User menu

Identifying seasonal mobility profiles from anonymized and aggregated mobile phone data. Application in food security

  • Open access
  • PDF
  • 6.40 M
  1. Song C., Qu Z., Blumm N., Barabasi A.-L., Limits of Predictability in Human Mobility, 10.1126/science.1177170
  2. Data Revolution Group;. Accessed: 2017-03-01. Available from: http://www.undatarevolution.org/.
  3. González Marta C., Hidalgo César A., Barabási Albert-László, Understanding individual human mobility patterns, 10.1038/nature06958
  4. Bagrow James P., Wang Dashun, Barabási Albert-László, Collective Response of Human Populations to Large-Scale Emergencies, 10.1371/journal.pone.0017680
  5. Soto Victor, Frias-Martinez Vanessa, Virseda Jesus, Frias-Martinez Enrique, Prediction of Socioeconomic Levels Using Cell Phone Records, User Modeling, Adaption and Personalization (2011) ISBN:9783642223617 p.377-388, 10.1007/978-3-642-22362-4_35
  6. Herrera-Yagüe C., Schneider C. M., Couronné T., Smoreda Z., Benito R. M., Zufiria P. J., González M. C., The anatomy of urban social networks and its implications in the searchability problem, 10.1038/srep10265
  7. Wesolowski A., Eagle N., Tatem A. J., Smith D. L., Noor A. M., Snow R. W., Buckee C. O., Quantifying the Impact of Human Mobility on Malaria, 10.1126/science.1223467
  8. Bengtsson Linus, Lu Xin, Thorson Anna, Garfield Richard, von Schreeb Johan, Improved Response to Disasters and Outbreaks by Tracking Population Movements with Mobile Phone Network Data: A Post-Earthquake Geospatial Study in Haiti, 10.1371/journal.pmed.1001083
  9. Dobra Adrian, Williams Nathalie E., Eagle Nathan, Spatiotemporal Detection of Unusual Human Population Behavior Using Mobile Phone Data, 10.1371/journal.pone.0120449
  10. Pastor-Escuredo David, Morales-Guzman Alfredo, Torres-Fernandez Yolanda, Bauer Jean-Martin, Wadhwa Amit, Castro-Correa Carlos, Romanoff Liudmyla, Jong Gun Lee, Rutherford Alex, Frias-Martinez Vanessa, Oliver Nuria, Frias-Martinez Enrique, Luengo-Oroz Miguel, Flooding through the lens of mobile phone activity, 10.1109/ghtc.2014.6970293
  11. Lu X., Bengtsson L., Holme P., Predictability of population displacement after the 2010 Haiti earthquake, 10.1073/pnas.1203882109
  12. R Wilson, PLoS currents, 8 (2016)
  13. Moumni Benyounes, Frias-Martinez Vanessa, Frias-Martinez Enrique, Characterizing social response to urban earthquakes using cell-phone network data : the 2012 oaxaca earthquake, 10.1145/2494091.2497350
  14. X Song, ACM Transactions on Intelligent Systems and Technology (TIST), 8, 29 (2017)
  15. (2012)
  16. Kelly P. M., Adger W. N., 10.1023/a:1005627828199
  17. YA de Montjoye, Public Library of Science (2014)
  18. de Montjoye Yves-Alexandre, Hidalgo César A., Verleysen Michel, Blondel Vincent D., Unique in the Crowd: The privacy bounds of human mobility, 10.1038/srep01376
  19. UN Global Pulse. Mapping the Risk-Utility Landscape: Mobile Data for Sustainable Development and Humanitarian Action. Global Pulse Project Series no18. 2015;.
  20. Cascetta Ennio, Inaudi Domenico, Marquis Gérald, Dynamic Estimators of Origin-Destination Matrices Using Traffic Counts, 10.1287/trsc.27.4.363
  21. Famine Early Warning Systems (FEWS) NET. Senegal;. Accessed: 2017-03-01. Available from: http://www.fews.net/west-africa/senegal.
  22. de Montjoye YA, Smoreda Z, Trinquart R, Ziemlicki C, Blondel VD. D4D-Senegal: the second mobile phone data for development challenge. arXiv preprint arXiv:14074885. 2014;.
  23. Deville Pierre, Linard Catherine, Martin Samuel, Gilbert Marius, Stevens Forrest R., Gaughan Andrea E., Blondel Vincent D., Tatem Andrew J., Dynamic population mapping using mobile phone data, 10.1073/pnas.1408439111
  24. J Rouse Jr, NASA special publication, 351, 309 (1974)
  25. Candia Julián, González Marta C, Wang Pu, Schoenharl Timothy, Madey Greg, Barabási Albert-László, Uncovering individual and collective human dynamics from mobile phone records, 10.1088/1751-8113/41/22/224015
  26. Barlacchi Gianni, De Nadai Marco, Larcher Roberto, Casella Antonio, Chitic Cristiana, Torrisi Giovanni, Antonelli Fabrizio, Vespignani Alessandro, Pentland Alex, Lepri Bruno, A multi-source dataset of urban life in the city of Milan and the Province of Trentino, 10.1038/sdata.2015.55
  27. Isaacman Sibren, Becker Richard, Cáceres Ramón, Kobourov Stephen, Martonosi Margaret, Rowland James, Varshavsky Alexander, Identifying Important Places in People’s Lives from Cellular Network Data, Lecture Notes in Computer Science (2011) ISBN:9783642217258 p.133-151, 10.1007/978-3-642-21726-5_9
  28. Çolak Serdar, Alexander Lauren P., Alvim Bernardo G., Mehndiratta Shomik R., González Marta C., Analyzing Cell Phone Location Data for Urban Travel : Current Methods, Limitations, and Opportunities, 10.3141/2526-14
  29. Bandicoot, a python toolbox to extract behavioral indicators from metadata; 2016. Available from: bandicoot.mit.edu/.
  30. Zhang Qingling, Seto Karen C., Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data, 10.1016/j.rse.2011.04.032
  31. Nanni Mirco, Pedreschi Dino, Time-focused clustering of trajectories of moving objects, 10.1007/s10844-006-9953-7
  32. Rani Sangeeta, Sikka Geeta, Recent Techniques of Clustering of Time Series Data: A Survey, 10.5120/8282-1278
  33. Kriegel Hans-Peter, Kröger Peer, Zimek Arthur, Clustering high-dimensional data : A survey on subspace clustering, pattern-based clustering, and correlation clustering, 10.1145/1497577.1497578
  34. Parsons Lance, Haque Ehtesham, Liu Huan, Subspace clustering for high dimensional data : a review, 10.1145/1007730.1007731
  35. M Steinbach, 273 (2004)
  36. Guha S., Rastogi R., Shim K., ROCK: a robust clustering algorithm for categorical attributes, 10.1109/icde.1999.754967
  37. H Finch, Journal of Data Science, 3, 85 (2005)
  38. WFP. Food Consumption Analysis;. Accessed: 2017-03-01. Available from: http://documents.wfp.org/stellent/groups/public/documents/manual_guide_proced/wfp197216.pdf.
  39. Apache Software Foundation. pySpark package;. Accessed: 2017-03-01. https://spark.apache.org/docs/0.9.0/python-programming-guide.html.
  40. Apache Software Foundation. Spark’s Machine Learning Library;. Accessed: 2017-03-01. https://spark.apache.org/docs/2.2.0/ml-guide.html.
  41. Mllner D. R hclust package;. Accessed: 2017-03-01. https://www.rdocumentation.org/packages/fastcluster/versions/1.1.24/topics/hclust.
  42. Atzberger Clement, Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs, 10.3390/rs5020949
  43. SAKAMOTO T, YOKOZAWA M, TORITANI H, SHIBAYAMA M, ISHITSUKA N, OHNO H, A crop phenology detection method using time-series MODIS data, 10.1016/j.rse.2005.03.008
  44. Zhang Xiaoyang, Friedl Mark A., Schaaf Crystal B., Strahler Alan H., Hodges John C.F., Gao Feng, Reed Bradley C., Huete Alfredo, Monitoring vegetation phenology using MODIS, 10.1016/s0034-4257(02)00135-9
  45. Goddard Earth Sciences Data and Information Services Center (2016), TRMM (TMPA) Precipitation L3 1 day 0.25 degree x 0.25 degree V7, Edited by Andrey Savtchenko, Goddard Earth Sciences Data and Information Services Center (GES DISC) Accessed: 2017-03-01. Available from: https://disc.gsfc.nasa.gov/datacollection/TRMM_3B42_Daily_7.html.
Bibliographic reference Zufiria, Pedro J. ; Pastor-Escuredo, David ; Úbeda-Medina, Luis ; Hernandez-Medina, Miguel A. ; Barriales-Valbuena, Iker ; et. al. Identifying seasonal mobility profiles from anonymized and aggregated mobile phone data. Application in food security. In: PLOS ONE, Vol. 13, no.4, p. e0195714 (2018)
Permanent URL http://hdl.handle.net/2078.1/197358