User menu

An estimator of the stable tail dependence function based on the empirical beta copula

  1. Beirlant Jan, Goegebeur Yuri, Teugels Jozef, Segers Johan, Statistics of Extremes : Theory and Applications, ISBN:9780470012383, 10.1002/0470012382
  2. Beirlant Jan, Escobar-Bach Mikael, Goegebeur Yuri, Guillou Armelle, Bias-corrected estimation of stable tail dependence function, 10.1016/j.jmva.2015.10.006
  3. Berghaus, B., Segers, J.: Weak convergence of the weighted empirical beta copula process. J. Multivar. Anal. arXiv:1705.06924 (2017)
  4. Berghaus Betina, Bücher Axel, Volgushev Stanislav, Weak convergence of the empirical copula process with respect to weighted metrics, 10.3150/15-bej751
  5. Bücher Axel, Dette Holger, Multiplier bootstrap of tail copulas with applications, 10.3150/12-bej425
  6. Bücher Axel, Segers Johan, Volgushev Stanislav, When uniform weak convergence fails: Empirical processes for dependence functions and residuals via epi- and hypographs, 10.1214/14-aos1237
  7. Bücher Axel, Jäschke Stefan, Wied Dominik, Nonparametric tests for constant tail dependence with an application to energy and finance, 10.1016/j.jeconom.2015.02.002
  8. Coles, S.G., Tawn, J.A.: Modelling extreme multivariate events. J. R. Stat. Soc. Ser. B (Stat Methodol.) 53(2), 377–392 (1991)
  9. de Haan Laurens, Ferreira Ana, Extreme Value Theory, ISBN:9780387239460, 10.1007/0-387-34471-3
  10. Haan Laurens, Resnick Sidney I., Limit theory for multivariate sample extremes, 10.1007/bf00533086
  11. Deheuvels, P.: La fonction de dépendance empirique et ses propriétés. un test non paramétrique d’indépendance. Acad. R. Belg. Bull. Cl. Sci. (5) 65(6), 274–292 (1979)
  12. Drees Holger, Huang Xin, Best Attainable Rates of Convergence for Estimators of the Stable Tail Dependence Function, 10.1006/jmva.1997.1708
  13. Einmahl John H. J., de Haan Laurens, Li Deyuan, Weighted approximations of tail copula processes with application to testing the bivariate extreme value condition, 10.1214/009053606000000434
  14. Einmahl John H. J., Krajina Andrea, Segers Johan, An M-estimator for tail dependence in arbitrary dimensions, 10.1214/12-aos1023
  15. Einmahl John H. J., Kiriliouk Anna, Segers Johan, A continuous updating weighted least squares estimator of tail dependence in high dimensions, 10.1007/s10687-017-0303-7
  16. Fougères Anne-Laure, de Haan Laurens, Mercadier Cécile, Bias correction in multivariate extremes, 10.1214/14-aos1305
  17. Genton M. G., Ma Y., Sang H., On the likelihood function of Gaussian max-stable processes, 10.1093/biomet/asr020
  18. Gissibl, N., Klüppelberg, C.: Max-linear models on directed acyclic graphs. To appear in Bernoulli arXiv:1512.07522 [math.PR] (2015)
  19. Huang, X.: Statistics of bivariate extreme values. Ph. D. thesis, Erasmus University Rotterdam, Tinbergen Institute Research Series 22 (1992)
  20. Huser R., Davison A. C., Composite likelihood estimation for the Brown-Resnick process, 10.1093/biomet/ass089
  21. Janssen Paul, Swanepoel Jan, Veraverbeke Noël, Large sample behavior of the Bernstein copula estimator, 10.1016/j.jspi.2011.11.020
  22. Joe Harry, Families of min-stable multivariate exponential and multivariate extreme value distributions, 10.1016/0167-7152(90)90098-r
  23. Kabluchko Zakhar, Schlather Martin, de Haan Laurens, Stationary max-stable fields associated to negative definite functions, 10.1214/09-aop455
  24. Kiriliouk, A.: Hypothesis testing for tail dependence parameters on the boundary of the parameter space with application to generalized max-linear models. arXiv:1708.07019 [stat.ME]. (2017)
  25. Kojadinovic Ivan, Yan Jun, Modeling Multivariate Distributions with Continuous Margins Using thecopulaRPackage, 10.18637/jss.v034.i09
  26. Peng Liang, Qi Yongcheng, Bootstrap approximation of tail dependence function, 10.1016/j.jmva.2008.01.018
  27. Pickands, J.: Multivariate extreme value distributions. In: Proceedings of the 43rd Session of the International Statistical Institute, Vol. 2 (Buenos Aires, 1981). With a discussion, vol. 49, pp 859–878, 894–902 (1981)
  28. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2017)
  29. Ressel Paul, Homogeneous distributions—And a spectral representation of classical mean values and stable tail dependence functions, 10.1016/j.jmva.2013.02.013
  30. Ribatet, M: SpatialExtremes: Modelling Spatial Extremes. R package version 2.0-4 (2017)
  32. SCHMIDT RAFAEL, STADTMULLER ULRICH, Non-parametric Estimation of Tail Dependence, 10.1111/j.1467-9469.2005.00483.x
  33. Segers Johan, Sibuya Masaaki, Tsukahara Hideatsu, The empirical beta copula, 10.1016/j.jmva.2016.11.010
  34. Sklar, M.: Fonctions de répartition à n dimensions et leurs marges. Université Paris 8 (1959)
  35. TAWN JONATHAN A., Modelling multivariate extreme value distributions, 10.1093/biomet/77.2.245
  36. van der Vaart Aad W., Wellner Jon A., Weak Convergence and Empirical Processes, ISBN:9781475725476, 10.1007/978-1-4757-2545-2
Bibliographic reference Kiriliouk, Anna ; Segers, Johan ; Tafakori, Laleh. An estimator of the stable tail dependence function based on the empirical beta copula. In: Extremes, Vol. 21, no. 4, p. 581-600 (2018)
Permanent URL