
14-th IEEE International Conference on Peer-to-Peer Computing

LAYSTREAM: composing standard gossip protocols
for live video streaming

Miguel Matos∗, Valerio Schiavoni†, Etienne Riviere†, Pascal Felber†, Rui Oliveira∗
∗HASLab - High-Assurance Software Lab, INESC TEC & U. Minho, Portugal. Email: {miguelmatos,rco}@di.uminho.pt

†University of Neuchâtel, Switzerland. Email: first.last@unine.ch

Abstract—Gossip-based live streaming is a popular topic, as
attested by the vast literature on the subject. Despite the particu-
lar merits of each proposal, all need to implement and deal with
common challenges such as membership management, topology
construction and video packets dissemination. Well-principled
gossip-based protocols have been proposed in the literature for
each of these aspects. Our goal is to assess the feasibility of
building a live streaming system, LAYSTREAM, as a composition
of these existing protocols, to deploy the resulting system on real
testbeds, and report on lessons learned in the process. Unlike
previous evaluations conducted by simulations and considering
each protocol independently, we use real deployments. We eval-
uate protocols both independently and as a layered composition,
and unearth specific problems and challenges associated with
deployment and composition. We discuss and present solutions
for these, such as a novel topology construction mechanism able
to cope with the specificities of a large-scale and delay-sensitive
environment, but also with requirements from the upper layer.
Our implementation and data are openly available to support
experimental reproducibility.

I. INTRODUCTION

Originally introduced for propagating updates in distributed
databases [11], epidemic or gossip protocols have attracted
increasing interest as the scale and dynamism of computer
systems have drastically increased over the last decade. A wide
variety of gossip protocols have been proposed, for purposes
such as fault detection [28], membership management [31],
aggregation [15], data dissemination [6], [12], [25], publish-
subscribe [2], [33] and infrastructure management [27]. This
interest stems from the robustness and scalability of the gossip
model, but also from its simplicity. A node participating in
a gossip protocol follows a periodic interaction pattern. It
regularly selects a communication partner and exchanges some
data with it. This allows each of the two nodes to update
a local state, according to protocol-specific rules. Due to
the randomized, local and redundant nature of interactions,
gossip protocols are known to be very robust against faults and
churn. They are therefore well suited to dynamic environments.
Furthermore, each node only needs limited knowledge of the
entire system. Gossip protocols thus generally scale well to
very large numbers of nodes.

While operations at the level of a single node are generally
simple to describe and implement, the evaluation or modeling
of the behavior of a collection of nodes on a global scale is a
challenging task, due to the scale but also to the emergent and
probabilistic nature of gossip protocols. Furthermore, while
one can compose gossip protocols to build richer distributed
services [2], [29], the resulting stack is not straightforward to
study and reason about. There is not only a limited number

of examples of evaluation of individual gossip protocols
deployed on real platforms but also their interplay in these real
environments remains largely unstudied. The potential mismatch
between the behavior predicted by theory or simulations
and practical results has been pointed out before, further
highlighting the challenges of deploying key protocols such as
consensus in the real world [8], [24].

In this paper, we wish to make a step towards bridging
the gap between theory and simulations on the one hand,
and practice and real deployments on the other, by building,
deploying and evaluating a demanding application, live video
streaming, using gossip. Rather than contributing yet another
protocol, and comparing with existing state-of-the-art live video-
streaming systems, which would require to implement all
features of membership management, topology construction
and data dissemination, we instead wish to investigate if this
application can be built based on a composition of existing
protocols, each forming a gossip building block. We wish to
evaluate their behaviors under real deployments, and well as
evaluating the behavior of their composition. We implemented
an instantiation of the peer sampling service for membership
management [17], T-Man [16] for topology construction and
Brisa [25] for data dissemination. Our results are based on the
deployment of a prototype, named LAYSTREAM. It uses the
VLC media player as the source and sink of video streams.
Our results generally support the main conclusions from the
literature but, unsurprisingly, unearthed issues and limitations
stemming from the simplifying nature of simulations or from the
lack of consideration for protocols interoperation. We discuss
and present solutions for these issues.

Our contributions are the following: i) we study the
challenges faced when combining and deploying several gossip
protocols on a real environment, ii) we propose solutions and
protocol adaptations for the problems encountered and iii) we
propose a novel topology construction mechanism suitable
to a large-scale deployment of a delay-sensitive application.
Our implementation and datasets are openly available for
experimental reproducibility.1

The rest of this paper is organized as follows. Section II
describes the protocol stack and the requirements of each
layer. Section III presents the implementation of the stack and
discusses the adaption made to existing protocols. Section IV
presents our deployment and evaluation. Section V reviews
related work and Section VI concludes.

1http://www.splay-project.org/laystream.

978-1-4799-6201-3/14/$31.00 c©2014 IEEE



14-th IEEE International Conference on Peer-to-Peer Computing

II. LIVE STREAMING COMPONENTS AND REQUIREMENTS

We start by describing the stack of services required to
support live video streaming. We use a bottom-up approach
and focus on the guarantees offered by each of the layers,
illustrated by Figure 1. The base layer offers point-to-point
wired communication. We assume that any two nodes can
directly communicate with one another. While this does not
hold in general due to NATs and firewalls, there are techniques
at the peer sampling layer for addressing this restriction [19].

The first layer provides a peer sampling service (PSS) [17]
which guarantees membership management and randomization.
It provides each node with a small and fixed size set of
constantly changing contacts to other nodes, the pss-view. This
pss-view should be as close as possible to a random sample
of all nodes currently present in the system, thus effectively
constructing a random graph. The expected properties are
low clustering, low diameter, and balanced in-degrees [17].
The quality of that random graph is fundamental not only for
performance reasons but, in some cases, also for correctness [6],
[11], [15], [28], [33]. Namely, high clustering negatively
impacts robustness as the graph will tend to be disconnected
more easily, diameter impacts end-to-end latency and as such
it should be as low as possible, and balanced degrees help
evenly spread the management and dissemination effort. For
instance, the topology construction service discussed next
requires randomness and constantly changing views to ensure
convergence and self-organization capabilities [34]. The PSS
also guarantees connectivity and robustness, as failures are
unlikely to result in all members in the pss-view failing
simultaneously. Besides, the probability of a partition under the
failure of a large fraction of the network is minimal. Finally,
the PSS deals with membership management. It must efficiently
accommodate new nodes joining the system and place them in
the views of other nodes, as well as promptly remove departed
nodes. Communication at the level of the PSS is sporadic
and short lived. It thus uses UDP and tolerates the associated
message loss.

The second layer provides a topology construction (TC) ser-
vice [16], [34]. Its guarantees are dictated by the dissemination
service requirements [25]. First, it needs to maintain a stable
and bi-directional graph between nodes. Each node has a tc-
view, maintained separately from the pss-view but containing
nodes initially obtained from it. The TC service maintains
persistent bidirectional TCP connections towards all nodes in
this tc-view. It also acts as a failure detector, using periodic
heartbeats to detect unresponsive nodes and replacing them
by live ones obtained from the pss-view. Second, the graph
formed by the persistent connections must remain connected.
Note that the underlying directed PSS graph is connected with
high probability thanks to its random graph nature [17]. One
possibility to ensure connectivity of the dissemination graphs
would be to leverage randomness in the same way, and randomly
pick a subset of the nodes provided by the pss-view [20].
This is however inappropriate for live video streaming which
is bandwidth-intensive and requires low transmission delays.
Indeed, as packets will be transmitted over multiple links,
using arbitrary links would create unnecessarily long delays
and put pressure on the underlying network. Therefore, the
third requirement for the TC layer is to meet the two previous
requirements while linking nodes that are close according to

peer sampling (PSS)

topology construction (TC)

dissemination (DL)

guarantees

guarantees

connected bidirectional network
persistent monitored connections
topology awareness

network

application: VLC

guarantees reliable broadcast

point-to-point communication 

membership management
randomization

Fig. 1. Stack of services and guarantees.

a proximity metric such as the communication delay or the
geographical locality.

The third layer provides a dissemination service [25]. Its
design is straightforward thanks to the guarantees provided by
the lower layers. A simple flooding strategy is guaranteed to
reach all nodes, because of the connected and bidirectional
nature of the underlying graph. Flooding is robust but particu-
larly inefficient as it yields many duplicates. The role of the
dissemination layer is thus to construct efficient dissemination
structures (namely trees) and maintain them in face of faults
reported by the TC layer.

On top of the stack lies the application itself, in our case the
VLC player. It receives video packets from the dissemination
layer as if they were originating directly from the source
via a point-to-point UDP connection. We maintain a buffer
of received packets and start the VLC client only when a
configurable number of packets is present in the buffer, to
accommodate fluctuations in reception delays due to churn and
ensure a smooth video display.

III. GOSSIP-BASED BUILDING BLOCKS

In this section we describe the instantiation of the layers
that compose LAYSTREAM using standard gossip-based proto-
cols proposed in the literature, discuss the associated design
decisions and propose solutions for the issues uncovered.

A. Peer Sampling Service

The PSS layer is implemented using the framework de-
scribed in [17], which allows to instantiate PSSs such as
Cyclon [31] or Newscast [32]. Each node maintains as its pss-
view a list of c descriptors to other nodes. A descriptor contains
a ip:port pair and an age field indicating its freshness.
Each node p updates its pss-view by means of view exchanges,
initiated by an active task on one node and served by a passive
task on another. The implementation of the PSS faces a trade-off
between the objectives of randomness quality and membership
management. Randomness quality is measured by the in-degree
distribution and the clustering factor. The in-degree denotes the

2



14-th IEEE International Conference on Peer-to-Peer Computing

number of occurrences of a node in the views of the other nodes.
A balanced distribution of in-degrees yields good load balancing.
The clustering factor indicates that the nodes in a view are also
neighbors themselves. A random graph exhibits low clustering.
A high value would make the graph vulnerable to massive
failures and churn, and impair convergence for protocols using
the PSS. On the side of membership management, the goal is to
ensure that failed nodes get removed from other views as fast
as possible (in terms of number of exchanges, as indicated by
the age fields of the corresponding descriptors). This tradeoff is
controlled by the healing and swapping parameters H and
S, subject to H + S ≤ c

2 [17]. A value of H = c
2 (as

in Cyclon [31]) favors randomness quality, at the price of
slowly discarding failed nodes, while a value of S = c

2 (as in
Newscast [32]) favors the quick removal of failed nodes but
leads to higher clustering and unbalanced in-degrees.

The active task, called periodically and at the same fre-
quency on each node, first selects a target node q and constructs
a list with c

2−1 descriptors randomly selected among the c−H
newest entries, as well as the identifier of p with age 0. The
list is then sent to q, which replies back with a sample of its
own descriptors chosen in the same way. Node p integrates
the received descriptors in its own view. To keep the view size
constant to c elements, p first drops the H oldest elements and,
as needed, also removes the first S descriptors sent to q, and
then random descriptors. Node q proceeds similarly. Finally, p
increments the age of all descriptors in its view.

1) Implementation Issues: When implementing the PSS
layer, we faced an issue that does not arise in simulations.
The passive task at node p can reply to requests at virtually
any time. If an ongoing exchange has been initiated by p
and is being served by another node q, the modification of
the view performed by p’s passive task will break exchange
semantics resulting in the duplication or loss of a descriptor.
This can also lead to artificial clustering. Such situations should
be avoided: while concurrent modifications seldom happen,
they introduce shifts that persist throughout the lifetime of
the system and worsen over time. For instance, a descriptor
that gets duplicated results in an increased in-degree for the
linked node, which leads in a higher chance of being contacted
by others, and in turn in a higher chance of being subject to
that shift again. A simple solution is to make the exchange
atomic by locking the access to the view while the active task is
pending. This requires careful design in the presence of churn
and the use of appropriate timeouts. An alternative solution [30]
is to simply reject incoming requests at the passive task when
an exchange is pending. Because the latter option results in
wasted communication steps and thus slower convergence, we
opted for the first solution.

B. Topology Construction

The TC (topology construction) layer is implemented using
a modified version of the T-Man protocol [16]. The goal of
this layer is to create an overlay that matches the structural
needs of the dissemination layer: links must be bidirectional
and the network must be connected. Additionally, nodes should
be linked to close nodes in terms of delays and geographical
proximity, for reasons of performance and network utilization.

The basic operation of T-Man is similar to that of the PSS.
However, the selection of the descriptors that are kept in each

Fig. 2. Geographical distribution of nodes for a sample run.

node’s tc-view after the exchange is not random but depends
on semantic information included in the descriptor. In our case,
this semantics is the 2-dimensional geographical coordinate
(latitude and longitude) of the node obtained from a GeoIP
service (see Figure 2). The selection of which descriptors to
keep is based on a distance function.

Since there is no global knowledge, the topology self-
organizes gradually as follows. Periodically, the active task
at node p selects another node q from its tc-view, and sends it
its own tc-view (or the best subset according to q). The passive
task at node q also returns q’s current tc-view. Both p and q
merge their tc-views with the set of received descriptors, sort it
according to the distance function, and keep the c closest entries.
Furthermore, periodically (and on bootstrap), an exchange is
initiated with a random node obtained from the pss-view. This
guarantees that the graph will converge, but it may take long
when using a carelessly designed distance function (e.g., if
each node needs to encounter each other node in its pss-view).
For fast convergence the distance function should be transitive:
if node p is close to node q, and node q is close to node r,
then p is also close to r. Our distance function is based on
Euclidian distance between geographical coordinates and is
therefore transitive. One trivial modification we also add to the
original T-Man is to make all links bidirectional.

1) Implementation Issues: We uncovered two implementa-
tion issues in this layer regarding resource utilization and the
properties of the resulting topology.

The T-Man protocol was evaluated in [16] by simulations
only (note that this is also the case of the similar Vicinity [34]
protocol). When deploying the protocol on a real testbed, we
faced the problem of network resources limitations. The tc-view
is highly dynamic, in particular after a node joins the system
and until it evolves towards its stable configuration. Immediately
establishing TCP connections when nodes are added to the
tc-view is problematic both for resource utilization and load
balancing, in particular because many of these connections will
be short lived and discarded at the next gossip exchange. Still,
TCP connections are desirable at the DL layer, as pointed out
in Section III-C. However, TCP consumes more resources than
UDP and requires maintaining connections on both ends of
the links (e.g., by allocating few file descriptors). Some nodes
might also be at the boundaries of clusters and pass through the
views of many other nodes. Therefore, establishing temporary
bidirectional communications with all these passing-by nodes

3



14-th IEEE International Conference on Peer-to-Peer Computing

Initial view 
obtained 

from PSS  
layer. 

p (black) 
selects q 

(grey) and 
receives its 

view.

p (black) 
updates its 

view with the 
received 

entries; q 
(grey) is 

already stable 
and does not 

update.

Exchanges 
with other 
grey nodes 
leads p 
(black) to 
convergence 
of views. 
Stable links 
established.

(several view 
exchanges)

stable link

Fig. 3. Evolution of the view of node p towards Yao links for k = 6.

is a clear waste of resources. In extreme cases, this even leads
to resource exhaustion at these boundary nodes.

We solve this issue by using UDP for all gossip exchanges.
We only establish TCP connections when the corresponding
entry in the tc-view has stabilized, which, based on experimental
observations, we assume to happen after 5 consecutive gossip
exchanges without modification. Because of this, only stabilized
links are exposed to the dissemination layer. These stable links
are then monitored for failures using heartbeats.

Our initial attempt to topology construction used the T-
Man protocol applied to network coordinates from Vivaldi [10].
Vivaldi maps the physical location of nodes into a synthetic
coordinate space. Each node is associated to a point in that
space and distances between points reflect the latency between
nodes. The coordinates of the nodes are updated based on
delays observed on application-level messages. Vivaldi has
a completely decentralized operation that is well adapted to
our context. Each node simply chooses the c closest nodes
according to the Euclidean distance between their respective
coordinates.

However, this approach results in a disconnected topology.
This is because nodes are mostly clustered in one large group
in the US and another in Europe (Figure 2). As a result, nodes
select as neighbors other nodes in the same cluster resulting in
a partition. A trivial attempt to solve this problem was to add
a set of additional randomly selected entries in the view, but it
proved unsatisfactory. Indeed, using random links introduces
delay penalties that are propagated to all nodes, and keeping
the network connected, in particular under churn, requires a
large number of such links, clearly diminishing the interest of
using a delay-based node selection.

2) Spanning Graph Topology: Achieving the apparently
conflicting goals of connectivity and low distance between
nodes requires a careful adaptation of the T-Man protocol in
order to guarantee system-wide structural properties that are not
achieved by simply selecting the c closest nodes. Connectivity
in a network with bidirectional links is equivalent to the ability
of reaching all nodes from any node of the network, e.g., by
building a spanning graph. A spanning graph contains for any
source node an embedded minimum spanning tree made of
all the vertices (nodes) and a subset of edges that guarantee
connectivity but minimizes the sum of edges’ costs. In our
case, the cost of an edge is the geographical distance between
two nodes and the spanning graph is a subgraph of the graph
exposed by the PSS.

Several approaches have been proposed for constructing
spanning graphs, some of which can be implemented using gos-
sip protocols. Typical examples are Delaunay triangulations [5],
but their main drawback is that the in-degree of nodes remains

unbounded. Since we require bidirectional links, a node may
end up maintaining a very large number of TCP connections.
Instead, we took inspiration from ad-hoc wireless networks,
where spanning graphs are necessary to establish routing
protocols, and distances directly affect power requirements
and energy consumption—two elements that must clearly be
minimized. Wang and Li introduced Yao-Yao graphs in this
context [36]. Yao graphs [37] are defined on a 2-dimensional
Euclidean space (the space of geographical coordinates in our
case). Each node n is associated with k equally-separated rays
originating at n, that define k sectors. In each sector, n selects
the closest node and connects to it with a directed edge. It
has been shown that the Yao graph is a spanner for k ≥ 4 [3].
The Yao-Yao graph builds on top of the Yao graph. For each
sector, we discard all incoming links but the shortest one, and
make this link bidirectional. The degree is thus bounded by
k both for incoming and outgoing links, which will ensure
good balancing of the load. It has been shown that the Yao-Yao
graph is also a spanner graph [18].

To construct the Yao-Yao graph, T-Man must be modified
to consider a separate entry in the view for each of the k
sectors. All entries are bootstrapped using descriptors from the
PSS if they are located in the corresponding sector. Descriptors
received by gossip exchanges are considered only for the sector
they lie in. Figure 3 presents an example of the evolution of the
view of a node p based on gossip exchanges with its neighbors.
While the illustration uses k = 6 for simplicity, we use k = 8
in our experiments.

C. Dissemination Layer

The overlay created by the TC layer is a spanning graph
with bidirectional links. It follows that a flooding operation
(where each node forwards the first occurrence of an incoming
message to all its neighbors) is guaranteed to reach all nodes.
Albeit extremely robust, such a mechanism is highly inefficient
and not adapted to bandwidth-intensive video streaming. Each
node receives each message from multiple nodes, up to c in
the worst case.

The goal of the dissemination layer (DL) is to provide an
efficient dissemination service. This service constructs efficient
dissemination trees embedded in the spanning graph provided
by the TC layer and inheriting from its robustness. The links
that are not currently active as part of a dissemination tree
can be rapidly used as backup links upon failures—as these
are maintained and monitored as persistent TCP connections.
We use a subset of the Brisa gossip protocol [25] for the
implementation of this service.

Initially, all links exposed by the TC service are active.
Upon receiving a message from a neighbor, node p propagates

4



14-th IEEE International Conference on Peer-to-Peer Computing

it to all active links. The dissemination of the first message thus
corresponds to flooding. Thereafter, a deactivation mechanism
allows selecting a single parent for each node, effectively
forming a tree: if a node p receives the first copy of a message
from q, it simply deactivates all links but the one from q. Note
that deactivating the link is only performed at the level of the
dissemination layer: this link is still maintained as a persistent
TCP connection at the TC layer. The failure of the parent node
will be detected by the TC layer and trigger an up-call to
the dissemination layer. The node then simply re-activates all
its links and selects as a parent the first node that sends the
next new message. The DL thus builds a tree by using the TC
links without relying on complex cycle detection mechanisms
but just on the detection of duplicate message receptions (a
simplification of Brisa’s first-come first-picked strategy [25]).

The use of a single tree is efficient in terms of duplicates but
results in high load differences between the nodes. Some nodes
may contribute a high upload bandwidth while others are leaves
and do not contribute. We address this issue by constructing
several trees concurrently using the same activation/deactivation
mechanism. The only change needed is for control messages to
carry an identifier that specifies the tree to which they belong.
The source then splits the video packets onto the available trees,
allowing for parallelization of the data dissemination and a
more balanced distribution of load, similarly to SplitStream [7].

1) Implementation Issues: The Brisa [25] tree construction
mechanism is tightly tied to a particular PSS protocol [20]
unaware of the underlying topology and thus unable to exploit
it. As a consequence, the version of Brisa in [25] proposes
parent selection strategies aiming at reducing delays or network
costs, but which may result in cycles that have to be prevented
using a cycle detection mechanism. By decoupling the tree
construction mechanism from the rest of the protocol and
putting it atop the topology-aware connected overlay provided
by the TC, the tree construction becomes simpler and more
flexible as the logic of which nodes are best to build the tree
according to some criteria is now pushed down to the TC and
no complex cycle detection mechanism is required.

IV. EVALUATION AND LESSONS LEARNED

We start by evaluation each layer of LAYSTREAM inde-
pendently to validate their guarantees. Then, we evaluate the
performance of the complete stack under a live video dissemi-
nation workload. The evaluation is done using Splay [21] on a
cluster of 14 bi-quad-core Xeon machines (112 cores in total,
224 with SMT), each with 8 GB of RAM and interconnected
using a switched 1 Gbps network. We deploy up to 300 nodes
on this cluster. While we are aware that the experiments would
be more interesting if we had thousands of machines instead
of a few hundreds, unfortunately there is no such large scale
testbed available for research purposes.

A. Peer Sampling Service

We first evaluate the two fundamental guarantees of the
PSS layer: randomness quality and membership management.
The former corresponds to the clustering degree and in-degree
distribution, and to the resulting balance in bandwidth usage.
The latter relates to the time taken to remove stale entries from
the nodes’ view after a failure. Our experiments reproduce

 0

 0.1

 0.2

 0.3

 0.4

 0.5

c
lu

s
te

ri
n
g
 r

a
ti
o

clustering distribution

Max 75
th

 0

 10

 20

 30

 40

 50

 60

in
-d

e
g
re

e

in-degree distribution

Percentiles: 50
th

25
th Min

 0

 50

 100

 150

 200

random
 graph

Blind H
=0,S=0

Sw
apper H

=0,S=5

H
ybrid H

=2,S=3

H
ealer H

=5,S=0

b
a
n
d
w

id
th

 (
B

y
te

s
/s

)

upload bandwidth distribution

N/A

 0

 50

 100

 150

 200

random
 graph

Blind H
=0,S=0

Sw
apper H

=0,S=5

H
ybrid H

=2,S=3

H
ealer H

=5,S=0

b
a
n
d
w

id
th

 (
B

y
te

s
/s

)

download bandwidth distribution

N/A

Fig. 4. PSS: clustering and in-degree distributions (top), upload and download
bandwidth usage distributions (bottom).

some of the results obtained by simulation in [17], [31], [32],
[34] but using a real implementation. We instantiate four
protocols with a view size of c = 20. Blind, with H = 0
and S = 0 performs random selections for view selections
at each exchange. Swapper corresponds to Cyclon [31] and
uses H = 5 and S = 0. It favors randomness quality and
in particular seeks to reduce clustering and load imbalance.
Healer corresponds to Newscast [32], with H = 0 and S = 5
and favors membership management over randomness. Hybrid
combines the two objectives by setting H = 2 and S = 3.

Figure 4 (top) presents the randomness quality of a snapshot
of the graph obtained after 5 minutes. The results are presented
for each variant as well as for a reference random graph
generated offline with the same number of nodes. We present
the clustering distribution (left) and in-degree distribution
(right). We use a representation based on stacked percentiles
throughout this section. The white bar at the bottom represents
the minimum value, the pale grey on top the maximal value.
Intermediate shades of grey represent the 25th, 50th–the
median–, and 75th percentiles. For instance, the median
clustering for Healer is 0.2 meaning that 50% of the nodes
have 20% or less of all of possible pairs of their neighbors that
are neighbors themselves.

We observe that, as expected, Blind performs badly for
both aspects: clustering is high and in-degrees are skewed, with
some nodes being in more than 50 views (while the distribution
should be as narrow as possible around the average in-degree
of 20). Swapper gives the best results in terms of clustering
and in-degrees, for which it gives similar, respectively better,
results than the random graph. While Healer performs well
in terms of in-degrees, it yields a high clustering, which will
result in slower convergence at the TC layer and leads to higher
chances of partitioning. We could not reproduce the skewed
in-degree distribution for Healer presented in [17]. This is due
to the smaller size of our deployments compared to what can be
obtained in synchronous simulations. The results indicate that
Swapper is the best choice in terms of randomness guarantees,
while Hybrid seems to be a good compromise that approximates
the characteristics of a random graph.

Next, we evaluate the overhead imposed by the PSS by

5



14-th IEEE International Conference on Peer-to-Peer Computing

 0

 20

 40

 60

 80

 100

 120

Blind H
=0,S=0

Sw
apper H

=0,S=5

H
ybrid H

=2,S=3

H
ealer H

=5,S=0

ti
m

e
 (

s
e
c
o
n
d
s
)

time between failure and last stale entry removed

Percentiles:

Max
75

th

50
th

25
th

Min

Fig. 5. PSS: time to remove failed nodes after half of the network fails.

observing the upload and download bandwidth. Because the
PSS is a low level service it should be frugal in terms of
bandwidth. The active task is invoked every 10 seconds. The
distribution of upload and download bandwidth is presented
in Figure 4 (bottom). All variants exhibit well balanced
distributions, with the exception of Blind. This is due to the
high imbalance in in-degrees distribution, resulting in some
nodes being contacted much more or much less than average.

Finally, we study the quality of the membership management
by evaluating the time required for discarding failed nodes from
the views of all nodes. Until then, the TC layer may try to
connect to the failed nodes, resulting in wasted communication.
We use a catastrophic scenario where half of the nodes (100
out of 200) fail after a stabilization period of 5 minutes. We
measure the views of all nodes, reported after each exchange,
and in particular the last time failed nodes appears in a view.
Results in Figure 5 indicate that, as expected, Blind performs
the worst. Indeed, this strategy does not use the age field in
the descriptors and thus stale descriptors are discarded only
due to random selections after a large number of exchanges.

Healer performs the best (in terms of median time), and
in particular better than Swapper which is on par with the
conclusions in [17]. This illustrates the compromise made
when setting the H and S parameters, which will have an
influence on the service given to upper layers. Again here,
Hybrid performs well as even a small value of H allows
discarding old descriptors quickly enough to grant rapid reaction
to membership change [17]. As a result, we select the Hybrid
strategy for the remaining of our experiments.

B. Topology Construction

We now evaluate the TC layer using the modified version
of T-Man [16] described in Section III-B. We evaluate both the
Vivaldi synthetic coordinates with some links and the Yao-Yao
graph construction based on geographical distances. The view
size is c = 10 for the former and c = k = 8 sectors (view
entries) for the latter. The active task period is 10 seconds.

Vivaldi coordinates were generated offline using 5 dimen-
sions (as recommended by [10]) based on the geographical
coordinates obtained from PlanetLab. We use an Euclidean
distance function for p × c entries of the view, and random
links for the remaining (1− p)× c entries. Selecting random
links should allow overcoming the clustering and produce
connected topologies. The pseudo-random distance between
nodes p and q is given by abs(hash(p)-hash(q)). The reason
for this is to decouple the distance from any geographical
information while making it deterministic (as given by the hash

%
 p

e
rf

e
c
t 
e
n
tr

ie
s

in
 T

-M
a
n
 v

ie
w

Cycles (active task exchanges)

Yao-Yao on physical coordinates

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10  12  14  16  18

%
 p

e
rf

e
c
t 
e
n
tr

ie
s

in
 T

-M
a
n
 v

ie
w

Cycles (active task exchanges)

vivaldi (70%) + random (30%) 

Percentiles:
Max
75

th
50

th

25
th

Min

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10  12  14  16  18

Fig. 6. TC: convergence time (in cycles).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

random
 graph

vivaldi/random

Yao-Yao

c
lu

s
te

ri
n
g
 r

a
ti
o

clustering distribution

Max

 0

 2

 4

 6

 8

 10

 12

 14

 16

random
 graph

vivaldi/random

Yao-Yao

p
a
th

 l
e
n
g
th

path length distribution

75
th

50
th

 0

 2

 4

 6

 8

 10

 12

 14

 16

random
 graph

vivaldi/random

Yao-Yao

e
c
c
e
n
tr

ic
it
y

eccentricity distribution

Percentiles: 25
th Min

Fig. 7. TC: constructed overlay properties for the two selection strategies
and baseline random graph.

function), allowing each node to sort every other node and
reach a stable view that can be exposed to the DL. It also allows
deterministic bidirectional links, another requirement of the DL.
In this geographical distribution, we were only able to obtain
connected topologies when at least 1− p = 30% of the nodes
in the view where selected using the pseudo-random criteria.
For the Yao-Yao graph, we use the Euclidean geographical
distance of Figure 2. Yao-Yao graphs are always connected.

We present the distribution of convergence time, measured
in the number of active task cycles, in Figure 6. Convergence
measures the time taken for each node to connect to the ideal
nodes (pre-computed offline). The reported time corresponds
to the first inclusion of these nodes in the tc-views, not their
exposition to the DL. Interestingly, the Vivaldi/random distance
takes longer to converge than the Yao-Yao graph. The reason for
this stems from the need to use the pseudo-random criteria. In
fact, the TC works best when the transitivity among neighbors
holds which is not the case with a pseudo-random selection.
Unfortunately, this is an inherent limitation for metrics based
exclusively on the physical distance which can be addressed
by planar graphs such as Yao-Yao that take into account the
direction of neighbors.

Next, we study the graph properties of the topology. Figure 7
shows the clustering, path length and eccentricities distributions.
The definition of clustering is the same as before. The path
length is the smallest path between any two nodes, in number of
vertices. The eccentricity of a vertex (node) v is the maximum
distance from v to all other vertices. A small average path length

6



14-th IEEE International Conference on Peer-to-Peer Computing

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  20  40  60  80  100  120

p
a
c
k
e
t 
s
iz

e
 (

B
y
te

s
)

packet ID (snippet)

video packet sizes

 0

 50

 100

 150

 200

 250

0 1 2 3
p
a
c
k
e
ts

 p
e
r 

s
e
c
o
n
d

time (minutes)

video packets publication rate

2
m

1
0

s

Fig. 8. Characteristics of the variable bitrate video stream.

 0

 10

 20

 30

 40

 50

U   D

1 tree

U   D

4 trees

U   D

8 trees

K
B

y
te

s
/s

bandwidth usage distribution

Percentiles:

Max
75

th

50
th

25
th

Min

1
0
8

Fig. 9. Influence of the number of trees on load repartition.

might result in a fat dissemination tree at the DL (with a small
maximal depth). However, it does not necessarily corresponds
to low end-to-end latencies as the length metric is the number
of vertices only. A fat tree also results in a imbalance in the use
of nodes upload capacities. For instance, Vivaldi/random has
small and even path lengths and eccentricity, but at the expense
of using random, potentially high-delay, links. These metrics
are higher for the Yao-Yao graph because only close links
are used. Still, as previously noted, guaranteeing a connected
network with Vivaldi/random is very difficult and results in
slower convergence times. This implies that a link to a failed
node will be replaced slower (in particular for the random
portion of the view), putting the system at risk of partition
under moderate churn. These results confirm Yao-Yao graphs
as the choice for providing a connected, bidirectional and
locality-aware abstraction to the DL.

C. Dissemination Layer and Client Application

We evaluate the DL and the client application together. The
metrics of interest are: bandwidth distribution, dissemination
delays for individual packets, and the fill ratio at the play
buffers, which indicates the ability to play the video without
degradation. We let the PSS and TC layers stabilize by running
the system for 3 minutes before sending video packets from
a source running VLC as a streaming server towards clients
running VLC as a display client. The first video packet creates
the initial dissemination trees (Section III-C). We start our
evaluation in a static setting, and then evaluate LAYSTREAM
under churn.

The video streamed by the VLC player is a MPEG-encoded

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3

u
p
lo

a
d
 t
h
ro

u
g
h
p
u
t 
(M

b
/s

)

time (minutes)

1 tree

0 1 2 3

time (minutes)

4 trees

avg. bandwidth

0 1 2 3
0

1.5

3

4.5

6

v
id

e
o
 p

a
c
k
e
ts

  
(x

 1
0
0
0
)

time (minutes)

8 trees

video packets

Fig. 10. Evolution of the upload throughput over time (moving average over
five reported measurements)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 0  50  100 150 200 250 300

d
is

s
e
m

in
a
ti
o
n
 d

e
la

y
 (

s
)

video packet identifier

100 peers (avg 3 run)

 

 

 

 

 

 

 

 

 0  50  100 150 200 250 300

video packet identifier

200 peers (avg 3 run)

 

 

 

 

 

 

 

 

 0  50  100 150 200 250 300

video packet identifier

300 peers (avg 3 run)

Fig. 11. Average dissemination delay for increasing numbers of nodes.

video with variable bit rate (VBR) with a duration of 130
seconds and size of 7 MB. We chose to use a relatively short
video in order to exhibit the behavior of LAYSTREAM upon
bootstrap and ending of the stream. VBR allows to use more
bits to encode more complex scenes and less bits to encode
simpler scenes yielding better overall quality. However, VBR is
more challenging to the dissemination layer because it is prone
to packet bursts and variable packet sizes [9]. Figure 8 presents
the video characteristics. Around 40 seconds after the start of
the video, a succession of fast paced scenes with no visual
similarities result in a burst of messages, that the dissemination
trees must handle.

We first evaluate the bandwidth requirements, and in particular
the impact of using multiple independent dissemination trees
constructed as the source dispatches in a round-robin fashion the
packets to 1, 4 or 8 of its DL neighbors. Figure 9 presents the
distribution of the upload (U) and download (D) bandwidth at
all the nodes, over the complete video duration while Figure 10
presents the upload throughput (as a 5-second moving average
over all per-second reports from the 200 nodes). Clearly, while
the bandwidth requirement is the same in all cases, the use of
a single tree results in a highly skewed upload utilization. This
clearly improves when increasing the number of trees. In fact,
for 8 trees, half of the nodes upload roughly the same amount
they download and the remaining ones only upload slightly
more, with a maximal upload requirement of 31 kB/s. Those
are typically nodes closer to the source (in the TC layer) and as
such most of their links will be active. Still, the improvement
from one tree to eight is remarkable when we also take into
account that there are no complex load balancing mechanism
in place, or explicit construction of disjoint trees [7].

Results for the dissemination of individual packets are
presented in Figure 11. We present the average dissemination
delay for all nodes, using a single tree for 100, 200 and 300
nodes. Each scenario is executed three times, and the plots
show the average across the different executions. Delays for
the three scenarios are consistent and well below reasonable

7



14-th IEEE International Conference on Peer-to-Peer Computing

p
a
c
k
e
ts

 i
n
 b

u
ff
e
r

time (minutes)

1 tree

2
m

1
0

s

Max

0

200

400

600

800

1000

1200

0 1 2 3

time (minutes)

4 trees

2
m

1
0

s

75
th

50
th

0 1 2 3

time (minutes)

8 trees

2
m

1
0

s

Percentiles: 25
th Min

0 1 2 3

Fig. 12. Distribution of messages in buffers in a static setting.

safety margins to display the video at end nodes, between
0.05 seconds and 0.25 seconds. Note that if the evaluation
was conducted in a WAN environment the absolute latency
values would substantially higher due to the physical nature of
the network. Still, we believe the original shape and evolution
would remain similar to what we observed.

Next we study how buffer occupancy evolves over time.
During the experiment, each node buffers the packets it receives
and when required, sends them to VLC. For each packet,
we measure the time when it is sent to the VLC client. We
first need to determine the minimal number of packets in the
buffer for starting the video display, that guarantees a playback
without interruption. Through experimental observation we
determined the required buffer size to be of 800 packets in
a static environment and 1,600 under churn. The size of the
buffer is more influenced by the variation in the publication rate
and churn than the actual video length (6,682 packets). We thus
expect a video with similar characteristics but longer length to
require the same buffer size. The VLC client starts consuming
packets from the buffer when it it reaches 80% occupancy. The
buffer occupancy is then a good indicator of LAYSTREAM’s
ability to deliver packets to the video player on time. An empty
buffer indicates packets are arriving too slowly and thus a more
likely interruption in the playback. Figure 12 shows the buffer
occupancy for 1, 4 and 8 trees. In all scenarios the buffer never
gets empty: LAYSTREAM is able to disseminate the packets to
all nodes on time. The larger variance for the 8 trees is due to
the increased parallelism that results in more fluctuations on the
rate at which packets are received. Still, the buffer occupancy
remains sufficient to prevent problems in the video playback.
Note that the time required to completely consume the packets
in the buffer at the end reflects the lower packet publication
rate (50 packets/second) in the last segment of the video (Fig 8,
left).

Next we evaluate LAYSTREAM under churn. The average
size of the system is 200 nodes, but a moderate (1%) or heavy
(2%) fraction of the nodes leave or join the system, on average,
every 2 minutes. While for the evaluation of the PSS we were
interested in measuring its behavior under a catastrophic failure,
here the goal is to study the impact of moderate but continuous
churn on the system. Figure 13 (top) presents the evolution
of the system size, and the stacked bars represent joins and
leaves to/from the system for each minute. To better assess the
impact of churn, we stream a video of 12 minutes, which is a
concatenation of 4 instances of the video used for the previous
experiments. Figure 13 (bottom) presents the buffer occupancy
evolution and, as observed, churn has only a moderate impact on
buffer occupancy which confirms LAYSTREAM’s fast recovery
capabilities. Note that the average number of packets in the

 0
 1
 2
 3
 4
 5
 6

0 2 4 6 8 10 12n
o
d
e
s
 l
e
a
v
in

g
 a

n
d

jo
in

in
g
 p

e
r 

m
in

u
te

moderate churn trace

alive nodes

 0
 1
 2
 3
 4
 5
 6

0 2 4 6 8 10 12

190

200

210

heavy churn trace

a
liv

e
 n

o
d
e
s

joining leaving

p
a
c
k
e
ts

 i
n
 b

u
ff
e
r

time (minutes)

Max 75
th

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12

time (minutes)

Percentiles: 50
th

25
th Min

0 2 4 4 8 10 12

Fig. 13. Distribution of messages in buffers under churn.

buffers under churn is larger because, as stated previously,
the buffer size is larger (800 vs 1,600 packets) to properly
accommodate the variations imposed by churn. We conclude
by analyzing the buffer contiguity in both a static and dynamic
setting. Buffer contiguity indicates how many packets are
consecutive, starting from the head of the buffer, and can thus be
promptly delivered to the VLC player. This is complementary
with buffer occupancy which only indicates the number of
packets and does not consider holes in the packet sequence
that might affect the video quality. Note that buffer contiguity
is slightly different from the continuity index [38] used in
other papers. The continuity index is the ratio of the number
of packets that arrive before the playback deadline to the total
number of packets. It is used to summarize the packets received
in time. Buffer contiguity is more expressive in the sense that
it allows to observe, at each instant, the amount of packets
that can be played right away. Figure 14 shows the results
for 1 and 4 trees for static and moderate churn conditions.
LAYSTREAM guarantees buffer contiguity even under churn.
This is particularly remarkable when using several trees as,
regardless of parallelism, the buffer stores a great portion of
contiguous video packets.

V. RELATED WORK

There is a large body of research on live video streaming
extensively covered in surveys such as [1], [22]. Here, we focus
exclusively on gossip approaches to live streaming evaluated
in realistic environments. Most approaches to live streaming,
and video dissemination in general, follow a pull approach
where nodes explicitly request data from others. The goal
is to conserve bandwidth by avoiding the duplicate packet
receptions flooding yields. By placing the burden of retrieving
packets on receivers, pull-based approaches such as GoalBit [4],
CoolStreaming [38] or dHCPS [14] effectively address this
problem at the expense of increased latency and communication
overhead. GoalBit [4] is inspired by BitTorrent and relies on a
tracker and requires super nodes to do most of the dissemination
whereas in LAYSTREAM all nodes participate equally without
any centralized control. This challenge is also addressed in [13],
which aims at leveraging the upload bandwidth of the nodes
while avoiding clogging uplinks. The protocol segments the

8



14-th IEEE International Conference on Peer-to-Peer Computing

b
u
ff
e
r 

c
o
n
ti
g
u
it
y
 (

%
)

time (minutes)

1 tree

0

20

40

60

80

100

0 1 2 3

time (minutes)

4 trees

0 1 2 3

b
u
ff
e
r 

c
o
n
ti
g
u
it
y
 (

%
)

time (minutes)

1 trees w/ churn

Percentiles: Max 75
th

50
th

0

20

40

60

80

100

0 1 2 3

time (minutes)

4 trees w/ churn

25
th Min

0 1 2 3

Fig. 14. Contiguous video segments in buffer.

video in large constant chunks, which is not particularly adapted
for live streaming systems that must deal with small packets
of non-predictable size packets due to the use of VBR [9].

The alternative to pulling data over unstructured overlays
is to push it through trees or forests of trees. Since trees are
fragile structures, they must be backed up by an efficient and
fast repair mechanism. Approaches such as mTreebone [35]
build a tree containing only the nodes known to be stable and
use an unstructured overlay to cover all nodes. In this way,
stable nodes can quickly receive the stream by pushing data
over the tree while the remaining nodes pull data from the
overlay.

Brisa [25] and Thicket [12] propose mechanisms to con-
struct and maintain trees under dynamic environments. These
principles are used by the LAYSTREAM DL for building forests
of trees that encompass all nodes. Alternatively, approaches
such as TURINstream [23] organize nodes into clusters that
form the vertices of the tree which when coupled with Multi
Description Coding results in robust dissemination in a dynamic
environment. These three systems assume an arbitrary random
network, without guarantees in terms of network awareness
as LAYSTREAM does. We have shown in this paper that the
layering of gossip protocols with specific purpose and well-
defined guarantees allows us to also meet this requirement.

Finally, DP/LU [26] pursues a similar goal to ours as
it assesses the feasibility of live streaming based solely on
unstructured overlays. Despite robust, unstructured overlays are
less suitable than trees to adapt to a network topology which is
crucial for efficient low-latency streaming (even though DP/LU
considers bandwidth constraints).

VI. CONCLUSION

In this paper we set out to build and deploy a demanding
application — live video streaming — out of a set of gossip
protocols existing in the literature. Instead of coming up with
new solutions to the existing problems of membership manage-
ment, topology construction and dissemination, we picked up
existing protocols known to solve these problems independently.
As expected, several non-trivial problems appeared during the

implementation. These were due to the gap between theory and
practice, that was already reported in other work [8], [24]. Note
that this is not a fault of the selected protocols per se, but instead
a limitation of the theoretical models and simulation tools used
that necessarily involve simplifications of the reality. In fact,
from our experience, we expect similar issues to emerge had the
choice of protocols for each particular layer been a different one.
Nonetheless, our results show that it is possible to build real
systems out of existing gossip protocols attesting their maturity.
We also hope the open availability of our implementation helps
researchers reproduce our results and promote similar efforts
with other gossip protocols.

ACKNOWLEDGMENTS

This work is part-funded by ERDF - European Regional
Development Fund through the COMPETE Programme (opera-
tional programme for competitiveness) and by National Funds
through the FCT - Fundação para a Ciência e a Tecnologia
(Portuguese Foundation for Science and Technology) within
project FCOMP - 01-0124-FEDER-022701 and by Project
Smart- grids - NORTE-07-0124-FEDER-000056, co-financed
by the North Portugal Regional Operational Programme (ON.2
O Novo Norte), under the National Strategic Reference Frame-
work (NSRF), through the ERDF.

REFERENCES

[1] O. Abboud, K. Pussep, A. Kovacevic, K. Mohr, S. Kaune,
and R. Steinmetz. Enabling resilient P2P video streaming:
survey and analysis. Multimedia Systems, 17(3):177–197,
2011.

[2] R. Baldoni, R. Beraldi, V. Quema, L. Querzoni, and
S. Tucci-Piergiovanni. Tera: topic-based event routing
for peer-to-peer architectures. In DEBS ’07: Proceedings
of the 2007 inaugural international conference on Dis-
tributed event-based systems, pages 2–13, New York, NY,
USA, June 2007. ACM Press.

[3] L. Barba, P. Bose, M. Damian, R. Fagerberg, W. L. Keng,
J. O’Rourke, A. van Renssen, P. Taslakian, S. Verdonschot,
and G. Xia. New and improved spanning ratios for Yao
graphs. In SoCG’14: 30th Symposium On Computational
Geometry. ACM, 2014.

[4] A. Barrios, M. Barrios, D. De Vera, P. Rodrı́guez-Bocca,
and C. Rostagnol. Goalbit: a free and open source peer-
to-peer streaming network. In Proceedings of the 19th
ACM international conference on Multimedia, MM ’11,
pages 727–730, New York, NY, USA, 2011. ACM.

[5] O. Beaumont, A.-M. Kermarrec, L. Marchal, and
É. Rivière. VoroNet: A scalable object network based on
voronoi tessellations. In Proceedings of the 21st Inter-
national Parallel and Distributed Processing Symposium
(IPDPS 2007), Long Beach, CA, USA, Mar. 2007.

[6] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu,
and Y. Minsky. Bimodal Multicast. ACM Transactions
on Computer Systems., 17(2):41–88, 1999.

[7] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. SplitStream: high-bandwidth
multicast in cooperative environments. ACM Symposium
on Operating Systems Principles, 37(5), 2003.

[8] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos
made live. In Proceedings of the twenty-sixth annual

9



14-th IEEE International Conference on Peer-to-Peer Computing

ACM symposium on Principles of distributed computing -
PODC ’07, pages 398–407, New York, New York, USA,
Aug. 2007. ACM Press.

[9] H. Chang, S. Jamin, and W. Wang. Live Streaming With
Receiver-Based Peer-Division Multiplexing. IEEE/ACM
Transactions on Networking, 19(1):55–68, Feb. 2011.

[10] R. Cox, F. Dabek, F. Kaashoek, J. Li, and R. Morris.
Practical, distributed network coordinates. In Proceedings
of the Second Workshop on Hot Topics in Networks
(HotNets-II), Cambridge, Massachusetts, Nov. 2003. ACM
SIGCOMM.

[11] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic algorithms for replicated database maintenance.
In PODC ’87: Proceedings of the sixth annual ACM
Symposium on Principles of distributed computing, pages
1–12, New York, NY, USA, 1987. ACM Press.

[12] M. Ferreira, J. Leitao, and L. Rodrigues. Thicket: A
protocol for building and maintaining multiple trees in a
p2p overlay. In Reliable Distributed Systems, 2010 29th
IEEE Symposium on, pages 293–302. IEEE, 2010.

[13] D. Frey, R. Guerraoui, A.-M. Kermarrec, and M. Monod.
Boosting gossip for live streaming. In Peer-to-Peer Com-
puting (P2P), 2010 IEEE Tenth International Conference
on, pages 1–10, 2010.

[14] Y. Guo, C. Liang, and Y. Liu. dHCPS: decentralized hier-
archically clustered p2p video streaming. In Proceedings
of the 2008 international conference on Content-based
image and video retrieval - CIVR ’08, New York, New
York, USA, July 2008. ACM Press.

[15] M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-based
aggregation in large dynamic networks. ACM Transactions
on Computer Systems, 23(3):219–252, Aug. 2005.

[16] M. Jelasity, A. Montresor, and O. Babaoglu. T-man:
Gossip-based fast overlay topology construction. Com-
puter Networks, 53(13):2321–2339, aug 2009.

[17] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec,
and M. van Steen. Gossip-based peer sampling. ACM
Transactions on Computer Systems, 25(3), aug 2007.

[18] I. Kanj and G. Xia. On certain geometric properties of the
yao–yao graphs. Journal of Combinatorial Optimization,
pages 1–10, 2012.

[19] A.-M. Kermarrec, A. Pace, V. Quema, and V. Schiavoni.
Nat-resilient gossip peer sampling. In Proceedings of
the 2009 29th IEEE International Conference on Dis-
tributed Computing Systems, ICDCS ’09, pages 360–367,
Washington, DC, USA, 2009. IEEE Computer Society.

[20] J. Leitão, J. Pereira, and L. Rodrigues. Hyparview: a
membership protocol for reliable gossip-based broadcast.
In Proceedings of the 37th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks,
pages 419–428, Edinburgh, UK, June 2007.

[21] L. Leonini, E. Rivière, and P. Felber. SPLAY: Distributed
systems evaluation made simple. In NSDI’09: Proceedings
of the 6th Symposium on Networked Systems Design and
Implementation, pages 185–198. USENIX, April 2009.

[22] Y. Liu, Y. Guo, and C. Liang. A survey on peer-to-peer
video streaming systems. Peer-to-Peer Networking and
Applications, 1:18–28, 2008.

[23] A. Magnetto, R. Gaeta, M. Grangetto, and M. Sereno.
TURINstream: A Totally pUsh, Robust, and effIcieNt
P2P Video Streaming Architecture. IEEE Transactions

on Multimedia, 12(8):901–914, Dec. 2010.
[24] F. Maia, M. Matos, J. Pereira, and R. Oliveira. World-

wide consensus. In IFIP International Conference on
Distributed Applications and Interoperable Systems, pages
257–269. Springer-Verlag, June 2011.

[25] M. Matos, V. Schiavoni, P. Felber, R. Oliveira, and
E. Rivire. Lightweight, efficient, robust epidemic dissem-
ination. Journal of Parallel and Distributed Computing,
73(7):987 – 999, 2013.

[26] F. Picconi and L. Massoulié. Is there a future for mesh-
based live video streaming? In Peer-to-Peer Computing,
2008. P2P’08. Eighth International Conference on, pages
289–298. IEEE, 2008.

[27] R. V. Renesse, K. Birman, and W. Vogels. Astrolabe: A
robust and scalable technology for distributed system mon-
itoring, management, and data mining. ACM Transactions
on Computer Systems, 21(2):164–206, May 2003.

[28] R. V. Renesse, Y. Minsky, and M. Hayden. A gossip-style
failure detection service. Middleware Conference, pages
55–70, 2009.

[29] E. Rivière, R. Baldoni, H. Li, and J. Pereira. Composi-
tional gossip. ACM SIGOPS Operating Systems Review,
41(5):43, Oct. 2007.

[30] A. Stavrou, D. Rubenstein, and S. Sahu. A lightweight,
robust P2P system to handle flash crowds. In IEEE Journal
on Selected Areas in Communications, 2004.

[31] S. Voulgaris, D. Gavidia, and M. V. Steen. CYCLON: In-
expensive Membership Management for Unstructured P2P
Overlays. Journal of Network and Systems Management,
13(2):197–217, June 2005.

[32] S. Voulgaris, M. Jelasity, and M. van Steen. A robust
and scalable peer-to-peer gossiping protocol. In G. Moro,
C. Sartori, and M. Singh, editors, Agents and Peer-to-Peer
Computing, volume 2872 of Lecture Notes in Computer
Science, pages 47–58. Springer Berlin Heidelberg, 2005.

[33] S. Voulgaris, E. Rivière, A.-M. Kermarrec, and M. van
Steen. Sub-2-sub: Self-organizing content-based publish
subscribe for dynamic large scale collaborative networks.
In Proceedings of IPTPS’06: 5th International Workshop
on Peer-to-Peer Systems, Santa Barbara, USA, feb 2006.

[34] S. Voulgaris and M. van Steen. Vicinity: A pinch of
randomness brings out the structure. In Middleware 2013,
pages 21–40. Springer, 2013.

[35] F. Wang, Y. Xiong, and J. Liu. mTreebone: A Collabo-
rative Tree-Mesh Overlay Network for Multicast Video
Streaming. IEEE Transactions on Parallel and Distributed
Systems, 21(3):379–392, Mar. 2010.

[36] Y. Wang and X.-Y. Li. Distributed spanner with bounded
degree for wireless ad hoc networks. In Proceedings of
the 16th International Parallel and Distributed Processing
Symposium, IPDPS’02, Washington, DC, USA, 2002.
IEEE Computer Society.

[37] A. C.-C. Yao. On constructing minimum spanning trees in
k-dimensional spaces and related problems. SIAM Journal
on Computing, 11(4):721–736, 1982.

[38] X. Zhang, J. Liu, B. Li, and Y.-S. Yum. CoolStream-
ing/DONet: a data-driven overlay network for peer-to-
peer live media streaming. In INFOCOM 2005. 24th
Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings IEEE, volume 3,
pages 2102 – 2111 vol. 3, march 2005.

10


