User menu

Two data pre-processing workflows to facilitate the discovery of biomarkers by 2D NMR metabolomics

  • Open access
  • PDF
  • 1.27 M
  1. Barna Jennifer C.J, Laue Ernest D, Conventional and exponential sampling for 2D NMR experiments with application to a 2D NMR spectrum of a protein, 10.1016/0022-2364(87)90047-3
  2. Bylesjö Max, Rantalainen Mattias, Cloarec Olivier, Nicholson Jeremy K., Holmes Elaine, Trygg Johan, OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification, 10.1002/cem.1006
  3. Chung, D., & Chun, H. (2012). Keles S, Spls: Sparse partial least squares (SPLS) regression and classification. R package, version, 2, 1–1.
  4. Chun, H., & Keles, S. (2007). Sparse partial least squares regression with an application to genome scale transcription factor analysis. Madison: Department of Statistics, University of Wisconsin.
  5. Craig Andrew, Cloarec Olivier, Holmes Elaine, Nicholson Jeremy K., Lindon John C., Scaling and Normalization Effects in NMR Spectroscopic Metabonomic Data Sets, 10.1021/ac0519312
  6. Dieterle Frank, Ross Alfred, Schlotterbeck Götz, Senn Hans, Probabilistic Quotient Normalization as Robust Method to Account for Dilution of Complex Biological Mixtures. Application in1H NMR Metabonomics, 10.1021/ac051632c
  7. Tibshirani Robert, Johnstone Iain, Hastie Trevor, Efron Bradley, Least angle regression, 10.1214/009053604000000067
  8. Feraud, B. (2019). Statistical contributions to the analysis of 2D NMR spectra in metabolomics studies: From pre-processing workflows to 2D biomarker discovery. .
  9. Féraud Baptiste, Govaerts Bernadette, Verleysen Michel, de Tullio Pascal, Statistical treatment of 2D NMR COSY spectra in metabolomics: data preparation, clustering-based evaluation of the Metabolomic Informative Content and comparison with 1H-NMR, 10.1007/s11306-015-0830-7
  10. Féraud Baptiste, Munaut Carine, Martin Manon, Verleysen Michel, Govaerts Bernadette, Combining strong sparsity and competitive predictive power with the L-sOPLS approach for biomarker discovery in metabolomics, 10.1007/s11306-017-1275-y
  11. Frydman L., Scherf T., Lupulescu A., The acquisition of multidimensional NMR spectra within a single scan, 10.1073/pnas.252644399
  12. Giraudeau Patrick, Quantitative 2D liquid-state NMR : Quantitative 2D NMR, 10.1002/mrc.4068
  13. Giraudeau Patrick, Tea Illa, Remaud Gérald S., Akoka Serge, Reference and normalization methods: Essential tools for the intercomparison of NMR spectra, 10.1016/j.jpba.2013.07.020
  14. Hoch Jeffrey C., Maciejewski Mark W., Mobli Mehdi, Schuyler Adam D., Stern Alan S., Nonuniform Sampling and Maximum Entropy Reconstruction in Multidimensional NMR, 10.1021/ar400244v
  15. Jézéquel Tangi, Deborde Catherine, Maucourt Mickaël, Zhendre Vanessa, Moing Annick, Giraudeau Patrick, Absolute quantification of metabolites in tomato fruit extracts by fast 2D NMR, 10.1007/s11306-015-0780-0
  16. Guennec Adrien Le, Giraudeau Patrick, Caldarelli Stefano, Evaluation of Fast 2D NMR for Metabolomics, 10.1021/ac500966e
  17. Le Guennec Adrien, Tea Illa, Antheaume Ingrid, Martineau Estelle, Charrier Benoît, Pathan Meerakhan, Akoka Serge, Giraudeau Patrick, Fast Determination of Absolute Metabolite Concentrations by Spatially Encoded 2D NMR: Application to Breast Cancer Cell Extracts, 10.1021/ac3033504
  18. Liland Kristian Hovde, Multivariate methods in metabolomics – from pre-processing to dimension reduction and statistical analysis, 10.1016/j.trac.2011.02.007
  19. MacQueen, J. B. (1967). Some Methods for classification and Analysis of Multivariate Observations, Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, 1, University of California Press, pp. 281–297.
  20. Marchand Jérémy, Martineau Estelle, Guitton Yann, Le Bizec Bruno, Dervilly-Pinel Gaud, Giraudeau Patrick, A multidimensional 1H NMR lipidomics workflow to address chemical food safety issues, 10.1007/s11306-018-1360-x
  21. Marchand Jérémy, Martineau Estelle, Guitton Yann, Dervilly-Pinel Gaud, Giraudeau Patrick, Multidimensional NMR approaches towards highly resolved, sensitive and high-throughput quantitative metabolomics, 10.1016/j.copbio.2016.08.004
  22. Marjanska Malgorzata, Henry Pierre-Gilles, Uğurbil Kâmil, Gruetter Rolf, Editing through multiple bonds: Threonine detection, 10.1002/mrm.21492
  23. Martin, M., Legat, B., Leenders, J., Vanwinsberghe, J., Rousseau, R., et al. (2017). PepsNMR for the 1H-NMR metabolomic data pre-processing. ISBA Discussion Paper, 2017/22, .
  24. Martineau Estelle, Tea Illa, Akoka Serge, Giraudeau Patrick, Absolute quantification of metabolites in breast cancer cell extracts by quantitative 2D 1H INADEQUATE NMR : ABSOLUTE METABOLITE QUANTIFICATION BY 2 D NMR, 10.1002/nbm.1816
  25. Murtagh, F., & Legendre, P. (2011). Ward’s hierarchical clustering method: clustering criterion and agglomerative algorithm, arXiv preprint arXiv:1111.6285 .
  26. Ravanbakhsh, S., Liu, P., Bjorndahl, T., Mandal, R., Grant, J. R., Wilson, M., & Greiner, R. (2014). Accurate, fully-automated NMR spectral profiling for metabolomics. arXiv:1409.1456 .
  27. Rist Manuela J., Roth Alexander, Frommherz Lara, Weinert Christoph H., Krüger Ralf, Merz Benedikt, Bunzel Diana, Mack Carina, Egert Björn, Bub Achim, Görling Benjamin, Tzvetkova Pavleta, Luy Burkhard, Hoffmann Ingrid, Kulling Sabine E., Watzl Bernhard, Metabolite patterns predicting sex and age in participants of the Karlsruhe Metabolomics and Nutrition (KarMeN) study, 10.1371/journal.pone.0183228
  28. Rouger L., Gouilleux B., Giraudeau P., Fast n-Dimensional Data Acquisition Methods, Encyclopedia of Spectroscopy and Spectrometry (2017) ISBN:9780128032244 p.588-596, 10.1016/b978-0-12-409547-2.12107-9
  29. Rousseau, R. (2011). Statistical contribution to the analysis of metabonomic data in 1H-NMR spectroscopy, PhD Thesis, UCL, .
  30. Sousa S.A.A., Magalhães Alviclér, Ferreira Márcia Miguel Castro, Optimized bucketing for NMR spectra: Three case studies, 10.1016/j.chemolab.2013.01.006
  31. Thévenot Etienne A., Roux Aurélie, Xu Ying, Ezan Eric, Junot Christophe, Analysis of the Human Adult Urinary Metabolome Variations with Age, Body Mass Index, and Gender by Implementing a Comprehensive Workflow for Univariate and OPLS Statistical Analyses, 10.1021/acs.jproteome.5b00354
  32. Trygg Johan, Wold Svante, Orthogonal projections to latent structures (O-PLS), 10.1002/cem.695
  33. Ward Joe H., Hierarchical Grouping to Optimize an Objective Function, 10.1080/01621459.1963.10500845
  34. Wold Svante, Sjöström Michael, Eriksson Lennart, PLS-regression: a basic tool of chemometrics, 10.1016/s0169-7439(01)00155-1
  35. Wold Svante, Trygg Johan, Berglund Anders, Antti Henrik, Some recent developments in PLS modeling, 10.1016/s0169-7439(01)00156-3
  36. Wu Yiman, Li Liang, Sample normalization methods in quantitative metabolomics, 10.1016/j.chroma.2015.12.007
Bibliographic reference Feraud, Baptiste ; Leenders, Justine ; Martineau, Estelle ; Giraudeau, Patrick ; Govaerts, Bernadette ; et. al. Two data pre-processing workflows to facilitate the discovery of biomarkers by 2D NMR metabolomics. In: Metabolomics, Vol. 15, no.63, p. n/a-n/a (published online 16 April 2019) (2019)
Permanent URL