throughput highway to computational materials design, 10.1038/nmat3568
  17. Curtarolo Stefano, Setyawan Wahyu, Wang Shidong, Xue Junkai, Yang Kesong, Taylor Richard H., Nelson Lance J., Hart Gus L.W., Sanvito Stefano, Buongiorno-Nardelli Marco, Mingo Natalio, Levy Ohad, AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations, 10.1016/j.commatsci.2012.02.002
  18. Jain Anubhav, Ong Shyue Ping, Hautier Geoffroy, Chen Wei, Richards William Davidson, Dacek Stephen, Cholia Shreyas, Gunter Dan, Skinner David, Ceder Gerbrand, Persson Kristin A., Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, 10.1063/1.4812323
  19. Saal James E., Kirklin Scott, Aykol Muratahan, Meredig Bryce, Wolverton C., Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD), 10.1007/s11837-013-0755-4
  20. Madsen Georg K.H., Carrete Jesús, Verstraete Matthieu J., BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients, 10.1016/j.cpc.2018.05.010
  21. Madsen Georg K.H., Singh David J., BoltzTraP. A code for calculating band-structure dependent quantities, 10.1016/j.cpc.2006.03.007
  22. Ashcroft N. W., Mermin N. D., Smoluchowski R., Solid State Physics, 10.1063/1.3037370
  23. Ricci Francesco, Chen Wei, Aydemir Umut, Snyder G. Jeffrey, Rignanese Gian-Marco, Jain Anubhav, Hautier Geoffroy, An ab initio electronic transport database for inorganic materials, 10.1038/sdata.2017.85
  24. Hautier, G., Miglio, A., Ceder, G., Rignanese, G. M. & Gonze, X. Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nat. Commun. 4, 2292 (2013).
  25. Calnan S., Tiwari A.N., High mobility transparent conducting oxides for thin film solar cells, 10.1016/j.tsf.2009.09.044
  26. Chen Wei, Pöhls Jan-Hendrik, Hautier Geoffroy, Broberg Danny, Bajaj Saurabh, Aydemir Umut, Gibbs Zachary M., Zhu Hong, Asta Mark, Snyder G. Jeffrey, Meredig Bryce, White Mary Anne, Persson Kristin, Jain Anubhav, Understanding thermoelectric properties from high-throughput calculations: trends, insights, and comparisons with experiment, 10.1039/c5tc04339e
  27. Gibbs Zachary M., Ricci Francesco, Li Guodong, Zhu Hong, Persson Kristin, Ceder Gerbrand, Hautier Geoffroy, Jain Anubhav, Snyder G. Jeffrey, Effective mass and Fermi surface complexity factor from ab initio band structure calculations, 10.1038/s41524-017-0013-3
  28. Hautier Geoffroy, Miglio Anna, Waroquiers David, Rignanese Gian-Marco, Gonze Xavier, How Does Chemistry Influence Electron Effective Mass in Oxides? A High-Throughput Computational Analysis, 10.1021/cm404079a
  29. Kormath Madam Raghupathy Ramya, Kühne Thomas D., Felser Claudia, Mirhosseini Hossein, Rational design of transparent p-type conducting non-oxide materials from high-throughput calculations, 10.1039/c7tc05311h
  30. Sarmadian Nasrin, Saniz Rolando, Partoens Bart, Lamoen Dirk, Easily doped p-type, low hole effective mass, transparent oxides, 10.1038/srep20446
  31. Setyawan Wahyu, Gaume Romain M., Feigelson Robert S., Curtarolo Stefano, Comparative Study of Nonproportionality and Electronic Band Structures Features in Scintillator Materials, 10.1109/tns.2009.2027019
  32. Castelli Ivano E., Landis David D., Thygesen Kristian S., Dahl Søren, Chorkendorff Ib, Jaramillo Thomas F., Jacobsen Karsten W., New cubic perovskites for one- and two-photon water splitting using the computational materials repository, 10.1039/c2ee22341d
  33. Kuhar Korina, Crovetto Andrea, Pandey Mohnish, Thygesen Kristian S., Seger Brian, Vesborg Peter C. K., Hansen Ole, Chorkendorff Ib, Jacobsen Karsten W., Sulfide perovskites for solar energy conversion applications: computational screening and synthesis of the selected compound LaYS3, 10.1039/c7ee02702h
  34. Kuhar Korina, Pandey Mohnish, Thygesen Kristian S., Jacobsen Karsten W., High-Throughput Computational Assessment of Previously Synthesized Semiconductors for Photovoltaic and Photoelectrochemical Devices, 10.1021/acsenergylett.7b01312
  35. Peng Haowei, Zakutayev Andriy, Lany Stephan, Paudel Tula R., d'Avezac Mayeul, Ndione Paul F., Perkins John D., Ginley David S., Nagaraja Arpun R., Perry Nicola H., Mason Thomas O., Zunger Alex, Li-Doped Cr2MnO4: A New p-Type Transparent Conducting Oxide by Computational Materials Design, 10.1002/adfm.201300807
  36. Tang Yinglu, Gibbs Zachary M., Agapito Luis A., Li Guodong, Kim Hyun-Sik, Nardelli Marco Buongiorno, Curtarolo Stefano, Snyder G. Jeffrey, Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites, 10.1038/nmat4430
  37. Yim Kanghoon, Youn Yong, Lee Miso, Yoo Dongsun, Lee Joohee, Cho Sung Haeng, Han Seungwu, Computational discovery of p-type transparent oxide semiconductors using hydrogen descriptor, 10.1038/s41524-018-0073-z
  38. Peng Haowei, Lany Stephan, Semiconducting transition-metal oxides based ond5cations: Theory for MnO and Fe2O3, 10.1103/physrevb.85.201202
  39. Zhang Kelvin H. L., Du Yingge, Papadogianni Alexandra, Bierwagen Oliver, Sallis Shawn, Piper Louis F. J., Bowden Mark E., Shutthanandan Vaithiyalingam, Sushko Peter V., Chambers Scott A., Perovskite Sr-Doped LaCrO3as a New p-Type Transparent Conducting Oxide, 10.1002/adma.201501959
  40. Himmetoglu Burak, Janotti Anderson, Bjaalie Lars, Van de Walle Chris G., Interband and polaronic excitations inYTiO3from first principles, 10.1103/physrevb.90.161102
  41. Bjaalie L., Ouellette D. G., Moetakef P., Cain T. A., Janotti A., Himmetoglu B., Allen S. J., Stemmer S., Van de Walle C. G., Small hole polarons in rare-earth titanates, 10.1063/1.4922316
  42. Varley J. B., Lordi V., Miglio A., Hautier G., Electronic structure and defect properties ofB6Ofrom hybrid functional and many-body perturbation theory calculations: A possible ambipolar transparent conductor, 10.1103/physrevb.90.045205
  43. Waroquiers David, Gonze Xavier, Rignanese Gian-Marco, Welker-Nieuwoudt Cathrin, Rosowski Frank, Göbel Michael, Schenk Stephan, Degelmann Peter, André Rute, Glaum Robert, Hautier Geoffroy, Statistical Analysis of Coordination Environments in Oxides, 10.1021/acs.chemmater.7b02766
  44. Zimmermann Nils E. R., Horton Matthew K., Jain Anubhav, Haranczyk Maciej, Assessing Local Structure Motifs Using Order Parameters for Motif Recognition, Interstitial Identification, and Diffusion Path Characterization, 10.3389/fmats.2017.00034
  45. Freysoldt Christoph, Grabowski Blazej, Hickel Tilmann, Neugebauer Jörg, Kresse Georg, Janotti Anderson, Van de Walle Chris G., First-principles calculations for point defects in solids, 10.1103/revmodphys.86.253
  46. Ágoston, P., Albe, K., Nieminen, R. M. & Puska, M. J. Intrinsic n-type behavior in transparent conducting oxides: a comparative hybrid-functional study of In2O3, SnO2, and ZnO. Phys. Rev. Lett. 103, 245501 (2009).
  47. Scanlon David O., Watson Graeme W., On the possibility of p-type SnO2, 10.1039/c2jm34352e
  48. Robertson J., Clark S. J., Limits to doping in oxides, 10.1103/physrevb.83.075205
  49. Varley J. B., Schleife A., Janotti A., Van de Walle C. G., Ambipolar doping in SnO, 10.1063/1.4819068
  50. Quackenbush N. F., Allen J. P., Scanlon D. O., Sallis S., Hewlett J. A., Nandur A. S., Chen B., Smith K. E., Weiland C., Fischer D. A., Woicik J. C., White B. E., Watson G. W., Piper L. F. J., Origin of the Bipolar Doping Behavior of SnO from X-ray Spectroscopy and Density Functional Theory, 10.1021/cm401343a
  51. Zunger Alex, Practical doping principles, 10.1063/1.1584074
  52. Walsh Aron, Buckeridge John, Catlow C. Richard A., Jackson Adam J., Keal Thomas W., Miskufova Martina, Sherwood Paul, Shevlin Stephen A., Watkins Mathew B., Woodley Scott M., Sokol Alexey A., Limits to Doping of Wide Band Gap Semiconductors, 10.1021/cm402237s
  53. Walsh Aron, Zunger Alex, Instilling defect tolerance in new compounds, 10.1038/nmat4973
  54. Tersoff J., Theory of semiconductor heterojunctions: The role of quantum dipoles, 10.1103/physrevb.30.4874
  55. Schleife A., Fuchs F., Rödl C., Furthmüller J., Bechstedt F., Branch-point energies and band discontinuities of III-nitrides and III-/II-oxides from quasiparticle band-structure calculations, 10.1063/1.3059569
  56. Sarmadian Nasrin, Saniz Rolando, Partoens Bart, Lamoen Dirk, Volety Kalpana, Huyberechts Guido, Paul Johan, High throughput first-principles calculations of bixbyite oxides for TCO applications, 10.1039/c4cp02788d
  57. Shapera Ethan P., Schleife André, Database-Driven Materials Selection for Semiconductor Heterojunction Design, 10.1002/adts.201800075
  58. Woods-Robinson Rachel, Broberg Danny, Faghaninia Alireza, Jain Anubhav, Dwaraknath Shyam S., Persson Kristin A., Assessing High-Throughput Descriptors for Prediction of Transparent Conductors, 10.1021/acs.chemmater.8b03529
  59. Theory of Defects in Semiconductors, ISBN:9783540334002, 10.1007/11690320
  60. Advanced Calculations for Defects in Materials : Electronic Structure Methods, ISBN:9783527638529, 10.1002/9783527638529
  61. Estreicher Stefan K., Hydrogen-related defects in crystalline semiconductors: a theorist's perspective, 10.1016/0927-796x(95)00178-6
  62. Peng Haowei, Scanlon David O., Stevanovic Vladan, Vidal Julien, Watson Graeme W., Lany Stephan, Convergence of density and hybrid functional defect calculations for compound semiconductors, 10.1103/physrevb.88.115201
  63. Heyd Jochen, Scuseria Gustavo E., Ernzerhof Matthias, Hybrid functionals based on a screened Coulomb potential, 10.1063/1.1564060
  64. Brothers Edward N., Izmaylov Artur F., Normand Jacques O., Barone Verónica, Scuseria Gustavo E., Accurate solid-state band gaps via screened hybrid electronic structure calculations, 10.1063/1.2955460
  65. Batista Enrique R., Heyd Jochen, Hennig Richard G., Uberuaga Blas P., Martin Richard L., Scuseria Gustavo E., Umrigar C. J., Wilkins John W., Comparison of screened hybrid density functional theory to diffusion Monte Carlo in calculations of total energies of silicon phases and defects, 10.1103/physrevb.74.121102
  66. Hedin Lars, New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem, 10.1103/physrev.139.a796
  67. Aryasetiawan F, Gunnarsson O, TheGWmethod, 10.1088/0034-4885/61/3/002
  68. van Schilfgaarde M., Kotani Takao, Faleev S., Quasiparticle Self-ConsistentGWTheory, 10.1103/physrevlett.96.226402
  69. van Setten M. J., Giantomassi M., Gonze X., Rignanese G.-M., Hautier G., Automation methodologies and large-scale validation for GW : Towards high-throughput GW calculations, 10.1103/physrevb.96.155207
  70. Makov G., Payne M. C., Periodic boundary conditions inab initiocalculations, 10.1103/physrevb.51.4014
  71. Freysoldt Christoph, Neugebauer Jörg, Van de Walle Chris G., FullyAb InitioFinite-Size Corrections for Charged-Defect Supercell Calculations, 10.1103/physrevlett.102.016402
  72. Freysoldt Christoph, Neugebauer Jörg, Van de Walle Chris G., Electrostatic interactions between charged defects in supercells, 10.1002/pssb.201046289
  73. Kumagai Yu, Oba Fumiyasu, Electrostatics-based finite-size corrections for first-principles point defect calculations, 10.1103/physrevb.89.195205
  74. Broberg Danny, Medasani Bharat, Zimmermann Nils E.R., Yu Guodong, Canning Andrew, Haranczyk Maciej, Asta Mark, Hautier Geoffroy, PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators, 10.1016/j.cpc.2018.01.004
  75. Péan Emmanuel, Vidal Julien, Jobic Stéphane, Latouche Camille, Presentation of the PyDEF post-treatment Python software to compute publishable charts for defect energy formation, 10.1016/j.cplett.2017.01.001
  76. Goyal Anuj, Gorai Prashun, Peng Haowei, Lany Stephan, Stevanović Vladan, A computational framework for automation of point defect calculations, 10.1016/j.commatsci.2016.12.040
  77. Zhang Lei, Zhou Yuanjun, Guo Lu, Zhao Weiwei, Barnes Anna, Zhang Hai-Tian, Eaton Craig, Zheng Yuanxia, Brahlek Matthew, Haneef Hamna F., Podraza Nikolas J., Chan Moses H. W., Gopalan Venkatraman, Rabe Karin M., Engel-Herbert Roman, Correlated metals as transparent conductors, 10.1038/nmat4493
  78. Ogo Yoichi, Hiramatsu Hidenori, Nomura Kenji, Yanagi Hiroshi, Kamiya Toshio, Hirano Masahiro, Hosono Hideo, p-channel thin-film transistor using p-type oxide semiconductor, SnO, 10.1063/1.2964197
  79. Lee Ho-Nyeon, Kim Hyung-Jung, Kim Chang-Kyo, p-Channel Tin Monoxide Thin Film Transistor Fabricated by Vacuum Thermal Evaporation, 10.1143/jjap.49.020202
  80. Lyons J. L., Janotti A., Van de Walle C. G., Why nitrogen cannot lead to p-type conductivity in ZnO, 10.1063/1.3274043
  81. Ha Viet-Anh, Waroquiers David, Rignanese Gian-Marco, Hautier Geoffroy, Influence of the “second gap” on the transparency of transparent conducting oxides: An ab initio study, 10.1063/1.4950803
  82. Moss T S, The Interpretation of the Properties of Indium Antimonide, 10.1088/0370-1301/67/10/306
  83. Burstein Elias, Anomalous Optical Absorption Limit in InSb, 10.1103/physrev.93.632
  84. Kul Metin, Zor Muhsin, Aybek Ahmet Senol, Irmak Sinan, Turan Evren, Electrical and optical properties of fluorine-doped CdO films deposited by ultrasonic spray pyrolysis, 10.1016/j.solmat.2007.01.020
  85. Kumaravel R., Ramamurthi K., Krishnakumar V., Effect of indium doping in CdO thin films prepared by spray pyrolysis technique, 10.1016/j.jpcs.2010.07.021
  86. Peelaers H., Kioupakis E., Van de Walle C. G., Fundamental limits on optical transparency of transparent conducting oxides: Free-carrier absorption in SnO2, 10.1063/1.3671162
  87. Edwards P. P., Porch A., Jones M. O., Morgan D. V., Perks R. M., Basic materials physics of transparent conducting oxides, 10.1039/b408864f
  88. Bellingham J. R., Phillips W. A., Adkins C. J., Intrinsic performance limits in transparent conducting oxides, 10.1007/bf00729407
  89. , , , , , Quantifying the Performance of P-Type Transparent Conducting Oxides by Experimental Methods, 10.3390/ma10091019
  90. Shishkin M., Kresse G., Self-consistentGWcalculations for semiconductors and insulators, 10.1103/physrevb.75.235102
  91. Chan M. K. Y., Ceder G., Efficient Band Gap Prediction for Solids, 10.1103/physrevlett.105.196403
  92. Tran Fabien, Blaha Peter, Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential, 10.1103/physrevlett.102.226401
  93. Walsh Aron, Da Silva Juarez L. F., Wei Su-Huai, Körber C., Klein A., Piper L. F. J., DeMasi Alex, Smith Kevin E., Panaccione G., Torelli P., Payne D. J., Bourlange A., Egdell R. G., Nature of the Band Gap ofIn2O3Revealed by First-Principles Calculations and X-Ray Spectroscopy, 10.1103/physrevlett.100.167402
  94. Albrecht Stefan, Reining Lucia, Del Sole Rodolfo, Onida Giovanni, Ab InitioCalculation of Excitonic Effects in the Optical Spectra of Semiconductors, 10.1103/physrevlett.80.4510
  95. Onida Giovanni, Reining Lucia, Rubio Angel, Electronic excitations: density-functional versus many-body Green’s-function approaches, 10.1103/revmodphys.74.601
  96. Gillet Yannick, Giantomassi Matteo, Gonze Xavier, Efficient on-the-fly interpolation technique for Bethe–Salpeter calculations of optical spectra, 10.1016/j.cpc.2016.02.008
  97. Peelaers H., Kioupakis E., Van de Walle C. G., Free-carrier absorption in transparent conducting oxides: Phonon and impurity scattering inSnO2, 10.1103/physrevb.92.235201
  98. Nagaraja Arpun R., Stone Kevin H., Toney Michael F., Peng Haowei, Lany Stephan, Mason Thomas O., Experimental Characterization of a Theoretically Designed Candidate p-Type Transparent Conducting Oxide: Li-Doped Cr2MnO4, 10.1021/cm501974t
  99. Ha Viet-Anh, Ricci Francesco, Rignanese Gian-Marco, Hautier Geoffroy, Structural design principles for low hole effective mass s-orbital-based p-type oxides, 10.1039/c7tc00528h
  100. Li Yuwei, Singh David J., Du Mao-Hua, Xu Qiaoling, Zhang Lijun, Zheng Weitao, Ma Yanming, Design of ternary alkaline-earth metal Sn(ii) oxides with potential good p-type conductivity, 10.1039/c6tc00996d
  101. Li Yuwei, Zhang Lijun, Singh David J., New stable ternary alkaline-earth metal Pb(II) oxides: Ca/Sr/BaPb2O3 and BaPbO2, 10.1103/physrevmaterials.1.055001
  102. Xu Qiaoling, Li Yuwei, Zhang Lijun, Zheng Weitao, Singh David J., Ma Yanming, Sn(II)-Containing Phosphates as Optoelectronic Materials, 10.1021/acs.chemmater.6b03669
  103. Bhatia Amit, Hautier Geoffroy, Nilgianskul Tan, Miglio Anna, Sun Jingying, Kim Hyung Joon, Kim Kee Hoon, Chen Shuo, Rignanese Gian-Marco, Gonze Xavier, Suntivich Jin, High-Mobility Bismuth-based Transparent p-Type Oxide from High-Throughput Material Screening, 10.1021/acs.chemmater.5b03794
  104. Hiramatsu Hidenori, Yanagi Hiroshi, Kamiya Toshio, Ueda Kazushige, Hirano Masahiro, Hosono Hideo, Crystal Structures, Optoelectronic Properties, and Electronic Structures of Layered OxychalcogenidesMCuOCh(M= Bi, La;Ch= S, Se, Te): Effects of Electronic Configurations ofM3+Ions, 10.1021/cm702303r
  105. Yan Feng, Zhang Xiuwen, Yu Yonggang G., Yu Liping, Nagaraja Arpun, Mason Thomas O., Zunger Alex, Design and discovery of a novel half-Heusler transparent hole conductor made of all-metallic heavy elements, 10.1038/ncomms8308
  106. Cerqueira Tiago F. T., Lin Sun, Amsler Maximilian, Goedecker Stefan, Botti Silvana, Marques Miguel A. L., Identification of Novel Cu, Ag, and Au Ternary Oxides from Global Structural Prediction, 10.1021/acs.chemmater.5b00716
  107. Shi Jingming, Cerqueira Tiago F. T., Cui Wenwen, Nogueira Fernando, Botti Silvana, Marques Miguel A. L., High-throughput search of ternary chalcogenides for p-type transparent electrodes, 10.1038/srep43179
  108. Varley Joel B., Miglio Anna, Ha Viet-Anh, van Setten Michiel J., Rignanese Gian-Marco, Hautier Geoffroy, High-Throughput Design of Non-oxide p-Type Transparent Conducting Materials: Data Mining, Search Strategy, and Identification of Boron Phosphide, 10.1021/acs.chemmater.6b04663
  109. Ha Viet-Anh, Yu Guodong, Ricci Francesco, Dahliah Diana, van Setten Michiel J., Giantomassi Matteo, Rignanese Gian-Marco, Hautier Geoffroy, Computationally driven high-throughput identification of CaTe and Li3Sb as promising candidates for high-mobility p -type transparent conducting materials, 10.1103/physrevmaterials.3.034601
  110. Kormath Madam Raghupathy Ramya, Wiebeler Hendrik, Kühne Thomas D., Felser Claudia, Mirhosseini Hossein, Database Screening of Ternary Chalcogenides for P-type Transparent Conductors, 10.1021/acs.chemmater.8b02719
Bibliographic reference Brunin, Guillaume ; Ricci, Francesco ; Ha, Viet Anh ; Rignanese, Gian-Marco ; Hautier, Geoffroy. Transparent conducting materials discovery using high-throughput computing. In: npj Computational Materials, Vol. 5, no. 1 (2019)
Permanent URL http://hdl.handle.net/2078.1/217533