User menu

The Generating Function for the Airy Point Process and a System of Coupled Painlevé II Equations : The Airy Point Process and Coupled Painlevé II Equations

  • Open access
  • PDF
  • 400.46 K
  1. Borodin, Oxford Handbook of Random Matrix Theory (2011)
  2. Johansson Kurt, The arctic circle boundary and the Airy process, 10.1214/009117904000000937
  3. Praehofer, J. Stat. Phys., 108, 1076 (2002)
  4. Johansson, Mathematical Statistical Physics (2006)
  5. Soshnikov A, Determinantal random point fields, 10.1070/rm2000v055n05abeh000321
  6. Tracy Craig A., Widom Harold, Level-spacing distributions and the Airy kernel, 10.1007/bf02100489
  7. Ablowitz M. J., Segur H., Asymptotic Solutions of the Korteweg-deVries Equation, 10.1002/sapm197757113
  8. Hastings S. P., McLeod J. B., A boundary value problem associated with the second painlev� transcendent and the Korteweg-de Vries equation, 10.1007/bf00283254
  9. Baik Jinho, Deift Percy, Rains Eric, A Fredholm Determinant Identity and the Convergence of Moments for Random Young Tableaux, 10.1007/s002200100555
  10. Harnad, NATO Adv. Sci. Inst. B Phys., 315, 231 (1993)
  11. Adler M, van Moerbeke P, Completely integrable systems, Euclidean Lie algebras, and curves, 10.1016/0001-8708(80)90007-9
  12. Belmonte-Beitia Juan, Pérez-García Víctor M., Brazhnyi Valeriy, Solitary waves in coupled nonlinear Schrödinger equations with spatially inhomogeneous nonlinearities, 10.1016/j.cnsns.2010.02.024
  13. Hone A N W, Coupled Painlevé systems and quartic potentials, 10.1088/0305-4470/34/11/316
  14. Verhoeven C., Musette M., Conte R., 10.1023/a:1021880025669
  15. Manakov, Sov. Phys. JETP, 38, 248 (1974)
  16. Sasano, Tohoku Math. J., 58, 223 (2007)
  17. Tracy Craig, Widom Harold, A System of Differential Equations for the Airy Process, 10.1214/ecp.v8-1074
  18. Tracy Craig A., Widom Harold, Differential Equations for Dyson Processes, 10.1007/s00220-004-1182-8
  19. Bertola M., Cafasso M., Fredholm Determinants and Pole-free Solutions to the Noncommutative Painlevé II Equation, 10.1007/s00220-011-1383-x
  20. Bertola M., Cafasso M., Riemann–Hilbert approach to multi-time processes: The Airy and the Pearcey cases, 10.1016/j.physd.2012.01.003
  21. Bogatskiy A., Claeys T., Its A., Hankel Determinant and Orthogonal Polynomials for a Gaussian Weight with a Discontinuity at the Edge, 10.1007/s00220-016-2691-y
  22. Grabsch Aurélien, Majumdar Satya N., Texier Christophe, Truncated Linear Statistics Associated with the Top Eigenvalues of Random Matrices, 10.1007/s10955-017-1755-5
  23. Bohigas O., de Carvalho J. X., Pato M. P., Deformations of the Tracy-Widom distribution, 10.1103/physreve.79.031117
  24. T. Bothner R. Buckingham Large deformations of the Tracy-Widom distribution I 2017
  25. Bohigas O., Pato M. P., Randomly incomplete spectra and intermediate statistics, 10.1103/physreve.74.036212
  26. Lavancier Frédéric, Møller Jesper, Rubak Ege, Determinantal point process models and statistical inference, 10.1111/rssb.12096
  27. S.-X. Xu D. Dai Tracy-Widom distributions in critical unitary random matrix ensembles and the coupled Painlevé II system 2017
  28. Chhita Sunil, Johansson Kurt, Young Benjamin, Asymptotic domino statistics in the Aztec diamond, 10.1214/14-aap1021
  29. Perret Anthony, Schehr Grégory, Near-Extreme Eigenvalues and the First Gap of Hermitian Random Matrices, 10.1007/s10955-014-1044-5
  30. Witte N S, Bornemann F, Forrester P J, Joint distribution of the first and second eigenvalues at the soft edge of unitary ensembles, 10.1088/0951-7715/26/6/1799
  31. Deift Percy, Trogdon Thomas, Universality for the Toda Algorithm to Compute the Largest Eigenvalue of a Random Matrix, 10.1002/cpa.21715
  32. Baik Jinho, Deift Percy, Johansson Kurt, 10.1090/s0894-0347-99-00307-0
  33. Okounkov Andrei, 10.1155/s1073792800000532
  34. Borodin Alexei, Okounkov Andrei, Olshanski Grigori, 10.1090/s0894-0347-00-00337-4
  35. Baik, Graduate Studies in Mathematics (2016)
  36. Romik, The Surprising Mathematics of Longest Increasing Subsequences (2015)
  37. A. Its A. Izergin V. Korepin N. Slavnov Differential equations for quantum correlation functions Proceedings of the Conference on Yang-Baxter Equations, Conformal Invariance and Integrability in Statistical Mechanics and Field Theory 1990
  38. Deift Percy A., Its Alexander R., Zhou Xin, A Riemann-Hilbert Approach to Asymptotic Problems Arising in the Theory of Random Matrix Models, and also in the Theory of Integrable Statistical Mechanics, 10.2307/2951834
  39. Claeys, Comm. Pure Appl. Math., 63, 362 (2010)
  40. Deift, Comm. Pure Appl. Math., 52, 1491 (1999)
  41. Xu Shuai-Xia, Zhao Yu-Qiu, Painlevé XXXIV Asymptotics of Orthogonal Polynomials for the Gaussian Weight with a Jump at the Edge : Painlevé XXXIV Asymptotics of Orthogonal Polynomials, 10.1111/j.1467-9590.2010.00512.x
  42. Deift, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach (1999)
  43. Deift P., Zhou X., A steepest descent method\\ for oscillatory Riemann-Hilbert problems, 10.1090/s0273-0979-1992-00253-7
Bibliographic reference Claeys, Tom ; Doeraene, Antoine. The Generating Function for the Airy Point Process and a System of Coupled Painlevé II Equations : The Airy Point Process and Coupled Painlevé II Equations. In: Studies in Applied Mathematics, Vol. 140, no.2, p. 1-35 (2018)
Permanent URL