User menu

Computationally driven high-throughput identification of CaTe and Li3Sb as promising candidates for high-mobility p -type transparent conducting materials

  • Open access
  • PDF
  • 787.75 K
  1. Ohta Hiromichi, Hosono Hideo, Transparent oxide optoelectronics, 10.1016/s1369-7021(04)00288-3
  2. Transparent Electronics: From Synthesis to Applications (2010)
  3. Ellmer Klaus, Past achievements and future challenges in the development of optically transparent electrodes, 10.1038/nphoton.2012.282
  4. Barquinha Pedro, Martins Rodrigo, Pereira Luis, Fortunato Elvira, Transparent Oxide Electronics : From Materials to Devices, ISBN:9781119966999, 10.1002/9781119966999
  5. Fortunato E., Barquinha P., Martins R., Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances, 10.1002/adma.201103228
  6. Dixon Sebastian C., Scanlon David O., Carmalt Claire J., Parkin Ivan P., n-Type doped transparent conducting binary oxides: an overview, 10.1039/c6tc01881e
  7. Hautier Geoffroy, Miglio Anna, Ceder Gerbrand, Rignanese Gian-Marco, Gonze Xavier, Identification and design principles of low hole effective mass p-type transparent conducting oxides, 10.1038/ncomms3292
  8. Varley J. B., Lordi V., Miglio A., Hautier G., Electronic structure and defect properties ofB6Ofrom hybrid functional and many-body perturbation theory calculations: A possible ambipolar transparent conductor, 10.1103/physrevb.90.045205
  9. Bhatia Amit, Hautier Geoffroy, Nilgianskul Tan, Miglio Anna, Sun Jingying, Kim Hyung Joon, Kim Kee Hoon, Chen Shuo, Rignanese Gian-Marco, Gonze Xavier, Suntivich Jin, High-Mobility Bismuth-based Transparent p-Type Oxide from High-Throughput Material Screening, 10.1021/acs.chemmater.5b03794
  10. Yanagi Hiroshi, Tate Janet, Park Sangmoon, Park Cheol-Hee, Keszler Douglas A., p-type conductivity in wide-band-gap BaCuQF (Q=S,Se), 10.1063/1.1571224
  11. Park Sangmoon, Keszler Douglas A., Valencia Melinda M., Hoffman Randy L., Bender Jeffrey P., Wager John F., Transparent p-type conducting BaCu2S2 films, 10.1063/1.1485133
  12. Woods-Robinson Rachel, Cooper Jason K., Xu Xiaojie, Schelhas Laura T., Pool Vanessa L., Faghaninia Alireza, Lo Cynthia S., Toney Michael F., Sharp Ian D., Ager Joel W., P-Type Transparent Cu-Alloyed ZnS Deposited at Room Temperature, 10.1002/aelm.201500396
  13. Ueda K., Inoue S., Hirose S., Kawazoe H., Hosono H., Transparent p-type semiconductor: LaCuOS layered oxysulfide, 10.1063/1.1319507
  14. Yan Feng, Zhang Xiuwen, Yu Yonggang G., Yu Liping, Nagaraja Arpun, Mason Thomas O., Zunger Alex, Design and discovery of a novel half-Heusler transparent hole conductor made of all-metallic heavy elements, 10.1038/ncomms8308
  15. Varley Joel B., Miglio Anna, Ha Viet-Anh, van Setten Michiel J., Rignanese Gian-Marco, Hautier Geoffroy, High-Throughput Design of Non-oxide p-Type Transparent Conducting Materials: Data Mining, Search Strategy, and Identification of Boron Phosphide, 10.1021/acs.chemmater.6b04663
  16. Kormath Madam Raghupathy Ramya, Kühne Thomas D., Felser Claudia, Mirhosseini Hossein, Rational design of transparent p-type conducting non-oxide materials from high-throughput calculations, 10.1039/c7tc05311h
  17. Kormath Madam Raghupathy Ramya, Wiebeler Hendrik, Kühne Thomas D., Felser Claudia, Mirhosseini Hossein, Database Screening of Ternary Chalcogenides for P-type Transparent Conductors, 10.1021/acs.chemmater.8b02719
  18. Ricci Francesco, Chen Wei, Aydemir Umut, Snyder G. Jeffrey, Rignanese Gian-Marco, Jain Anubhav, Hautier Geoffroy, An ab initio electronic transport database for inorganic materials, 10.1038/sdata.2017.85
  19. Jain Anubhav, Ong Shyue Ping, Hautier Geoffroy, Chen Wei, Richards William Davidson, Dacek Stephen, Cholia Shreyas, Gunter Dan, Skinner David, Ceder Gerbrand, Persson Kristin A., Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, 10.1063/1.4812323
  20. Kresse G., Furthmüller J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, 10.1016/0927-0256(96)00008-0
  21. Kresse G., Furthmüller J., Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set, 10.1103/physrevb.54.11169
  22. Perdew John P., Burke Kieron, Ernzerhof Matthias, Generalized Gradient Approximation Made Simple, 10.1103/physrevlett.77.3865
  23. Blöchl P. E., Projector augmented-wave method, 10.1103/physrevb.50.17953
  24. Heyd Jochen, Scuseria Gustavo E., Ernzerhof Matthias, Hybrid functionals based on a screened Coulomb potential, 10.1063/1.1564060
  25. Brothers Edward N., Izmaylov Artur F., Normand Jacques O., Barone Verónica, Scuseria Gustavo E., Accurate solid-state band gaps via screened hybrid electronic structure calculations, 10.1063/1.2955460
  26. Gonze X., Beuken J.-M., Caracas R., Detraux F., Fuchs M., Rignanese G.-M., Sindic L., Verstraete M., Zerah G., Jollet F., Torrent M., Roy A., Mikami M., Ghosez Ph., Raty J.-Y., Allan D.C., First-principles computation of material properties: the ABINIT software project, 10.1016/s0927-0256(02)00325-7
  27. Gonze Xavier, A brief introduction to the ABINIT software package, 10.1524/zkri.220.5.558.65066
  28. Gonze X., Amadon B., Anglade P.-M., Beuken J.-M., Bottin F., Boulanger P., Bruneval F., Caliste D., Caracas R., Côté M., Deutsch T., Genovese L., Ghosez Ph., Giantomassi M., Goedecker S., Hamann D.R., Hermet P., Jollet F., Jomard G., Leroux S., Mancini M., Mazevet S., Oliveira M.J.T., Onida G., Pouillon Y., Rangel T., Rignanese G.-M., Sangalli D., Shaltaf R., Torrent M., Verstraete M.J., Zerah G., Zwanziger J.W., ABINIT: First-principles approach to material and nanosystem properties, 10.1016/j.cpc.2009.07.007
  29. Gonze X., Jollet F., Abreu Araujo F., Adams D., Amadon B., Applencourt T., Audouze C., Beuken J.-M., Bieder J., Bokhanchuk A., Bousquet E., Bruneval F., Caliste D., Côté M., Dahm F., Da Pieve F., Delaveau M., Di Gennaro M., Dorado B., Espejo C., Geneste G., Genovese L., Gerossier A., Giantomassi M., Gillet Y., Hamann D.R., He L., Jomard G., Laflamme Janssen J., Le Roux S., Levitt A., Lherbier A., Liu F., Lukačević I., Martin A., Martins C., Oliveira M.J.T., Poncé S., Pouillon Y., Rangel T., Rignanese G.-M., Romero A.H., Rousseau B., Rubel O., Shukri A.A., Stankovski M., Torrent M., Van Setten M.J., Van Troeye B., Verstraete M.J., Waroquiers D., Wiktor J., Xu B., Zhou A., Zwanziger J.W., Recent developments in the ABINIT software package, 10.1016/j.cpc.2016.04.003
  30. Hamann D. R., Optimized norm-conserving Vanderbilt pseudopotentials, 10.1103/physrevb.88.085117
  31. van Setten M.J., Giantomassi M., Bousquet E., Verstraete M.J., Hamann D.R., Gonze X., Rignanese G.-M., The PseudoDojo : Training and grading a 85 element optimized norm-conserving pseudopotential table, 10.1016/j.cpc.2018.01.012
  32. van Setten M. J., Giantomassi M., Gonze X., Rignanese G.-M., Hautier G., Automation methodologies and large-scale validation for GW : Towards high-throughput GW calculations, 10.1103/physrevb.96.155207
  33. Ong Shyue Ping, Richards William Davidson, Jain Anubhav, Hautier Geoffroy, Kocher Michael, Cholia Shreyas, Gunter Dan, Chevrier Vincent L., Persson Kristin A., Ceder Gerbrand, Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis, 10.1016/j.commatsci.2012.10.028
  34. Freysoldt Christoph, Grabowski Blazej, Hickel Tilmann, Neugebauer Jörg, Kresse Georg, Janotti Anderson, Van de Walle Chris G., First-principles calculations for point defects in solids, 10.1103/revmodphys.86.253
  35. Komsa Hannu-Pekka, Rantala Tapio T., Pasquarello Alfredo, Finite-size supercell correction schemes for charged defect calculations, 10.1103/physrevb.86.045112
  36. Zhang S., Northrup John, Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion, 10.1103/physrevlett.67.2339
  37. Freysoldt Christoph, Neugebauer Jörg, Van de Walle Chris G., Electrostatic interactions between charged defects in supercells, 10.1002/pssb.201046289
  38. Kumagai Yu, Oba Fumiyasu, Electrostatics-based finite-size corrections for first-principles point defect calculations, 10.1103/physrevb.89.195205
  39. Broberg Danny, Medasani Bharat, Zimmermann Nils E.R., Yu Guodong, Canning Andrew, Haranczyk Maciej, Asta Mark, Hautier Geoffroy, PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators, 10.1016/j.cpc.2018.01.004
  40. Madsen Georg K.H., Singh David J., BoltzTraP. A code for calculating band-structure dependent quantities, 10.1016/j.cpc.2006.03.007
  41. Jain Anubhav, Ong Shyue Ping, Chen Wei, Medasani Bharat, Qu Xiaohui, Kocher Michael, Brafman Miriam, Petretto Guido, Rignanese Gian-Marco, Hautier Geoffroy, Gunter Daniel, Persson Kristin A., FireWorks: a dynamic workflow system designed for high-throughput applications : FireWorks: A Dynamic Workflow System Designed for High-Throughput Applications, 10.1002/cpe.3505
  42. Noffsinger Jesse, Giustino Feliciano, Malone Brad D., Park Cheol-Hwan, Louie Steven G., Cohen Marvin L., EPW: A program for calculating the electron–phonon coupling using maximally localized Wannier functions, 10.1016/j.cpc.2010.08.027
  43. Poncé S., Margine E.R., Verdi C., Giustino F., EPW: Electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions, 10.1016/j.cpc.2016.07.028
  44. Giannozzi Paolo, Baroni Stefano, Bonini Nicola, Calandra Matteo, Car Roberto, Cavazzoni Carlo, Ceresoli Davide, Chiarotti Guido L, Cococcioni Matteo, Dabo Ismaila, Dal Corso Andrea, de Gironcoli Stefano, Fabris Stefano, Fratesi Guido, Gebauer Ralph, Gerstmann Uwe, Gougoussis Christos, Kokalj Anton, Lazzeri Michele, Martin-Samos Layla, Marzari Nicola, Mauri Francesco, Mazzarello Riccardo, Paolini Stefano, Pasquarello Alfredo, Paulatto Lorenzo, Sbraccia Carlo, Scandolo Sandro, Sclauzero Gabriele, Seitsonen Ari P, Smogunov Alexander, Umari Paolo, Wentzcovitch Renata M, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, 10.1088/0953-8984/21/39/395502
  45. Giannozzi P, Andreussi O, Brumme T, Bunau O, Buongiorno Nardelli M, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Dal Corso A, de Gironcoli S, Delugas P, DiStasio R A, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko H-Y, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen N L, Nguyen H-V, Otero-de-la-Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen A P, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S, Advanced capabilities for materials modelling with Quantum ESPRESSO, 10.1088/1361-648x/aa8f79
  46. M. Giantomassi, Ph.D. thesis (2009)
  47. Hautier Geoffroy, Ong Shyue Ping, Jain Anubhav, Moore Charles J., Ceder Gerbrand, Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability, 10.1103/physrevb.85.155208
  48. Furukawa K., Uemoto A., Shigeta M., Suzuki A., Nakajima S., 3C‐SiCp‐njunction diodes, 10.1063/1.96860
  49. Kondo Y., Takahashi T., Ishi K., Hayashi Y., Sakuma E., Misawa S., Daimon H., Yamanaka M., Yoshida S., Experimental 3C-SiC MOSFET, 10.1109/edl.1986.26417
  50. Shibahara Kentaro, Kuroda Naotaka, Nishino Shigehiro, Matsunami Hiroyuki, Fabrication of P-N Junction Diodes Using Homoepitaxially Grown 6H-SiC at Low Temperature by Chemical Vapor Deposition, 10.1143/jjap.26.l1815
  51. Weingärtner R., Wellmann P. J., Bickermann M., Hofmann D., Straubinger T. L., Winnacker A., Determination of charge carrier concentration in n- and p-doped SiC based on optical absorption measurements, 10.1063/1.1430262
  52. Choyke W.J., Pensl G., Physical Properties of SiC, 10.1557/s0883769400032723
  53. Morkoç H., Strite S., Gao G. B., Lin M. E., Sverdlov B., Burns M., Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies, 10.1063/1.358463
  54. Philipp Hekrert R., Intrinsic Optical Absorption in Single-Crystal Silicon Carbide, 10.1103/physrev.111.440
  55. Liu Mingzhen, Johnston Michael B., Snaith Henry J., Efficient planar heterojunction perovskite solar cells by vapour deposition, 10.1038/nature12509
  56. Green Martin A., Ho-Baillie Anita, Snaith Henry J., The emergence of perovskite solar cells, 10.1038/nphoton.2014.134
  57. Ha Viet-Anh, Ricci Francesco, Rignanese Gian-Marco, Hautier Geoffroy, Structural design principles for low hole effective mass s-orbital-based p-type oxides, 10.1039/c7tc00528h
  58. Saum George A., Hensley Eugene B., Fundamental Optical Absorption in the IIA-VIB Compounds, 10.1103/physrev.113.1019
  59. Richardson T, New electrochromic mirror systems, 10.1016/j.ssi.2003.08.047
  60. Gobrecht R., Photoelektrische Eigenschaften von Lithiumantimonid, 10.1002/pssb.19660130215
  61. Noffsinger Jesse, Kioupakis Emmanouil, Van de Walle Chris G., Louie Steven G., Cohen Marvin L., Phonon-Assisted Optical Absorption in Silicon from First Principles, 10.1103/physrevlett.108.167402
  62. Quackenbush N. F., Allen J. P., Scanlon D. O., Sallis S., Hewlett J. A., Nandur A. S., Chen B., Smith K. E., Weiland C., Fischer D. A., Woicik J. C., White B. E., Watson G. W., Piper L. F. J., Origin of the Bipolar Doping Behavior of SnO from X-ray Spectroscopy and Density Functional Theory, 10.1021/cm401343a
  63. Hautier Geoffroy, Miglio Anna, Waroquiers David, Rignanese Gian-Marco, Gonze Xavier, How Does Chemistry Influence Electron Effective Mass in Oxides? A High-Throughput Computational Analysis, 10.1021/cm404079a
  64. Kuhar Korina, Pandey Mohnish, Thygesen Kristian S., Jacobsen Karsten W., High-Throughput Computational Assessment of Previously Synthesized Semiconductors for Photovoltaic and Photoelectrochemical Devices, 10.1021/acsenergylett.7b01312
  65. Tate J., Ju H. L., Moon J. C., Zakutayev A., Richard A. P., Russell J., McIntyre D. H., Origin ofp-type conduction in single-crystalCuAlO2, 10.1103/physrevb.80.165206
  66. Ogo Yoichi, Hiramatsu Hidenori, Nomura Kenji, Yanagi Hiroshi, Kamiya Toshio, Hirano Masahiro, Hosono Hideo, p-channel thin-film transistor using p-type oxide semiconductor, SnO, 10.1063/1.2964197
  67. E. Maciá-Barber, Thermoelectric Materials: Advances and Applications (2015)
  68. T. Kajikawa, Proceedings ICT'03: 22nd International Conference on Thermoelectrics (2003)
  69. Condron Cathie L., Kauzlarich Susan M., Gascoin Franck, Snyder G. Jeffrey, Thermoelectric properties and microstructure of Mg3Sb2, 10.1016/j.jssc.2006.01.034
  70. Zhang Jiawei, Song Lirong, Mamakhel Aref, Jørgensen Mads Ry Vogel, Iversen Bo Brummerstedt, High-Performance Low-Cost n-Type Se-Doped Mg3Sb2-Based Zintl Compounds for Thermoelectric Application, 10.1021/acs.chemmater.7b01746
  71. Zunger Alex, Practical doping principles, 10.1063/1.1584074
Bibliographic reference Ha, Viet Anh ; Yu, Guodong ; Ricci, Francesco ; Dahliah, Diana ; van Setten, Michiel ; et. al. Computationally driven high-throughput identification of CaTe and Li3Sb as promising candidates for high-mobility p -type transparent conducting materials. In: Physical Review Materials, Vol. 3, no.3, p. 034601 (2019)
Permanent URL http://hdl.handle.net/2078.1/214712