User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

The molecular mechanism of Nystatin action is dependent on the membrane biophysical properties and lipid composition.

  1. Chakrabarti, Regional Health Forum, 15, 97 (2011)
  2. Zotchev Sergey, Polyene Macrolide Antibiotics and their Applications in Human Therapy, 10.2174/0929867033368448
  3. Bolard Jacques, How do the polyene macrolide antibiotics affect the cellular membrane properties?, 10.1016/0304-4157(86)90002-x
  4. Gallis Harry A., Drew Richard H., Pickard William W., Amphotericin B: 30 Years of Clinical Experience, 10.1093/clinids/12.2.308
  5. Gruszecki Wieslaw I., Gagos Mariusz, Kernen Peter, Polyene antibiotic amphotericin B in monomolecular layers: spectrophotometric and scanning force microscopic analysis, 10.1016/s0014-5793(02)03009-0
  6. H. Ishibashi , A. J.Moorhouse and J.Nabekura , Patch Clamp Techniques , Springer Japan , 2012 , pp. 71–83
  7. Volkman J., Sterols in microorganisms, 10.1007/s00253-002-1172-8
  8. Richman-Boytas, Microbios, 59, 101 (1989)
  9. Andreoli Thomas E., THE STRUCTURE AND FUNCTION OF AMPHOTERICIN B-CHOLESTEROL PORES IN LIPID BILAYER MEMBRANES, 10.1111/j.1749-6632.1974.tb43283.x
  10. De Kruijff B., Gerritsen W.J., Oerlemans A., Demel R.A., van Deenen L.L.M., Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. I. Specificity of the membrane permeability changes induced by the polyene antibiotics, 10.1016/0005-2736(74)90330-7
  11. Van Hoogevest P., De Kruijff B., Effect of amphotericin B on cholesterol-containing liposomes of egg phosphatidylcholine and didocosenoyl phosphatidylcholine. A refinement of the model for the formation of pores by amphotericin B in membranes, 10.1016/0005-2736(78)90276-6
  12. Récamier K. S., Hernández-Gómez A., González-Damián J., Ortega-Blake I., Effect of Membrane Structure on the Action of Polyenes: I. Nystatin Action in Cholesterol- and Ergosterol-Containing Membranes, 10.1007/s00232-010-9304-z
  13. Hąc-Wydro Katarzyna, Dynarowicz-Łątka Patrycja, Interaction between nystatin and natural membrane lipids in Langmuir monolayers—The role of a phospholipid in the mechanism of polyenes mode of action, 10.1016/j.bpc.2006.05.015
  14. Hąc-Wydro Katarzyna, Kapusta Joanna, Jagoda Agnieszka, Wydro Paweł, Dynarowicz-Łątka Patrycja, The influence of phospholipid structure on the interactions with nystatin, a polyene antifungal antibiotic, 10.1016/j.chemphyslip.2007.06.222
  15. Kristanc Luka, Svetina Saša, Gomišček Gregor, Effects of the pore-forming agent nystatin on giant phospholipid vesicles, 10.1016/j.bbamem.2011.11.036
  16. Kleinberg Michael E., Finkelstein Alan, Single-length and double-length channels formed by nystatin in lipid bilayer membranes, 10.1007/bf01868444
  17. Bolard J., Legrand P., Heitz F., Cybulska B., One-sided action of amphotericin B on cholesterol-containing membranes is determined by its self-association in the medium, 10.1021/bi00237a011
  18. Kristanc Luka, Božič Bojan, Gomišček Gregor, The role of sterols in the lipid vesicle response induced by the pore-forming agent nystatin, 10.1016/j.bbamem.2014.05.019
  19. Marty A., Pores formed in lipid bilayer membranes by nystatin, Differences in its one-sided and two-sided action, 10.1085/jgp.65.4.515
  20. Silva Liana, Coutinho Ana, Fedorov Alexander, Prieto Manuel, Nystatin-induced lipid vesicles permeabilization is strongly dependent on sterol structure, 10.1016/j.bbamem.2006.03.008
  21. González-Damián J., Ortega-Blake I., Effect of Membrane Structure on the Action of Polyenes II: Nystatin Activity along the Phase Diagram of Ergosterol- and Cholesterol-Containing POPC Membranes, 10.1007/s00232-010-9301-2
  22. HsuChen Chuen-Chin, Feingold David S., Polyene antibiotic action on lecithin liposomes: Effect of cholesterol and fatty acyl chains, 10.1016/0006-291x(73)90022-3
  23. Aresta-Branco Francisco, Cordeiro André M., Marinho H. Susana, Cyrne Luísa, Antunes Fernando, de Almeida Rodrigo F. M., Gel Domains in the Plasma Membrane ofSaccharomyces cerevisiae : HIGHLY ORDERED, ERGOSTEROL-FREE, AND SPHINGOLIPID-ENRICHED LIPID RAFTS, 10.1074/jbc.m110.154435
  24. Leber Andrea, Fischer Petra, Schneiter Roger, Kohlwein Sepp D., Daum Günther, The yeastmic2mutant is defective in the formation of mannosyl-diinositolphosphorylceramide1, 10.1016/s0014-5793(97)00692-3
  25. de Almeida, Front. Plant Sci., 5, 72 (2014)
  26. Pinto Sandra N., Laviad Elad L., Stiban Johnny, Kelly Samuel L., Merrill Alfred H., Prieto Manuel, Futerman Anthony H., Silva Liana C., Changes in membrane biophysical properties induced by sphingomyelinase depend on the sphingolipidN-acyl chain, 10.1194/jlr.m042002
  27. Kraft M. L., Plasma membrane organization and function: moving past lipid rafts, 10.1091/mbc.e13-03-0165
  28. Rouser George, Fleischer Sidney, Yamamoto Akira, Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots, 10.1007/bf02531316
  29. Sklar Larry A., Hudson Bruce S., Simoni Robert D., Conjugated polyene fatty acids as fluorescent probes: synthetic phospholipid membrane studies, 10.1021/bi00624a002
  30. Marquês Joaquim T., Cordeiro André M., Viana Ana S., Herrmann Andreas, Marinho H. Susana, de Almeida Rodrigo F. M., Formation and Properties of Membrane-Ordered Domains by Phytoceramide: Role of Sphingoid Base Hydroxylation, 10.1021/acs.langmuir.5b02550
  31. Principles of Fluorescence Spectroscopy, ISBN:9780387312781, 10.1007/978-0-387-46312-4
  32. Marquês Joaquim T., Viana Ana S., De Almeida Rodrigo F.M., Ethanol effects on binary and ternary supported lipid bilayers with gel/fluid domains and lipid rafts, 10.1016/j.bbamem.2010.10.006
  33. White Stephen H., Wimley William C., Ladokhin Alexey S., Hristova Kalina, [4] Protein folding in membranes: Determining energetics of peptide-bilayer interactions, Methods in Enzymology (1998) ISBN:9780121821968 p.62-87, 10.1016/s0076-6879(98)95035-2
  34. Carreira Ana C., de Almeida Rodrigo F. M., Silva Liana C., Development of lysosome-mimicking vesicles to study the effect of abnormal accumulation of sphingosine on membrane properties, 10.1038/s41598-017-04125-6
  35. Davis P. J., Coolbear K. P., Keough K. M. W., Differential scanning calorimetric studies of the thermotropic phase behaviour of membranes composed of dipalmitoyllecithin and mixed-acid unsaturated lecithins, 10.1139/o80-118
  36. Curatolo William, Sears Barry, Neuringer Leo J., A calorimetry and deuterium NMR study of mixed model membranes of 1-palmitoyl-2-oleylphosphatidylcholine and saturated phosphatidylcholines, 10.1016/0005-2736(85)90027-6
  37. de Almeida Rodrigo F.M., Fedorov Aleksandre, Prieto Manuel, Sphingomyelin/Phosphatidylcholine/Cholesterol Phase Diagram: Boundaries and Composition of Lipid Rafts, 10.1016/s0006-3495(03)74664-5
  38. Coutinho Ana, Prieto Manuel, Cooperative Partition Model of Nystatin Interaction with Phospholipid Vesicles, 10.1016/s0006-3495(03)70032-0
  39. Coutinho Ana, Silva Liana, Fedorov Alexander, Prieto Manuel, Cholesterol and Ergosterol Influence Nystatin Surface Aggregation: Relation to Pore Formation, 10.1529/biophysj.104.044883
  40. Coutinho A., Prieto M., Self-association of the polyene antibiotic nystatin in dipalmitoylphosphatidylcholine vesicles: a time-resolved fluorescence study, 10.1016/s0006-3495(95)80125-6
  41. Zemljič Jokhadar Špela, Božič Bojan, Kristanc Luka, Gomišček Gregor, Osmotic Effects Induced by Pore-Forming Agent Nystatin: From Lipid Vesicles to the Cell, 10.1371/journal.pone.0165098
  42. Marquês Joaquim T., Viana Ana S., de Almeida Rodrigo F. M., A Biomimetic Platform to Study the Interactions of Bioelectroactive Molecules with Lipid Nanodomains, 10.1021/la503086a
  43. Berquand A., Fa N., Dufr�ne Y. F., Mingeot-Leclercq M.-P., Interaction of the Macrolide Antibiotic Azithromycin with Lipid Bilayers: Effect on Membrane Organization, Fluidity, and Permeability, 10.1007/s11095-004-1885-8
  44. Maulik P.R., Shipley G.G., Interactions of N-stearoyl sphingomyelin with cholesterol and dipalmitoylphosphatidylcholine in bilayer membranes, 10.1016/s0006-3495(96)79791-6
  45. Veatch Sarah L., Keller Sarah L., Miscibility Phase Diagrams of Giant Vesicles Containing Sphingomyelin, 10.1103/physrevlett.94.148101
  46. Chulkov Evgeny G., Efimova Svetlana S., Schagina Ludmila V., Ostroumova Olga S., Direct visualization of solid ordered domains induced by polyene antibiotics in giant unilamellar vesicles, 10.1016/j.chemphyslip.2014.07.008
  47. Koukalová Alena, Pokorná Šárka, Fišer Radovan, Kopecký Vladimír, Humpolíčková Jana, Černý Jan, Hof Martin, Membrane activity of the pentaene macrolide didehydroroflamycoin in model lipid bilayers, 10.1016/j.bbamem.2014.10.038
  48. Helrich Carl S., Schmucker Jason A., Woodbury Dixon J., Evidence that Nystatin Channels Form at the Boundaries, Not the Interiors of Lipid Domains, 10.1529/biophysj.105.076281
  49. Castanho, J. Biol. Chem., 2, 204 (1992)
  50. Foglia Fabrizia, Lawrence M. Jayne, Demė Bruno, Fragneto Giovanna, Barlow David, Neutron diffraction studies of the interaction between amphotericin B and lipid-sterol model membranes, 10.1038/srep00778
  51. Chen Fang-Yu, Lee Ming-Tao, Huang Huey W., Evidence for Membrane Thinning Effect as the Mechanism for Peptide-Induced Pore Formation, 10.1016/s0006-3495(03)75103-0
  52. Chulkov Evgeny G., Efimova Svetlana S., Schagina Ludmila V., Ostroumova Olga S., Direct visualization of solid ordered domains induced by polyene antibiotics in giant unilamellar vesicles, 10.1016/j.chemphyslip.2014.07.008
  53. Eeman, Biotechnol., Agron., Soc. Environ., 14, 719 (2010)
  54. Goksu Emel I., Vanegas Juan M., Blanchette Craig D., Lin Wan-Chen, Longo Marjorie L., AFM for structure and dynamics of biomembranes, 10.1016/j.bbamem.2008.08.021
  55. Kuzmin Peter I., Akimov Sergey A., Chizmadzhev Yuri A., Zimmerberg Joshua, Cohen Fredric S., Line Tension and Interaction Energies of Membrane Rafts Calculated from Lipid Splay and Tilt, 10.1529/biophysj.104.048223
  56. Cohen B. Eleazar, Amphotericin B Membrane Action: Role for Two Types of Ion Channels in Eliciting Cell Survival and Lethal Effects, 10.1007/s00232-010-9313-y
Bibliographic reference Dos Santos, Andreia ; Marquês, Joaquim T ; Carreira, Ana Cláudia ; Castro, I R ; Viana, Ana S ; et. al. The molecular mechanism of Nystatin action is dependent on the membrane biophysical properties and lipid composition.. In: Physical Chemistry Chemical Physics, Vol. 19, p. 30078-30088 (2017)
Permanent URL http://hdl.handle.net/2078.1/194510