User menu

Combining strong sparsity and competitive predictive power with the L-sOPLS approach for biomarker discovery in metabolomics

  1. Abdi Hervé, Partial least squares regression and projection on latent structure regression (PLS Regression), 10.1002/wics.51
  2. Afanador N.L., Tran T.N., Buydens L.M.C., Use of the bootstrap and permutation methods for a more robust variable importance in the projection metric for partial least squares regression, 10.1016/j.aca.2013.01.004
  3. Barker Matthew, Rayens William, Partial least squares for discrimination, 10.1002/cem.785
  4. Bartel David P., MicroRNAs: Target Recognition and Regulatory Functions, 10.1016/j.cell.2009.01.002
  5. Bylesjö Max, Rantalainen Mattias, Cloarec Olivier, Nicholson Jeremy K., Holmes Elaine, Trygg Johan, OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification, 10.1002/cem.1006
  6. Chapman Andrew, Saad Yousef, Deflated and Augmented Krylov Subspace Techniques, 10.1002/(sici)1099-1506(199701/02)4:1<43::aid-nla99>;2-z
  7. Chun, H., & Keles, S. (2007). Sparse partial least squares regression with an application to genome scale transcription factor analysis. Madison: Department of Statistics, University of Wisconsin.
  8. Chung, D., Chun, H., & Keles, S. (2012). Spls: Sparse partial least squares (SPLS) regression and classification. R package, version, 2, 1–1.
  9. de Jong Sijmen, SIMPLS: An alternative approach to partial least squares regression, 10.1016/0169-7439(93)85002-x
  10. Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. Annals of Statistics, 32(2), 407499.
  11. Féraud Baptiste, Govaerts Bernadette, Verleysen Michel, de Tullio Pascal, Statistical treatment of 2D NMR COSY spectra in metabolomics: data preparation, clustering-based evaluation of the Metabolomic Informative Content and comparison with 1H-NMR, 10.1007/s11306-015-0830-7
  12. Friedman J., Hastie T., & Tibshirani R. (2010). A note on the group lasso and a sparse group lasso, arXiv preprint arXiv:1001.0736 .
  13. Gabrielsson Jon, Jonsson Hans, Airiau Christian, Schmidt Bernd, Escott Richard, Trygg Johan, OPLS methodology for analysis of pre-processing effects on spectroscopic data, 10.1016/j.chemolab.2006.03.013
  14. Geladi Paul, Kowalski Bruce R., Partial least-squares regression: a tutorial, 10.1016/0003-2670(86)80028-9
  15. Giudice Linda C, Kao Lee C, Endometriosis, 10.1016/s0140-6736(04)17403-5
  16. Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical learning with sparsity: The lasso and generalizations. Boca Raton: CRC Press.
  17. Höskuldsson Agnar, PLS regression methods, 10.1002/cem.1180020306
  18. Indahl Ulf G., Liland Kristian Hovde, Naes Tormod, Canonical partial least squares-a unified PLS approach to classification and regression problems, 10.1002/cem.1243
  19. Jung Youngae, Lee Jueun, Kwon Joseph, Lee Kwang-Sik, Ryu Do Hyun, Hwang Geum-Sook, Discrimination of the Geographical Origin of Beef by1H NMR-Based Metabolomics, 10.1021/jf102194t
  20. Lai Eric C., Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation, 10.1038/ng865
  21. Lê Cao Kim-Anh, Rossouw Debra, Robert-Granié Christèle, Besse Philippe, A Sparse PLS for Variable Selection when Integrating Omics Data, 10.2202/1544-6115.1390
  22. Lu Bo, Castillo Ivan, Chiang Leo, Edgar Thomas F., Industrial PLS model variable selection using moving window variable importance in projection, 10.1016/j.chemolab.2014.03.020
  23. Mevik Bj�rn-Helge, Cederkvist Henrik Ren�, Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR), 10.1002/cem.887
  24. Muñoz-Romero Sergio, Arenas-García Jerónimo, Gómez-Verdejo Vanessa, Sparse and kernel OPLS feature extraction based on eigenvalue problem solving, 10.1016/j.patcog.2014.12.002
  25. Nisenblat Vicki, Bossuyt Patrick MM, Shaikh Rabia, Farquhar Cindy, Jordan Vanessa, Scheffers Carola S, Mol Ben Willem J, Johnson Neil, Hull M Louise, Blood biomarkers for the non-invasive diagnosis of endometriosis, 10.1002/14651858.cd012179
  26. Rousseau, R. (2011). Statistical contribution to the analysis of metabonomic data in $${}^1$$ 1 H-NMR spectroscopy (Doctoral dissertation, Université Catholique de Louvain, Belgium), permalink: .
  27. Stenlund Hans, Gorzsás András, Persson Per, Sundberg Björn, Trygg Johan, Orthogonal Projections to Latent Structures Discriminant Analysis Modeling on in Situ FT-IR Spectral Imaging of Liver Tissue for Identifying Sources of Variability, 10.1021/ac8005318
  28. Tapp Henri S., Kemsley E. Kate, Notes on the practical utility of OPLS, 10.1016/j.trac.2009.08.006
  29. Trygg Johan, Wold Svante, Orthogonal projections to latent structures (O-PLS), 10.1002/cem.695
  30. van Gerven, M. A. J., & Heskes, T. (2010). Sparse orthonormalized partial least squares. In Benelux conference on artificial intelligence.
  31. Wehrens Ron, Chemometrics with R, ISBN:9783642178405, 10.1007/978-3-642-17841-2
  32. Weljie Aalim M., Bondareva Alla, Zang Ping, Jirik Frank R., 1H NMR metabolomics identification of markers of hypoxia-induced metabolic shifts in a breast cancer model system, 10.1007/s10858-011-9486-4
  33. Wiklund Susanne, Johansson Erik, Sjöström Lina, Mellerowicz Ewa J., Edlund Ulf, Shockcor John P., Gottfries Johan, Moritz Thomas, Trygg Johan, Visualization of GC/TOF-MS-Based Metabolomics Data for Identification of Biochemically Interesting Compounds Using OPLS Class Models, 10.1021/ac0713510
  34. Wold, H. (1975). Path models with latent variables: The NIPALS approach (pp. 307–357). New York: Academic Press.
  35. Wold Svante, Trygg Johan, Berglund Anders, Antti Henrik, Some recent developments in PLS modeling, 10.1016/s0169-7439(01)00156-3
  36. Wold Svante, Sjöström Michael, Eriksson Lennart, PLS-regression: a basic tool of chemometrics, 10.1016/s0169-7439(01)00155-1
  37. Zou Hui, Hastie Trevor, Regularization and variable selection via the elastic net, 10.1111/j.1467-9868.2005.00503.x
Bibliographic reference Feraud, Baptiste ; Munaut, Carine ; Martin, Manon ; Verleysen, Michel ; Govaerts, Bernadette. Combining strong sparsity and competitive predictive power with the L-sOPLS approach for biomarker discovery in metabolomics. In: Metabolomics, Vol. 13, no.11, p. (n/a-n/a First Online: 27 September 2017) (2017)
Permanent URL