
Stochastic Constraint Optimization using Propagation on Ordered Binary
Decision Diagrams

Anna L.D. Latour
LIACS, Leiden University
Leiden, The Netherlands

a.l.d.latour@liacs.leidenuniv.nl

Behrouz Babaki
École Polytechnique de Montréal

Montreal, Canada

Siegfried Nijssen
ICTEAM, Université catholique de Louvain

Louvain-la-Neuve, Belgium
siegfried.nijssen@uclouvain.be

Abstract

A number of problems in relational Artificial Intelligence can
be viewed as Stochastic Constraint Optimization Problems
(SCOPs). These are constraint optimization problems that in-
volve objectives or constraints with a stochastic component.
Building on the recently proposed language SC-ProbLog
for modeling such problems, we propose a new method for
solving these problems. Earlier techniques used Probabilistic
Logic Programming (PLP) techniques to create Ordered Bi-
nary Decision Diagrams (OBDDs), which were decomposed
into smaller constraints in order to exploit existing constraint
programming (CP) solvers. We argue that this approach has
as drawback that a decomposed representation of an OBDD
does not guarantee domain consistency during search, and
hence limits the efficiency of the solver. For the specific case
of monotonic distributions, we suggest an alternative method
for using CP in SCOP, based on the development of a new
propagator; we show that this propagator is linear in the size
of the OBDD, and has the potential to be more efficient than
the decomposition method because it maintains domain con-
sistency.

1 Introduction

Making decisions under uncertainty is an important prob-
lem in business, governance, science and our daily lives in
general. Examples are found in the fields of planning and
scheduling, but also occur naturally in fields like data sci-
ence and bioinformatics. Many of these problems are rela-
tional in nature.

Consider for example a viral marketing problem (?). We
are given a social network of people (vertices) that have
stochastic relationships (edges). We want to rely on word-
of-mouth advertisement to turn acquaintances of people who
buy our product into new product-buyers. How can we min-
imize the number of people we need to target directly in a
marketing campaign, while a minimum number of people is
expected to buy the product?

For another example we are given a network of stochastic
protein-gene interactions, with a list of (protein, gene) pairs
that are of interest to a biologist (?). We wish to reduce the
network to the part that is relevant for modeling the inter-
actions that are of interest to this biologist. This is known
as a theory compression problem (?). How do we maximize
the sum of interaction probabilities for the interesting pairs,

while restricting the number of edges we include in the ex-
tracted network?

These two problems have common features. First, both
problems combine probabilistic networks and decision prob-
lems: we either decide who to target in our marketing cam-
paign, or which interactions to select from a protein-gene
interaction network. Second, they both involve an objective:
minimizing the number of people targeted for marketing and
maximizing a sum of probabilities, respectively. Third, they
both have to respect a constraint: either reaching a target
with respect to the expected number of product-buyers or
limiting the number of edges we select for our biologist.

The motivation for our ongoing work is that there is a
need for generic tools that can be used to model and solve
such problems. In our vision, these tools should combine the
state-of-the-art of probabilistic programming (PP) with con-
straint programming (CP). Probabilistic programming here
provides mechanisms for calculating probabilities of paths
in probabilistic networks. For making decisions, constraint
programming provides well-established technology.

Note that the stochastic constraint in the viral marketing
setting is a hard constraint on a sum of probabilities: we im-
pose a bound on the expected number of people buying the
product. This is a different setting than the soft constraints
that can be expressed using maximum a posteriori (MAP)
inference or maximum probability estimation (MPE).

Problems that involve these kinds of hard constraints on
probabilities are the focus of the field of stochastic con-
straint programming (SCP) (?), which combines probabilis-
tic inference and constraint programming to solve Stochastic
Constraint Optimization Problems (SCOPs). SCP is closely
related to chance constraint programming (?) and proba-
bilistic constraint programming (?). However, these tools do
not provide a modeling language suitable for solving rela-
tional problems in a generic manner, and do not link to the
probabilistic programming literature.

Recently we proposed a new modeling language and a
new tool chain that addresses the problem of modeling and
solving relational SCOPs. This language, Stochastic Con-
straint Probabilistic Prolog (SC-ProbLog) (?), is based on
(Decision Theoretic) ProbLog (?; ?), and is therefore par-
ticularly suited for modeling probabilistic paths. It extends
ProbLog with syntax for specifying SCOPs that are formu-
lated on probabilistic networks, and a tool chain for solv-

ing them. Building on ProbLog, SC-ProbLog has functional-
ity for translating a Probabilistic Logic program in Boolean
formulas, converting those formulas into Ordered Binary
Decision Diagrams (OBDDs) for tractable weighted model
counting (WMC), converting these OBDDs into Arithmetic
Circuits (ACs) and decomposing these into Mixed Integer
Programs (MIPs), which in turn serve as input for an off-
the-shelve MIP solver or CP solver that solves the SCOP.

The main contribution of this paper is a modification of
the last step in this pipeline. While in earlier work, con-
straint optimization solvers were used as a black boxes on
decomposed OBDDs, we propose to open the black box in
this work. We will demonstrate that the propagation that is
used in constraint satisfaction solvers, is not optimal for the
constraints resulting from decomposition. Specifically, we
will show that constraint propagation is not domain con-
sistent: a search algorithm will branch over variables un-
necessarily. To address this flaw, we first introduce a naı̈ve
propagation algorithm over OBDDs that is domain consis-
tent, and for which the worst case complexity is O(mn),
where m is the size of the OBDD and n is the number
of decision variables. Note that propagation is executed at
every node of the search tree; any reduction of O(mn) to
a lower complexity would affect every node of the search
tree. We will subsequently show how to calculate partial
derivatives over the OBDDs (?), and use these derivatives
to reduce the complexity of domain consistent propaga-
tion to O(m + n). Here we build on earlier results for
linear derivative computation on computational graphs (?;
?) and computation graphs for the deterministic Decompos-
able Negation Normal Form (d-DNNF) (?). This is a differ-
ent and more efficient approach for the calculation of deriva-
tives than the one proposed in (?). Furthermore, we will ar-
gue that our approach enables the creation of incremental
constraint propagation algorithms; this allows for propaga-
tion that is more efficient than O(m + n) in practice. Our
method assumes the stochastic constraint to have a particu-
lar monotonic property, which we discuss in more detail in
section 2.

In this paper, we give a description of how typical SCOPs
can be modeled using SC-ProbLog in section 2, followed
by a discussion on how they can be solved. In section 4 we
provide a short introduction to some key concepts of CP,
which we use in section 5 to introduce a proposal for OBDD-
based stochastic constraint propagator for CP systems. We
conclude this work with an outlook on future research.

2 Modeling SCOPs with SC-ProbLog

The goal of SC-ProbLog (?) is to provide a generic system
for modeling and solving SCOPs. In this section we give an
example SCOP and explain how it can be modeled using
SC-ProbLog. Before we address that, let us first define the
kinds of SCOP that we consider in this work.

Problem Definition

We consider problems that are defined on two types of vari-
ables: decision variables and mutually independent stochas-
tic variables (denoted in this work as di and ti, respectively).

The problems involve a (stochastic) objective function and a
set of (stochastic) constraints, all of which can be expressed
in terms of these variables. We consider an optimization cri-
terion or constraint to be stochastic if its definition involves
stochastic variables. The aim is to find an assignment to the
decision variables (also referred to as a strategy) such that
the constraints are respected and the objective satisfied.

In this work we restrict our focus to variables that can
take Boolean values. We can assign a value of true or false
to decision variables, while the value of stochastic variables
is mutually independently determined by chance, character-
ized by an associated probability.

We consider a selection of constraints and objective func-
tions. In particular, we consider constraints that represent a
bound on expected utilities and objective functions that max-
imize or minimize an expected utility, e.g.:

∑

i

rivi ≥ θ stochastic constraint

max
∑

i

rivi stochastic optimization criterion
(1)

where vi either represents the value of a decision variable di,
or a conditional probability P (φi | σ). Here φi represents an
event, and the conditional probability represents the prob-
ability of that event happening (i.e. φi evaluating to true),
given a strategy σ. With vi we associate a reward ri ∈ R

+,
such that the expressions in equation (1) represent expected
utilities. For simplicity we will assume ri = 1 in this work,
but note that generalizing our approach to ri 6= 1 is trivial.
Finally θ is a threshold for the constraint.

Intuitively, in the optimization criterion of the viral mar-
keting problem, vi represents the probability of the event φi

that person i buys a product, given a marketing strategy. The
marketing strategy is represented by decision variables di.

In this work we impose an additional monotonicity con-
dition on each probability P (φi | σ): we require that for
any strategy σ, switching the value of any decision variable
from false to true, will yield a probability that is not smaller:
P (φi | σ) ≥ P (φi | σ

′), if σ′ differs from σ by one variable
that is true in σ′ but false in σ. This condition is met in all
the example problems mentioned earlier.

In this work we will consider solving stochastic con-
straints rather than stochastic optimization criteria. How-
ever, it is easy to use our results in optimization as well: we
can solve a problem involving the optimization criterion in
equation (1) by repeatedly solving a constraint satisfaction
problem involving the constraint in equation (1), increasing
θ each time we have found a solution until we find a θ for
which there exists no solution.

An Example SCOP

Consider the network in figure 1, and suppose that infor-
mation can flow through each edge with a certain proba-
bility. We can formulate a theory compression problem as
described in section 1 on this network. Suppose we want to
maximize the sum of probabilities that information can flow
from a to c and from a to d, but we want to limit the number
of edges in the network, such that there are no more than 2
(cardinality constraint). We can model this as follows:

a

b

c

d
.7

.4
.8

.5

.1

Figure 1: A small network of four nodes (a, b, c and d) and
five undirected edges with associated probabilities.

• with each edge (i, j) in the network we associate a
stochastic variable tij and a decision variable dij ;

• with each variable tij we associate a probability p (tij);

• the events considered are φa→c and φa→d, which repre-
sent flow of information from a to c and from a to d;

• our objective is to find a σ that maximizes P (φa→c | σ)+
P (φa→d | σ);

• our constraint is
∑

k dk ≤ 2.

Subsequently, we need to define the probability of events
φa→c and φa→d, given a strategy. Here, we use a WMC ap-
proach. We use a logical formula to represent when an event
is true, given an assignment to the decision variables and a
sample for the stochastic variables:

φa→c =(dac ∧ tac) ∨ (dad ∧ tad ∧ dcd ∧ tcd)∨

(dab ∧ tab ∧ dbd ∧ tbd ∧ dcd ∧ tcd) .
(2)

Here, if tij and dij are true, then information can travel
through edge (i, j). The logical formula represents all the
ways in which information can travel from a to c.

The probability P (φa→c | σ) is then defined as the sum
of the probabilities of all the (logical) models of this for-
mula. Given strategy σ = (dac = dad = dcd = dab =
dbd = ⊤), one model is for instance tac = ⊤, tab = tad =
tcd = tab = ⊥, of which the probability is .4 · (1− .8) · (1−
.1) · (1− .5) · (1− .7); in principle, we sum the probabilities
of all such models to obtain P (φa→c | σ). Note that equa-
tion (2) has indeed a monotonic property: the more decision
variables are true, the higher the probability of the event is.

To program such a formulas in a generic manner, as well
as to define constraints and optimization criteria, we pro-
posed SC-ProbLog (?), which is also based on weighted
model counting. The following program in SC-ProbLog
would model the problem described above:

% Deterministic facts

1. node(a). node(b). node(c). node(d).

% Probabilistic facts

2. 0.7::t(a,b). 0.8::t(a,d). 0.5::t(b,d).

3. 0.4::t(a,c). 0.1::t(c,d).

% Decision variables

4. ?::d(a,b). ?::d(a,d). ?::d(b,d).

5. ?::d(a,c). ?::d(c,d).

% Relations

6. e(X,Y) :- t(X,Y), d(X,Y). e(Y,X) :- t(X,Y), d(X,Y).

7. path(X,Y) :- e(X,Y).

8. path(X,Y) :- X \= Y, e(X,Z), path(Z,Y).

% Constraints and optimization criteria

9. { d(X,Y) => 1 :- node(X), node(Y). } 2.

10. #maximize { path(a,c) => 1. path(a,d) => 1. }.

Here, we define the nodes in the network on line 1. Lines 2
and 3 associate the correct probability with each edge; these
are the stochastic variables. We define the decision variables
in lines 4 and 5. Edges are made undirected in line 6 and we
give the definition of a path in lines 7 and 8. In line 9 we de-
fine the constraint: we assign a utility of 1 to each decision
variable that is true. We also specify that we only allow de-
cision variables that reflect the edges between nodes that are
actually present in the network. Finally, line 10 represents
the optimization criterion: we assign a utility of 1 to there
being a path from a to c and to there being a path from a to
d. The utilities are summed and weighted by the actual prob-
ability of there being such paths. The logical formulas φa→c

and φa→d are constructed from the program by ProbLog.

An interesting feature of SC-ProbLog is that any problem
that does not contain negation or negative weights, repre-
sents a monotonic utility function. We restrict our attention
in this work to such functions.

In the next section we briefly discuss how to compute the
probabilities of such formulas efficiently and how to solve
the SCOP of which they are a part.

3 Solving SCOPs using CP

We assume that the reader is familiar with ProbLog1. In case
of absence of that familiarity, we refer the reader to the lit-
erature, e.g. (?; ?). We start this section with a short recap
of why ProbLog uses knowledge compilation to obtain OB-
DDs; subsequently, we discuss how OBDDs can be used to
solve naı̈vely the associated SCOP. Then we discuss the ear-
lier proposed tool chain for solving SCOPs (?) and reflect
on it.

From ProbLog to OBDD

Consider equation (2), and observe that computing
P (φa→c | σ) is complicated, as the different paths need to
be enumerated, but may also overlap. Therefore, computing
this probability involves a disjoint sum problem; in the gen-
eral case WMC is #P-complete (?).

In ProbLog the tractability of this task is addressed by
compiling the formulas during a preprocessing phase into a
Sentential Decision Diagram (SDD) (?) or OBDD that al-
lows for tractable WMC. The advantage of this method is
that, once this diagram is compiled, computing P (φ | σ) has
a complexity that is linear in the size of the diagram, thus re-
ducing the complexity of the WMC task (at a cost of having
to preprocess the formula). This work focuses on stochas-
tic constraints that can be expressed by OBDDs. We assume
familiarity with OBDDs, for we will only discuss a few of
their characteristics here. For a more extensive overview, see
for example (?).

To see how we can compute P (φ | σ) using an OBDD,
consider figure 2. It shows an OBDD that represents the
probability of equation (2) evaluating to true. Observe that

1https://dtai.cs.kuleuven.be/problog

P (φa→c)

tcd
dcd

dac

dac

tac

tac
tad

dad
dbd

tbd

tab

dab

0 1

.1

.9

.6

.4

.6

.4

.2
.8

.5

.5

.3 .7

p
ro

b
ab

il
it

y

Figure 2: An OBDD representing the probability that infor-
mation can travel from a to c in figure 1, i.e. the probabil-
ity that φa→c evaluates to true given any strategy σ. The
variable order corresponding to this OBDD is tcd < dcd <
dac < tac < tad < dad < dbd < tbd < tab < dab. Cir-
cular nodes represent stochastic variables, squares represent
decision variables. No specific strategy is reflected here.

the weights on the outgoing arcs of nodes that represent
stochastic variables (those labeled with tij) correspond to
the probability that that variable is true (for the solid, or hi,
arcs) or false (dashed, or lo, arcs). A strategy σ is represented
in the OBDD by adding weights of 0 and 1 to the outgoing
arcs of the nodes corresponding to decision variables (those
labeled with dij). For example: if we choose dac = ⊥, we
put a weight of 0 on the outgoing hi arc of nodes labeled
with dac and weight 1 on their outgoing lo arcs.

Given a strategy σ and arcs labeled accordingly, the
OBDD can straightforwardly be mapped to an Arithmethic
Circuit (AC). We can compute P (φa→c | σ) as follows. In a
bottom-up traversal, each OBDD node r takes the value

v(r) = w(r) · v
(

r+
)

+ (1− w(r)) · v
(

r−
)

, (3)

where r+ (r−) is the hi (lo) child of r, i.e. the child con-
nected through the solid (dashed) outgoing arc of r; v(r) =
0 for the negative leaf and v(r) = 1 for the positive leaf.
Observe that v(root) = P (φ | σ).

The complexity of evaluating P (φ | σ) is thus linear in
the size of the OBDD, but the number of strategies is 2n,
with n the number of decision variables. The naı̈ve way of
solving a SCOP is to enumerate all possible strategies, use
the OBDD to evaluate the objective function and/or con-
straints for each strategy, evaluate possible other constraints,
and store the best feasible strategy found so far. Since the
number of strategies is exponential in the number of deci-
sion variables, this naı̈ve method does not scale well.

Solving SCOPs with the SC-ProbLog tool chain

Since SCOPs are constraint optimization problems, one ob-
vious approach to improving on the naı̈ve method is to lever-
age the state-of-the-art CP solvers that are available. The
tool chain described in (?) takes the OBDD generated by
ProbLog and instead of assigning weights to the outgoing
arcs of the nodes in the OBDD that represent decision vari-
ables, converts the OBDD into an AC in which those weights
are present as boolean decision variables.

A constraint is imposed on the value of the AC, and the
then decomposed into a Mixed Integer Program (MIP); a set
of smaller constraints is constructed that represent the value
at each node of the OBDD according to equation (3). See
figure 3 for an example of what such a MIP may look like.

As mentioned in section 1, this method has a disadvan-
tage: during the search process, the solver cannot guarantee
domain consistency on the MIP representing the constraint.
We propose an alternative to this decomposition method in
section 5, but will first make the notion of some basic CP
concepts, including domain consistency, more concrete.

4 Introduction to Constraint Programming

Constraint programming is an area that studies the develop-
ment of modeling languages and solvers for constraint sat-
isfaction and optimization problems. Two processes form
the basis of Constraint Programming solvers: search and
propagation. We briefly discuss these concepts, for they
are critical to understanding our contributions in this work.
For a more comprehensive overview of CP, we refer the
reader to the literature, e.g. Principles of Constraint Pro-
gramming (?). Then we continue with a discussion of the
relation between these principles and the circuit decomposi-
tion method (?).

Search and Propagation

The search process is some structured method for exploring
the search space of the problem. In our SCOP setting, the
search space consists of all possible assignments to the (bi-
nary) decision variables, from which we need to find one that
satisfies the constraints and optimizes the objective function.

The details of the search process are outside the scope
of this work, but for search over binary variables the pro-
cess is roughly as follows. Initially, all variables are consid-
ered to be free or unassigned; they have a domain of {0, 1}.
Then repeatedly a free decision variable d is selected, and
fixed to a value (either true or false). After each such assign-
ment, propagation is used to determine whether other vari-
ables can be fixed. Propagation is the process of updating
the domains of other free variables, making them reflect the
consequences of the assignments made to decision variables
(the fixed variables) so far. If propagation yields a contradic-
tion, the search backtracks over the last variable assignment;
otherwise, if a free variable remains, its value is fixed and the
search process continues.

The constraints of the problem guide the propagation. For
example: the problem may contain a cardinality constraint
that puts an upper bound of N on the number of variables
that can be set to true. Suppose that during search, variable

d is selected and fixed to true, becoming the N th decision
variable to be true. Now we know that 1 should be removed
from the domain of each remaining free variable. This re-
duces the search space by making domains smaller.

During propagation two things can happen (possibly si-
multaneously). One possibility is that the domain of a free
variable becomes empty. In this case there is no solution
given the current partial assignment to decision variables
and we must backtrack to explore a different part of the
search space. Alternatively the size of the domain of a free
variable is reduced to 1, leaving only one possible value for
that variable (given the current partial assignment). Such a
variable can then be fixed and removed from the set of free
variables, reducing the search space by reducing the number
of free variables.

There are myriad optimizations for both search and propa-
gation, but these are outside the scope of this work. Observe
that both the nature of the search and of the propagation de-
pend on the type of variables and on the nature of the con-
straint. In this work we focus on developing a propagator
that enforces domain consistency on OBDDs.

Domain Consistency

An important notion in propagation is that of domain con-
sistency. We define it as follows:

Definition 1. Let ϕ(x1, . . . , xn) be a constraint over
boolean variables x1, . . . , xn. Furthermore, let σ′ be par-
tial assignment to the variables x1, . . . , xn. Then a propa-
gator for constraint ϕ is domain consistent if for any σ′ this
propagator calculates a new partial assignment σ satisfying
these conditions: (1) σ extends σ′, (2) for all variables v not
assigned by σ, both the partial assignments σ ∪ {v 7→ ⊥}
and σ∪{v 7→ ⊤} can be extended to a complete assignment
that satisfies the constraint ϕ.

In other words, after domain consistent propagation for a
constraint, all values have been removed from all variable
domains that cannot be part of a solution for that constraint.

We illustrate this notion with an example. A standard
practice in CP is to call the propagator before the search
starts, in order to make the initial domains consistent with
the constraint, and, ideally, detect the variables that are
forced to a specific value by the constraint.

Consider the OBDD in figure 3 and the associated con-
straint P (φ | σ) ≥ .4. Observe that the four possible strate-
gies yield the following conditional probabilities, which are
monotonic in the decision variables:

P (φ | x = y = 0) = 0 P (φ | x = 1, y = 0) = .3

P (φ | x = y = 1) = .6 P (φ | x = 0, y = 1) = .6

From this we conclude that only those strategies in which
y = 1 can possibly satisfy the constraint. A propagator that
ensures domain consistency will detect this before the start
of the search and fix y to 1.

The circuit decomposition method translates this con-
straint on the OBDD in a CP model that is also given in
figure 3. Suppose a propagator is called on this decomposed
model, before the search starts. This propagator may start
by trying to infer the minimum value v(y1) needs to take if

P (φ)

x

y1 y2

0 1

.9

.1

.4
.6

.7

.3

P (φ | σ) ≥ .4

.1v(y1) + .9v(x) ≥ .4

v(x) = (1− x)v(y1) + xv(y2)

v(y1) = .6y

v(y2) = .6y + .3(1− y)

x, y ∈ {0, 1}

0 ≤P (φ | σ) ≤ .6

0 ≤v(x) ≤ .6

0 ≤v(y1) ≤ .6

.3 ≤v(y2) ≤ .6

Figure 3: A small OBDD (left) with three stochastic vari-
ables and two decision variables. The two nodes correspond-
ing to decision variable y are indexed for clarity. The MIP
on the right is constructed using equation (3).

v(x) takes its maximum possible value. To do this, the prop-
agator assumes for a moment that v(x) = .6 holds. Now
it can infer that, in order for the constraint to be satisfied,
v(y1) ≥ (.4 − .9 · .6)/.1 = −1.4 should hold. Unfortunately,
this does not tell us anything, for we already knew that the
domain of y is {0, 1} and thus does not include−1.4. Based
on this, we cannot remove 0 from the domain of y. Repeating
this procedure to determine a bound for v(x) by assuming
v(y1) takes it maximum value, and from there continuing to
determine bounds for v(y1) and v(y2) does not yield con-
clusive evidence to deduct that y must be fixed to 1, either.

This shortcoming of the circuit decomposition method
causes a lack of efficiency, since the search space is not re-
duced as much as possible. In the next section we introduce a
propagator for OBDDs that does ensure domain consistency.

5 Approach

We intend to improve upon the existing circuit decomposi-
tion approach for solving SCOPs, by allowing an OBDD-
based constraint to be added directly to a CP solver, rather
than decomposed into a multitude of (linear) constraints. In
order to achieve this, we need to introduce a propagator for
OBDDs. As discussed in section 4, this propagator should
guarantee domain consistency in the OBDD.

In this section we will first introduce a naı̈ve approach for
such a domain consistent propagator. Subsequently, we will
show how to obtain a better worst-case complexity by using
the idea of derivatives.

Naı̈ve Propagator

As discussed earlier, we can calculate the quality of any
strategy with an algorithm that traverses the OBDD bottom-
up, using equation (3).

For the creation of a domain consistent propagator, our
first important observation is that our scoring function is
monotonic; hence, the largest possible score is obtained by
assigning the value true to all free decision variables.

The idea behind domain consistent propagation is to re-
peat the following process for each free decision variable d:

1. fix variable d to the value false;

2. fix all other free variables to the value true;

3. calculate the score for the resulting assignment;

4. if the score is lower than the desired threshold, remove the
value false from the domain of variable d.

By construction, this process is domain consistent.
Let n be the number of free decision variables, and let m

be the size of the OBDD. Then the complexity of the algo-
rithm above is O(mn): for every free variable we perform a
bottom-up traversal of the OBDD. Given that propagation is
the most computationally intensive part of search algorithms
under our constraint, it is important to obtain a better perfor-
mance. We will improve this complexity to O(n+m), using
an approach similar to that for d-DNNFs (?).

Overview of our Propagator

The key idea behind our improved propagator is that we cal-
culate a derivative

∂f(d, σ′ \ d)

∂d
= f (σ′)− f (d = ⊥, σ′ \ d) (4)

for every free decision variable d. Here, σ′ represents a full
assignment to all decision variables. In this assignment, ev-
ery free variable is assumed to have the value true. Function
f represents the function defined by equation (3) on the root
of the OBDD. Hence, f (σ′) represents the best score cur-
rently possible, in which all free variables have been given
the value ⊤; f (d = ⊥, σ′ \ d) represents the assignment in
which the value for variable d has been switched to ⊥.

We use the derivative to remove the value false from the
domains of variables that do not meet this requirement:

f(σ′)−
∂f(d, σ′ \ d)

∂d
≥ θ. (5)

Clearly, the main question becomes how to calculate
∂f(d, σ′ \ d)/∂d for all free variables efficiently. Here, we will
build on ideas introduced by Darwiche in 2003 (?) to build
an O(m) algorithm. This algorithm adapts the ideas of Dar-
wiche to our specific context; we will argue that this en-
ables us to perform propagation for monotonic constraints
in an incremental manner, effectively making the complex-
ity lower than O(m).

Calculating the Derivative

We first need to define the concept of path weight:

Definition 2. Let rm be a node labeled with variable xm in
an OBDD with variable order x1 < . . . < xn. We define the
path weight of rm:

π(rm) =
∑

ℓ∈Lrm

∏

ri∈ℓ

ui, (6)

where ℓ is a path from the root of the OBDD to rm, and Lrm

is the set of all such paths that are valid. A path is valid if it
does not include

• the hi arc from a node labeled with a decision variable
that is false and

• the lo arc from a node labeled with a decision variable
that is true or free.

In other words: we take paths that reflect the current partial
assignment, and take the hi arc from free decision nodes.

In our definition of ui, we use ui = 1 for the outgoing
arcs of decision nodes that can be part of a valid path.

For the outgoing arcs of stochastic nodes labeled with a
stochastic variable xi that has weight wi as defined in the
ProbLog program, we use:

ui =

{

wi if we take the hi arc of ri;

1− wi if we take the lo arc of ri.
(7)

Note that the path weight π(rm) is expressed in terms of
variables xi < xm only.

An example: if we were to fix dcd and dac to true in fig-
ure 2, then the path weight of the node labeled with tad
would be π(rtad

) = .1 · 1 · (1 · .6 + 0) = .06.
Our algorithm is based on the observation that derivatives

can be calculated using the following equation:

Theorem 1. The derivative of the OBDD with respect to a
decision variable can be calculated as follows:

∂f(d, σ′ \ d)

∂d
=

∑

rd∈ OBDDd

π(rd)
(

v(r+d)− v(r−d)
)

, (8)

where OBDDd represents all nodes in the OBDD labeled
with variable d.

Proof. Let f(x1, . . . , xn) be the polynomial associated with
an OBDD with variable order x1 < . . . < xn. Let ri be a
node labeled with xi and let wi be the positive weight of that
variable. Observe that for any variable xm (with x1 ≤ xm ≤
xn) we can write f as

f(x1, . . . , xm, . . . , xn) =
∑

rm∈ OBDDm

π(rm)
(

wmv(r+m) + (1− wm)v(r−m)
)

, (9)

where the values of the the hi and lo child of rm are v(x+
m)

and v(x−
m), respectively, following equation (3). Recall that

in the expression of the path weight of rm, wm does not
occur. Note also that v(r+m) and v(r−m) are expressed in vari-
ables xi > xm only. The derivative of this formula (with
respect to wm) corresponds to the claim in the theorem.

We use the observation above to create an O(m) algo-
rithm for calculating all derivatives in two stages:

• a top-down pass over the complete OBDD for calculating
all path weights;

• a bottom-up pass for calculating the values for all nodes in
the complete OBDD, calculating the derivatives for each
variable in the process.

The pseudo codes for these passes are given in algo-
rithms 1 and 2, respectively.

Once these two passes are completed, we can recompute
the derivatives for all decision variables that are still free,

Algorithm 1 Compute path weights.

1: π(root)← 1
2: for ri ∈ OBDD and ri 6= root do π(ri)← 0 end for
3: for each internal node ri ∈ OBDD (in topological or-

der) do
4: if ri corresponds to decision variable di then
5: if di is true or free then
6: π

(

r+i
)

← π
(

r+i
)

+ π(ri)
7: else
8: π

(

r−i
)

← π
(

r−i
)

+ π(ri)

9: else
10: π

(

r+i
)

← π
(

r+i
)

+ wiπ(ri)

11: π
(

r−i
)

← π
(

r−i
)

+ (1− wi)π(ri)

Algorithm 2 Compute values.

1: v(0)← 0, v(1)← 1 ⊲ Leaf nodes
2: for each internal node ri ∈ OBDD (in reversed topo-

logical order) do
3: if ri corresponds to decision variable di then
4: if di is true or free then
5: v(ri)← v

(

r+i
)

6: else
7: v(ri)← v

(

r−i
)

8: else
9: v(ri)← wiv

(

r+i
)

+ (1− wi) v
(

r−i
)

and evaluate equation (5) for each of those to see if we can
remove false from their domain, such that we can enforce
domain consistency. The pseudo code for this is provided
in algorithm 3 for clarity, but can be integrating with algo-
rithm 2. It is easy to see that the overall calculation finishes
in O(n+m) time.

Traversing Part of the OBDD

For efficient propagation, it is desirable that the complex-
ity of the algorithm above can be brought down further; we
should avoid traversing unnecessary parts of the OBDD as
much as possible. Building on the ideas presented earlier,
a number of different observations allow for more efficient
propagation in practice.

As we observed before, the expression for the path weight
of an OBDD node labeled with variable xm (equation (6))
only contains variables xi < xm. We thus conclude that
fixing a decision variable d can only affect the path weights
of nodes below the nodes labeled with that variable d.

Moreover: because we take the hi arc both from decision
nodes that are free and from those that are true, path weights
below free decision nodes are not changed at all when we fix
a decision node to true.

Therefore: whenever we fix a decision variable, our prop-
agator only needs to call algorithm 1 if we fix it to false, and
even then it only has to traverse the part of the diagram that
is below the nodes labeled with that decision variable.

A similar argument holds for the values of the OBDD
nodes. Because they are computed in a bottom-up traversal

Algorithm 3 Enforce domain consistency.

1: for each free variable d do
2: ∆d ← 0
3: for each node r ∈ OBDDd do
4: ∆d ← ∆d + π(r) · (v (r+)− v (r−))

5: if v(root)−∆d < θ then
6: remove false from domain of d

of the OBDD, fixing a variable can only affect the values of
the nodes labeled with that variable themselves, and those
above them in the diagram. Again: only fixing a variable to
false actually requires the propagator to update values at all.

We can narrow down the parts of the diagram that need
to be considered further. Consider the decision variable that
occurs closest to the root of the OBDD. We do not need
to maintain the values for any of the nodes in the OBDD
above it, as we will never need to calculate the derivative
for any variable in this part of the diagram. Similarly, con-
sider the variable closest to the leaves; we do not need to
maintain pathweights for its children either. It can be shown
that by only maintaining the part of the OBDD between two
borders, one can calculate the derivatives exactly, as well as
calculate the true value of the optimization criterion without
propagating towards the root of the diagram.

6 Conclusion and Outlook

Many problems in AI can be seen as SCOPs. In this work
we proposed a new method for solving SCOPs that are
modeled using PLP techniques, specifically: SC-Problog (?;
?). In SC-ProbLog, we can convert the SCOP’s stochas-
tic constraints into constraints on OBDDs. This work was
motivated by the observation that an earlier approach was
not build on domain consistent propagation. We sketched a
propagator for such OBDD constraints that does enforce do-
main consistency in linear time.

We limited our attention to a representation of distribu-
tions in OBDDs. The advantage of this representation is that
we can clearly identify parts of the diagram above and be-
low a decision variable; we argued that this can be used to
limit the active part of the diagram and to limit which type
of calculation is performed on which part of the diagram.

Several details were omitted from this paper. We did not
include extenstive details regarding the maintenance of ac-
tive parts of OBDDs or the incremental calculation of opti-
mization criteria. Furthermore, we did not include an exten-
sion to constraints on sums of probabilities, or to constraints
of the form P (φ | σ) ≤ θ.

Concrete next steps are the implementation of our ap-
proach, its evaluation on data, a comparison of different ap-
proaches for maintaining active parts of OBDDs, and its pos-
sible extension to other types of diagrams.

Acknowledgements. This research was supported by the
Netherlands Organisation for Scientific Research (NWO).
Behrouz Babaki is supported by a postdoctoral scholarship
from IVADO.

