
EXCELLENCE OF FUNCTION FIELDS OF CONICS
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ABSTRACT. For every generalized quadratic form or hermitian form over a division
algebra, the anisotropic kernel of the form obtained by scalar extension to the function
field of a smooth projective conic is defined over the field of constants. The proof
does not require any hypothesis on the characteristic.

One important aspect in the study of quadratic forms over fields is to
determine their behavior under scalar extension. A quadratic form q that
is anisotropic (i.e., without nontrivial zeros) over a field F may become
isotropic over a field extension L of F ; the extended form qL then has a
Witt decomposition qL = q0 ⊥ mH involving an anisotropic quadratic form
q0 and a certain number m ≥ 1 of hyperbolic planes, see [6, Th. 8.5]. The
form q0 is uniquely determined up to isometry; it is called the anisotropic
kernel of qL . Some field extensions have a useful property, first pointed out
by Elman–Lam–Wadsworth [5, §2] : the extension L/F is said to be excellent
if for every quadratic form q over F the anisotropic kernel of qL is defined
over F . If F is a number field, it is shown in [5, Th. 2.13] that every
finite extension L/F that contains a Galois extension of F of even degree is
excellent.

Excellent extensions of arbitrary fields are much more scarce. Of course,
extensions over which every anisotropic form remains anisotropic are excel-
lent ; this applies in particular to extensions of odd degree and to purely
transcendental extensions, see [6, §29]. At the other extreme, the algebraic
closure of a field is an excellent extension because it carries (up to isometry)
a single nonzero anisotropic quadratic form, which is the 1-dimensional form
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x2 , defined over the prime subfield. A more interesting example is given by
separable quadratic extensions, which are excellent in the following strong
sense : if q is an anisotropic quadratic form over a field F , the anisotropic
kernel of the extended form qL over a separable quadratic extension L/F is
q′L for some subform q′ of q , see [6, Cor. 22.12]. By contrast, many types of
extensions have been shown to be non-excellent : see Sivatski [20], [21], [22],
[23]. It is therefore quite remarkable that function fields of smooth projective
conics do have the excellence property (although not in the strong sense).
This was first noticed by Arason [1]. As it relies on Knebusch’s Habilita-
tionschrift [11] on symmetric bilinear forms, Arason’s proof requires 1 ) the
hypothesis that char F 6= 2.

Three other proofs of the excellence property of function fields of smooth
conics have been published; they are due to Rost [19, Corollary], Parimala–
Sridharan–Suresh [4, Lemma 3.1], [16, Proposition 2.1], and Pfister [17,
Prop. 4]. Pfister’s proof is based on the study of quadratic lattices over
the ring of an affine open set of the conic, while Rost’s proof uses ingenious
manipulations of quadratic forms that are isotropic over the function field.
The proof by Parimala–Sridharan–Suresh relies, like Arason’s, on vector
bundles over the conic, but it uses the Riemann–Roch theorem instead of
Grothendieck’s classification of vector bundles over the projective line [7].
This idea was also used in an unpublished proof due to Van Geel [25].

In all the proofs mentioned above, the characteristic of the base field is
assumed to be different from 2, although Rost’s arguments can be modified
to cover the characteristic 2 case, as was shown by Hoffmann–Laghribi [10,
Cor. 5.7]. One remarkable feature of the Parimala–Sridharan–Suresh proof in
[16] is that it applies not just to quadratic forms, but also to hermitian forms
over division algebras (of characteristic different from 2).

Our goal in this paper is to prove the excellence of function fields of
smooth 2 ) projective conics in arbitrary characteristic for hermitian forms and
generalized quadratic forms over division algebras. Our proof is close in spirit
to Arason’s original proof : the idea is to show that the anisotropic kernel
of a hermitian or generalized quadratic form extended to L is the generic
fiber of a nondegenerate hermitian or generalized quadratic form on a vector

1 ) Arason’s proof can readily be extended to symmetric bilinear forms in characteristic 2, but
this case is uninteresting because anisotropic bilinear forms in characteristic 2 remain anisotropic
over the function field of a smooth projective conic by [13, Cor. 3.3].

2 ) In characteristic different from 2, function fields of singular (irreducible) conics are purely
transcendental extensions of a quadratic extension of the base field, hence they are excellent
extensions of the base field. Laghribi communicated to us an example showing that function
fields of singular conics may fail to be excellent for quadratic forms in characteristic 2.



EXCELLENCE OF FUNCTION FIELDS OF CONICS 3

bundle over the conic. We then use the classification of these vector bundles
to conclude that the anisotropic kernel is extended from F . Our approach
is completely free of any assumption on the characteristic of the base field.
Therefore, the case of generalized quadratic forms requires a separate, more
delicate treatment.

To simplify the discussion, we only consider hermitian forms with respect
to involutions on division algebras that leave the center fixed (involutions of
the first kind). This is sufficient to treat generalized quadratic forms, and the
reader should have no difficulty in verifying that slight modifications of our
arguments are sufficient to extend our results to the case of involutions of the
second kind. Another restriction is to quadratic forms that are nonsingular
(which means that their polar form is nonsingular ; see the definition in §1.4).
Thus, the connected component of the automorphism groups of the forms we
consider are the simple linear algebraic groups of adjoint type C or D , or of
type B if the characteristic is different from 2. If the characteristic is 2, the
automorphism groups of hermitian forms may be of type C or may not be
semisimple, depending on the type of the involution. Note that simple linear
algebraic groups of type B are defined from quadratic forms over fields, and
for these forms the excellence property of function fields of smooth conics in
characteristic 2 is proved in Hoffmann–Laghribi [10].

The excellence property can also be approached from the viewpoint of
linear algebraic groups : the anisotropic kernel of a semisimple linear algebraic
group is the derived subgroup of the centralizer of a maximal split torus. If
G is the special orthogonal group of a generalized quadratic form q , the
anisotropic kernel of G is the special orthogonal group of the kernel of q .
Thus, from Theorem 3.4 below, it follows that for every simple linear algebraic
group G of type D defined over a field F , the anisotropic kernel of G over
the function field of a smooth conic over F is defined over F . This result
actually holds for all semisimple linear algebraic groups, as was shown by
Harder [8, Satz 3.5]. 3 ) Conversely, because the orthogonal group determines
the quadratic form up to a scalar factor, Harder’s result for groups of type D
yields an alternative way to derive our Theorem 3.4 from Proposition 3.1.

The paper is organized as follows : In §1 we revisit the notion of quadratic
form as defined by Tits in [24]. Our goal is to rephrase Tits’s definition in terms
of modules over central simple algebras instead of vector spaces over division
algebras. We thus obtain a notion that is better behaved under scalar extension.
Hermitian forms and generalized quadratic forms on vector bundles over a

3 ) We are indebted to Chernousov for pointing out this reference.
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conic are discussed in §2, and the proof of the excellence result is given in §3.
To make our exposition as elementary as possible, we thoroughly discuss in
an appendix the classification of vector bundles over smooth projective conics,
using a representation of these bundles as triples consisting of their generic
fiber, their stalk at a closed point ∞ , and their section over the complement
of ∞ . Thus, we give an elementary proof of Grothendieck’s classification
theorem, and correct Arason’s misleading statement 4 ) suggesting that vector
bundles over a conic decompose into line bundles.

We use the following notation throughout : for every linear endomorphism
τ such that τ 2 = Id , we let

Sym(τ ) = ker(Id−τ ) and Alt(τ ) = im(Id−τ ).

Thus, Alt(τ ) ⊂ Sym(−τ ) always, and Alt(τ ) = Sym(−τ ) in characteristic
different from 2.

1. QUADRATIC FORMS

1.1 THE DEFINITION

Let A be a central simple algebra over an arbitrary field F , and let σ
be an F -linear involution on A , i.e., an F -linear map σ : A → A such that
σ2 = Id and σ(ab) = σ(b)σ(a) for all a , b ∈ A . Let M be a finitely generated
right A -module. The dual module M∗ = HomA(M,A) has a left A -module
structure given by (af )(x) = af (x) for a ∈ A , f ∈ M∗ , and x ∈ M . Let σM∗

be the right A -module defined by

σM∗ = {σf | f ∈ M∗}

with the operations

σf + σg = σ(f + g) and σf · a = σ(σ(a)f )

for a ∈ A and f , g ∈ M∗ . Identifying σf with the map x 7→ σ
(
f (x)
)

, we
may also consider σM∗ as the A -module of additive maps g : M → A such
that g(xa) = σ(a)g(x) for x ∈ M and a ∈ A , i.e., σM∗ is the A -module of
σ -semilinear maps from M to A .

4 ) “Now the proof of the first sentence of [11, Theorem 13.2.2] (and the result of [7] which
is cited there) only depends on the projective line being a complete regular irreducible curve of
genus zero” [1].
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Let B(M) be the F -space of sesquilinear forms M × M → A . Mapping
σf ⊗ g to the sesquilinear form (x, y) 7→ σ(f (x))g(y) defines a canonical
isomorphism

σM∗ ⊗A M∗ = B(M).

Let sw : B(M) → B(M) be the F -linear map taking a form b to the form
sw(b) defined by

sw(b)(x, y) = σ
(
b(y, x)

)
.

Thus, sw(σf ⊗ g) = σg ⊗ f for f , g ∈ M∗ .

DEFINITION 1.1. Recall from [12, (2.5)] that the involution σ is said to
be orthogonal (resp. symplectic) if its scalar extension to any splitting field
of A is the adjoint involution of a bilinear form that is symmetric and not
alternating (resp. that is alternating). The space of (generalized) quadratic
forms on M is the factor space

Q(M) = B(M)/Alt(ε sw),

where ε = 1 if σ is orthogonal and ε = −1 if σ is symplectic. For δ = ±1,
the space of δ -hermitian forms on M is

Hδ(M) = Sym(δ sw) ⊂ B(M).

To relate this definition of quadratic form to the one given by Tits in [24],
note that B(M) is a free right module of rank 1 over EndA M , for the scalar
multiplication defined as follows : for b ∈ B(M) and ϕ ∈ EndA M ,

(b · ϕ)(x, y) = b(x, ϕ(y)) for x , y ∈ M .

The pair (B(M), ε sw) is a space of bilinear forms for EndA M , in the sense of
[24, 2.1]. With this choice of space of bilinear forms, the elements of Q(M)
as defined above are exactly the quadratic forms defined in [24, 2.2].

By definition, the vector spaces Hε(M) and Q(M) fit into the exact
sequence

0→ Hε(M)→ B(M) Id−ε sw−−−−−→ B(M)→ Q(M)→ 0.

Since (Id +ε sw)◦ (Id−ε sw) = 0, there is a canonical “hermitianization” map

β : Q(M)→ Hε(M),

which associates to each quadratic form q = b + Alt(ε sw) the ε -hermitian
form

β(q) = b + ε sw(b).

Thus, by definition the form β(q) actually lies in Alt(−ε sw) ⊂ Hε(M) .
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1.2 RELATION WITH SUBMODULES

For every submodule N ⊂ M , the following exact sequence splits :

(1.1) 0→ N → M → M/N → 0.

It yields by duality the split exact sequence

0→ (M/N)∗ → M∗ → N∗ → 0,

which allows us to identify (M/N)∗ with the submodule of linear forms in
M∗ that vanish on N . We thus obtain a canonical split injective map

B(M/N) = σ(M/N)∗ ⊗A (M/N)∗ → σM∗ ⊗A M∗ = B(M)

and a canonical split surjective map

B(M) = σM∗ ⊗A M∗ → σN∗ ⊗A N∗ = B(N).

These canonical maps commute with Id−δ sw for δ = ±1, hence they induce
canonical maps

Hδ(M/N)→ Hδ(M), Hδ(M)→ Hδ(N) for δ = ±1 ,

and
Q(M/N)→ Q(M), Q(M)→ Q(N).

REMARK 1.2. For a fixed splitting of the exact sequence (1.1), the
corresponding splittings of the injection B(M/N)→ B(M) and the surjection
B(M)→ B(N) also commute with Id−ε sw , hence the map Q(M/N)→ Q(M)
is split injective and Q(M)→ Q(N) is split surjective.

PROPOSITION 1.3. The canonical embedding B(M/N) → B(M) identifies
B(M/N) with the space of sesquilinear forms b ∈ B(M) such that b(x, y) =

b(y, x) = 0 for all x ∈ M and y ∈ N .

Proof. It is clear from the definition that the sesquilinear forms in the
image of B(M/N) vanish in σM∗⊗A N∗ and in σN∗⊗A M∗ , hence they satisfy
the stated property.

For the converse, we use the canonical isomorphism

(1.2) σM∗ ⊗A M∗ = HomA(M, σM∗)

mapping σf ⊗ g to the homomorphism x 7→ σf · g(x) . This isomorphism
identifies each sesquilinear form b ∈ B(M) with the homomorphism b̂ : M →
σM∗ mapping x ∈ M to b(•, x) . If b(x, y) = b(y, x) = 0 for x ∈ M and y ∈ N ,
then the image of b̂ lies in σ(M/N)∗ and its kernel contains N . Therefore,
b̂ induces a homomorphism M/N → σ(M/N)∗ , and b is the image of the
corresponding sesquilinear form in B(M/N) .
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1.3 SUBLAGRANGIAN REDUCTION OF HERMITIAN FORMS

Let δ = ±1. For h ∈ Hδ(M) and N ⊂ M any A -submodule, we define
the orthogonal N⊥ of N by

N⊥ = {x ∈ M | h(x, y) = 0 for all y ∈ N }.

The submodule N is said to be a sublagrangian, or a totally isotropic
submodule of M , if N ⊂ N⊥ or, equivalently, if h lies in the kernel of
the restriction map Hδ(M) → Hδ(N) . The form h is said to be isotropic
if M contains a nonzero sublagrangian. It is said to be nonsingular if the
corresponding map ĥ : M → σM∗ under the isomorphism (1.2) is bijective.

PROPOSITION 1.4. Let h ∈ Hδ(M) and let N ⊂ M be a sublagrangian.
There is a unique form h0 ∈ Hδ(N⊥/N) that maps under the canonical
map Hδ(N⊥/N) → Hδ(N⊥) to the restriction of h to N⊥ . The form h0

is nonsingular if h is nonsingular; it is anisotropic if N is a maximal
sublagrangian.

Proof. The existence of h0 readily follows from Proposition 1.3. The
form h0 is unique because the map B(N⊥/N)→ B(N⊥) is injective.

Now, assume h is nonsingular. Since ĥ carries N⊥ to σ(M/N)∗ , there is
a commutative diagram with exact rows :

0 // N⊥ //

ϕ

��

M //

ĥ
��

M/N⊥ //

ψ

��

0

0 // σ(M/N)∗ // σM∗ // σN∗ // 0

The map ψ is injective by definition of N⊥ , and ĥ is bijective because h is
nonsingular, hence ϕ is an isomorphism. By duality, ϕ yields an isomorphism
σϕ∗ : M/N → σ(N⊥)∗ . Composing ϕ with the inclusion σ(M/N)∗ ⊂ σM∗

and σϕ∗ with the canonical map M → M/N , we obtain maps ϕ′ , ϕ′′ that
fit into the following diagram with exact rows, where i is the inclusion :

0 // N //

i
��

M
ϕ′′ //

ĥ
��

σ(N⊥)∗ //

σ i∗

��

0

0 // N⊥
ϕ′ // σM∗ // σN∗ // 0

Since ĥ is bijective, the Snake Lemma yields an isomorphism σ(N⊥/N)∗ ∼→
N⊥/N . Computation shows that the inverse of this isomorphism, viewed in
B(N⊥/N) , is sw(h0) = δh0 . Therefore, h0 is nonsingular.
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If L ⊂ N⊥/N is a sublagrangian for h0 , then the inverse image L′ ⊂ N⊥ of
L under the canonical map N⊥ → N⊥/N is a sublagrangian for h . Therefore,
h0 is anisotropic if N is a maximal sublagrangian.

When N is a maximal sublagrangian, the anisotropic δ -hermitian form h0

is called an anisotropic kernel of h . As for quadratic forms (see Proposition 1.6
below), the anisotropic kernel of a δ -hermitian form is uniquely determined
up to isometry.

1.4 SUBLAGRANGIAN REDUCTION OF QUADRATIC FORMS

We say that a quadratic form q ∈ Q(M) is nonsingular if its hermitianized
form β(q) is nonsingular. 5 ) The form q is said to be isotropic if there exists
a nonzero submodule N ⊂ M such that q lies in the kernel of the restriction
map Q(M)→ Q(N) ; the submodule N is then said to be totally isotropic for
q . Clearly, every totally isotropic submodule N for q is also totally isotropic
for the hermitianized form β(q) , hence it lies in its orthogonal N⊥ for β(q) .

PROPOSITION 1.5. Let q ∈ Q(M) and let N ⊂ M be a totally isotropic
submodule. There is a unique form q0 ∈ Q(N⊥/N) that maps under the
canonical map Q(N⊥/N)→ Q(N⊥) to the restriction of q to N⊥ . The form
q0 is nonsingular if q is nonsingular; it is anisotropic if N is a maximal
totally isotropic submodule.

Proof. Let b ∈ B(M) be a sesquilinear form such that q = b + Alt(ε sw) .
Since N is totally isotropic for q , there is a form c ∈ B(M) such that

(1.3) b(x, y) = c(x, y)− εσ
(
c(y, x)

)
for all x , y ∈ N .

Because N⊥/N is a projective module, there is a homomorphism π : N⊥ → N
that splits the inclusion N ↪→ N⊥ . Define a sesquilinear form b1 ∈ B(N⊥) by

b1(x, y) = b
(
x, π(y)

)
− c
(
π(x), π(y)

)
for x , y ∈ N⊥ .

For x ∈ N and y ∈ N⊥ , we have

b(x, y)− b1(x, y) + εσ
(
b1(y, x)

)
= b(x, y)− b

(
x, π(y)

)
+ c
(
π(x), π(y)

)
(1.4)

+ εσ
(
b(y, π(x))− c(π(y), π(x))

)
.

Since π(x) = x , (1.3) yields

b
(
x, π(y)

)
= c
(
π(x), π(y)

)
− εσ

(
c(π(y), π(x))

)
,

5 ) In [24], Tits defines non-degenerate quadratic forms by a less stringent condition.
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hence three terms cancel on the right side of (1.4), and we have

(1.5) b(x, y)− b1(x, y) + εσ
(
b1(y, x)

)
= b(x, y) + εσ

(
b(y, x)

)
= β(q)(x, y) = 0.

Similarly, for x ∈ N and y ∈ N⊥ we have

b(y, x) = −εσ
(
b(x, y)

)
hence (1.5) yields

b(y, x)− b1(y, x) + εσ
(
b1(x, y)

)
= 0.

Therefore, letting b|N⊥ denote the restriction of b to N⊥ , we may apply
Proposition 1.3 to get a sesquilinear form b0 ∈ B(N⊥/N) that maps to
b|N⊥−(Id−ε sw)(b1) in B(N⊥) . Then the quadratic form q0 = b0+Alt(ε sw) ∈
Q(N⊥/N) maps to q|N⊥ in Q(N⊥) . Uniqueness of the form q0 is clear since
the map Q(N⊥/N)→ Q(N⊥) is injective (see Remark 1.2).

Since N is totally isotropic for the hermitianized form β(q) ∈ Hε(M) ,
Proposition 1.4 yields an ε -hermitian form β(q)0 ∈ Hε(N⊥/N) that maps to
β(q)|N⊥ under the canonical map Hε(N⊥/N) → Hε(N⊥) . Since β(q)|N⊥ =

β(q|N⊥ ) , we have β(q)0 = β(q0) . If q is nonsingular, then by definition β(q)
is nonsingular. Then β(q)0 is nonsingular by Proposition 1.4, hence q0 is
nonsingular.

If L ⊂ N⊥/N is a totally isotropic submodule for q0 , then the inverse
image L′ ⊂ N⊥ of L under the canonical map N⊥ → N⊥/N is totally
isotropic for q . Therefore, q0 is anisotropic if N is a maximal totally isotropic
submodule.

When N is a maximal totally isotropic submodule of M , the quadratic
form q0 is called an anisotropic kernel of q . (Compare the definition of
anisotropic kernel of a δ -hermitian form at the end of §1.3.) The following
result shows that, up to isometry, the anisotropic kernel does not depend on
the choice of the maximal totally isotropic submodule :

PROPOSITION 1.6. All the maximal totally isotropic submodules of M (for
a given quadratic form q) are isomorphic. If the form is nonsingular, then
for any two isomorphic totally isotropic submodules N , N′ ⊂ M there is an
isometry ϕ of (M, q) such that ϕ(N) = N′ .

Proof. See Tits [24, Prop. 1 and 2].
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2. QUADRATIC FORMS ON A -MODULE BUNDLES OVER A CONIC

Throughout this section, C is a smooth projective conic over an arbitrary
field F , which we view as the Severi–Brauer variety of a quaternion F -algebra
Q . We assume C has no rational point, which amounts to saying that Q is
a division algebra.

2.1 VECTOR BUNDLES OVER C

We recall from Roberts [18, §2] or Biswas–Nagaraj [3] 6 ) the description
of vector bundles over C . (See the appendix for an elementary approach to
vector bundles over C .) Let K be a separable quadratic extension of F that
splits Q . Let CK = C×Spec K be the conic over K obtained by base change,
and let f : CK → C be the projection. Since CK has a rational point, we
have CK ' P1

K . By a theorem of Grothendieck, every vector bundle on CK

is a direct sum of vector bundles OP1
K
(n) of rank 1 (see Theorem A.6). The

vector bundle f∗
(
OP1

K
(n)
)

is isomorphic to OC(n)⊕OC(n) if n is even; it is
an indecomposable vector bundle of rank 2 and degree 2n if n is odd [18,
Theorem 1] (see Corollary A.14). Letting

IC(2n) = f∗
(
OP1

K
(n)
)

for n odd,

it follows that every vector bundle over C decomposes in a unique way (up
to isomorphism) as a direct sum of vector bundles of the type OC(n) with
n even and IC(2n) with n odd (see Theorem A.18 or [3, Theorem 4.1]).
Moreover, we have

(2.1) End
(
IC(2n)

)
' Q for all odd n .

(See (A.18).) Using the property that f∗ ◦ f ∗(E) ' E ⊕E for every vector
bundle E over C , and that f ∗ ◦ f∗(E′) 'E′ ⊕E′ for every vector bundle E′

over P1
K (see Proposition A.12), it is easy to see that

IC(2n)⊗IC(2m) ' OC(n + m)⊕4 for all odd n, m, and(2.2)

IC(2n)⊗OC(m) ' IC
(
2(n + m)

)
for all n odd and m even.(2.3)

For each vector bundle E over C we write E∨ = Hom(E,OC) for
the dual vector bundle. Since for n even OC(n)∨ is a vector bundle of
rank 1 and degree −n , we have OC(n)∨ ' OC(−n) for n even. Similarly,
IC(2n)∨ ' IC(−2n) for n odd (see Corollary A.22).

6 ) We are grateful to Van Geel for pointing out this reference.
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2.2 A -MODULE BUNDLES

Let A be a central simple algebra over F , and let E be a vector bundle over
C . A structure of right (resp. left) A-module bundle on E is defined by a fixed
F -algebra homomorphism Aop → EndE (resp. A → EndE ). Morphisms of
A -module bundles are morphisms of vector bundles that preserve the action of
A , hence for every A -module bundle E the F -algebra EndAE of A -module
bundle endomorphisms is a subalgebra of the finite-dimensional F -algebra
EndE of vector bundle endomorphisms. Therefore dimF EndAE is finite, and
by the same argument as for vector bundles we have a Krull–Schmidt theorem
for A -module bundles : every A -module bundle over C decomposes into a
direct sum of indecomposable A -module bundles, and this decomposition is
unique up to isomorphism. In this subsection, we obtain information on the
indecomposable A -module bundles. We discuss only right A -module bundles;
the case of left A -module bundles is similar.

For every vector bundle E over C and every right A -module M of finite
type, the tensor product over F yields a right A -module bundle E⊗F M with

(2.4) EndA(E ⊗F M) = (EndE)⊗F (EndA M).

PROPOSITION 2.1. Let E be a right A-module bundle over C , and let
E\ be the vector bundle over C obtained from E by forgetting the A-module
structure. Then E is a direct summand of E\ ⊗F A.

Proof. Recall from [12, (3.5)] that A⊗F A contains a “Goldman element”
g =

∑
ai ⊗ bi characterized by the following property, where TrdA denotes

the reduced trace of A :∑
aixbi = TrdA(x) for all x ∈ A .

The element g satisfies (a ⊗ 1) · g = g · (1 ⊗ a) for all a ∈ A ; see [12,
(3.6)]. Let u ∈ A be such that TrdA(u) = 1, hence

∑
aiubi = 1. Since u⊗ 1

commutes with 1⊗ a for all a ∈ A , the element

g′ = g · (u⊗ 1) =
∑

aiu⊗ bi

also satisfies (a⊗ 1) · g′ = g′ · (1⊗ a) , hence

(2.5)
∑

aaiu⊗ bi =
∑

aiu⊗ bia for all a ∈ A .

Let R be an arbitrary commutative F -algebra, and let Q be a right R⊗F A -
module. Let also Q\ be the R -module obtained from Q by forgetting the
A -module structure. Because of (2.5), the map Q→ Q\⊗F A defined by x 7→
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(xaiu)⊗ bi is an R⊗F A -module homomorphism. Since

∑
aiubi = 1, this

homomorphism is injective and split by the multiplication map Q\⊗F A→ Q .
This applies in particular to the module of sections of E over any affine open
set in C and to the stalk of E at any point of C , and shows that E is a
direct summand of E\ ⊗F A .

COROLLARY 2.2. If E is an indecomposable A-module bundle, then all
the indecomposable vector bundle summands in E\ are isomorphic.

Proof. Let E\ = I1 ⊕ · · · ⊕ Ir be the decomposition of E\ into
indecomposable vector bundles. Then E\ ⊗ A = (I1 ⊗ A) ⊕ · · · ⊕ (Ir ⊗ A)
is a decomposition of E\ ⊗ A into A -module bundles. Since E is an
indecomposable direct summand of E\⊗A , it must be isomorphic to a direct
summand of one of the Ii ⊗ A . But (Ii ⊗ A)\ ' I⊕d

i , where d = dim A ,
hence E\ ' I⊕m

i for some m .

If all the indecomposable direct summands in E\ are isomorphic to I ,
we say the indecomposable A -module bundle E is of type I . Given the
classification of indecomposable vector bundles over C in §2.1, we may
consider indecomposable A -module bundles of type OC(n) for all even n ,
and of type IC(2n) for all odd n . They are the indecomposable A -module
bundles in the decomposition of OC(n) ⊗F A and IC(2n) ⊗F A respectively.
Since A is a direct sum of simple A -modules, they also are the indecomposable
summands in OC(n)⊗F M and IC(2n)⊗F M for any simple A -module M .

PROPOSITION 2.3. Let M be a simple A-module.
(i) For n even, OC(n) ⊗F M is the unique indecomposable A-module

bundle of type OC(n) up to isomorphism.
(ii) For n odd, there is a unique indecomposable A-module bundle E

of type IC(2n) up to isomorphism. This A-module bundle satisfies

IC(2n)⊗F M 'E⊕` where ` =
2 ind(A)

ind(Q⊗F A)
.

Note that ind(Q ⊗F A) may take the value 2 ind(A) , ind(A) or 1
2 ind(A) ,

hence ` = 1, 2 or 4.

Proof. (i) By (2.4) we have

EndA(OC(n)⊗F M) =
(
EndOC(n)

)
⊗F (EndA M) = EndA M.
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Since M is simple, EndA M is a division algebra, hence OC(n) ⊗F M is
indecomposable.

(ii) By (2.4) and (2.1) we have

EndA(IC(2n)⊗F M) =
(
EndIC(2n)

)
⊗F (EndA M) ' Q⊗F (EndA M).

This algebra is simple; it is isomorphic to M`(D) for D a division algebra,
hence IC(2n)⊗F M decomposes into a direct sum of ` isomorphic A -module
bundles.

2.3 QUADRATIC AND HERMITIAN FORMS

We keep the same notation as in the preceding subsections, and assume
A carries an F -linear involution σ (i.e., an involution of the first kind). For
every right A -module bundle E over C , we define the dual bundle

E∗ = HomOC⊗A(E,OC ⊗F A).

The bundle E∗ has a natural structure of left A -module bundle. Twisting the
action of A by σ , we may also consider the right A -module bundle σE∗ ,
and define the vector bundle

B(E) = σE∗ ⊗A E
∗.

As in §1, there is a switch map sw : B(E)→B(E) . The kernel and cokernel
of Id± sw define vector bundles over C . For δ = ±1, we let

Hδ(E) = ker(Id−δ sw).

Letting ε = 1 if σ is orthogonal and ε = −1 if σ is symplectic, we also
define

Q(E) = coker(Id−ε sw).

DEFINITION 2.4. A sesquilinear form on the right A -module bundle E is
a global section of B(E) . Likewise, a δ -hermitian form (resp. a quadratic
form) on E is a global section of Hδ(E) (resp. Q(E) ). We write

B(E) = Γ
(
B(E)

)
, Hδ(E) = Γ

(
Hδ(E)

)
, Q(E) = Γ

(
Q(E)

)
for the F -vector spaces of sesquilinear, ε -hermitian, and quadratic forms
respectively.

PROPOSITION 2.5.
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(i) If E is an indecomposable A-module bundle of type OC(n) with n
even, n > 0 , or of type IC(2n) with n odd, n > 0 , then for δ = ±1

B(E) = Hδ(E) = Q(E) = {0}.

(ii) If E = OC(0)⊗F M for some right A-module M , then for δ = ±1

B(E) = B(M), Hδ(E) = Hδ(M), Q(E) = Q(M).

Proof. (i) It suffices to prove B(E) = {0} . If E ' OC(n)⊗F M for some
simple A -module M , then E∗ ' OC(n)∨ ⊗F M∗ , hence

B(E) ' OC(n)∨ ⊗F OC(n)∨ ⊗F
σM∗ ⊗A M∗ ' OC(−2n)⊗F B(M).

Since Γ
(
OC(−2n)

)
= {0} for n > 0 (see (A.10)), it follows that B(E) = {0} .

If E is of type IC(2n) with n odd, then by Proposition 2.3 we have

IC(2n)⊗F M 'E⊕` with ` = 1, 2 or 4,

hence
B(IC(2n)⊗F M) ' B(E)⊕`

2
.

Therefore, it suffices to prove B(IC(2n)⊗F M) = {0} for n odd, n > 0. As
in the previous case we have

B(IC(2n)⊗F M) ' IC(2n)∨ ⊗F IC(2n)∨ ⊗F σM∗ ⊗A M∗

' IC(−2n)⊗F IC(−2n)⊗F B(M).

By (2.2) it follows that

B(IC(2n)⊗F M) ' OC(−2n)⊕4 ⊗F B(M).

Since Γ
(
OC(−2n)

)
= {0} for n > 0 (see (A.10)), case (i) of the proposition

is proved.
(ii) For E = OC(0)⊗F M we have

B(E) = OC(0)∨ ⊗OC(0)∨ ⊗F
σM∗ ⊗A M∗ = OC(0)⊗F B(M).

Since Γ
(
OC(0)

)
= F , it follows that B(E) = B(M) , hence also Hδ(E) = Hδ(M)

and Q(E) = Q(M) .

The property in (ii) is expressed by saying that sesquilinear, hermitian, and
quadratic forms on OC(0)⊗M are extended from A .

We define the degree of an A -module bundle E as the degree of the
underlying vector bundle E\ .
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THEOREM 2.6. Let E be a right A-module bundle with degE = 0 . If E

carries a hermitian or quadratic form that is anisotropic on the generic fiber
then E = OC(0)⊗ N for some right A-module N .

Proof. Consider the decomposition of E into a direct sum of indecom-
posable A -module bundles. If any of the direct summand is of type OC(n) or
IC(2n) with n > 0, then Proposition 2.5(i) shows that the restriction of any
hermitian or quadratic form on E to this summand must be 0. Therefore, if
E carries an anisotropic hermitian or quadratic form, then all the summands
must be of type OC(n) with n ≤ 0 or IC(2n) with n < 0. But the degree of
the indecomposable A -module bundles of type OC(n) or IC(2n) with n < 0
is strictly negative. Since degE = 0, all the summands are of type OC(0) ,
hence by Proposition 2.3(i) they are isomorphic to OC(0)⊗F M for M a simple
right A -module. Therefore,

E ' (OC(0)⊗M1)⊕ · · · ⊕ (OC(0)⊗Mn) = OC(0)⊗ (M1 ⊕ · · · ⊕Mn).

COROLLARY 2.7. If a right A-module bundle E with degE = 0 carries
an anisotropic hermitian or quadratic form, then this form is extended from A.

Proof. This readily follows from Proposition 2.5(ii) and Theorem 2.6.

We complete this section by discussing one case where the condition
degE = 0 is necessarily satisfied.

As for modules (see (1.2)), each δ -hermitian form h ∈ Hδ(E) on a right
A -module bundle E yields a morphism of A -module bundles

ĥ : E → σE∗.

DEFINITION 2.8. The hermitian form h on E is said to be nonsingular
if the morphism ĥ is an isomorphism.

PROPOSITION 2.9. If a right A-module bundle E carries a nonsingular
δ -hermitian form, then degE = 0 .

Proof. We claim that deg σE∗ = − degE ; therefore degE = 0 when
E ' σE∗ . It suffices to prove the claim for E an indecomposable A -module
bundle, or indeed by Proposition 2.3, for E of the form OC(n)⊗F M with n
even or IC(2n)⊗F M with n odd. We have

σ(OC(n)⊗F M)∗ = OC(n)∨ ⊗F
σM∗ ' OC(−n)⊗F

σM∗
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and
σ(IC(2n)⊗F M)∗ = IC(2n)∨ ⊗F

σM∗ ' IC(−2n)⊗F
σM∗.

The claim follows.

3. EXCELLENCE

We use the same notation as in the preceding sections, and let L denote
the function field of the smooth projective conic C over the arbitrary field F .
In this section, we prove that L is excellent for quadratic forms and hermitian
forms on right A -modules.

3.1 HERMITIAN FORMS

Let δ = ±1, and let h be a δ -hermitian form on a finitely generated right
A -module M . Extending scalars to L , we obtain a central simple L -algebra
AL = L⊗F A , a right AL -module ML = L⊗F M , and a δ -hermitian form hL on
ML . Scalar extension also yields the right A -module bundle MC = OC(0)⊗F M
over C , with the δ -hermitian form hC extended from h .

For any AL -submodule N ⊂ ML , we let N denote the intersection of the
constant sheaf N on C with MC . This is a vector bundle with stack

NP = N ∩ (OP ⊗F M) at each point P of C .

Following the elementary approach to vector bundles developed in the
appendix, the A -module bundle N is defined as follows : choose a closed
point ∞ = Spec K on C for some separable quadratic extension K of F , let
U = C \ {∞} , and define N = (N,NU,N∞) where

NU = N ∩ (OU ⊗F M) and N∞ = N ∩ (O∞ ⊗F M).

The orthogonal of NU in OU ⊗F M for the form extended from h is
N⊥ ∩ (OU ⊗F M) , and likewise the orthogonal of N∞ in O∞ ⊗F M is
N⊥ ∩ (O∞ ⊗F M) , hence the orthogonal N⊥ of N in MC is the A -module
bundle

N⊥ =
(
N⊥,N⊥ ∩ (OU ⊗F M),N⊥ ∩ (O∞ ⊗F M)

)
.

From here on, we assume N ⊂ N⊥ , hence N ⊂N⊥ and we may consider the
quotient A -module bundle N⊥/N . It carries a δ -hermitian form h0 obtained
by sublagrangian reduction, see Proposition 1.4.

For the excellence proof, the following result is key :
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PROPOSITION 3.1. If h is nonsingular, then the form h0 on N⊥/N is
nonsingular.

The proof uses the following lemma :

LEMMA 3.2. Let R be an F -algebra that is a Dedekind ring. Every
finitely generated right (R⊗F A) -module that is torsion-free as an R-module
is projective.

Proof. Let Q be a finitely generated right (R⊗F A) -module, and let Q\ be
the R -module obtained from Q by forgetting the A -module structure. Recall
from the proof of Proposition 2.1 that Q is a direct summand of Q\⊗F A . The
R -module Q\ is projective because it is finitely generated and torsion-free,
hence Q\ ⊗F A is a projective (R⊗F A) -module. The lemma follows.

Proof of Proposition 3.1. Assume h is nonsingular. Proposition 1.4 shows
that the form h0 is nonsingular on the generic fiber N⊥/N of N⊥/N . We
show that it is nonsingular on the stalk at each closed point of C .

Fix some closed point P of C , and let MP = OP⊗F M and AP = OP⊗F A .
The right AP -module MP/NP is finitely generated and torsion-free as an OP -
module, hence it is projective by Lemma 3.2, and the following exact sequence
splits :

0→NP →MP →MP/NP → 0.

Lemma 3.2 also applies to show N⊥P /NP and MP/NP are projective AP -
modules. On the other hand, the map ĥP = Id⊗ĥ : MP → σM∗P is bijective
because h is nonsingular. Substituting MP for M and NP for N in the proof
of Proposition 1.4, we see that the arguments in that proof establish that the
induced map N⊥P /NP → σ(N⊥P /NP)∗ is bijective.

The excellence of L for hermitian forms readily follows :

THEOREM 3.3. Let h be a nonsingular δ -hermitian form (δ = ±1) on a
finitely generated right A-module. The anisotropic kernel of hL is extended
from A.

Proof. We apply the discussion above with N ⊂ ML a maximal sub-
lagrangian. The induced δ -hermitian form h0 on N⊥/N is anisotropic by
Proposition 1.4, and it is the generic fiber of a nonsingular δ -hermitian form
on the A -module bundle N⊥/N by Proposition 3.1. Proposition 2.9 yields
deg(N⊥/N) = 0, hence Corollary 2.7 shows that h0 is extended from A .
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3.2 QUADRATIC FORMS

We use the same notation as in §3.1 : M is a finitely generated right A -
module and MC = OC(0)⊗F M is the right A -module bundle obtained from
M by scalar extension, with generic fiber ML . We now consider a nonsingular
quadratic form q on M , and the extended quadratic form qC on MC , with
generic fiber qL . Let N ⊂ ML be a maximal totally isotropic subspace for qL .
This subspace is totally isotropic (but maybe not a maximal sublagrangian) for
the hermitianized form β(qL) , hence it lies in its orthogonal N⊥ for β(qL) .
By Proposition 1.5, qL induces a nonsingular quadratic form q0 on N⊥/N ,
which is the anisotropic kernel of qL . To prove that L is excellent, we need
to show that q0 is extended from A .

The proof follows the same pattern as for Theorem 3.3. We consider the
A -module bundles N , N⊥ , and N⊥/N as in §3.1. As observed in the proof
of Proposition 3.1, for each closed point P of C the AP -modules MP/NP ,
MP/N

⊥
P , and N⊥P /NP are projective. Substituting MP for M and NP for

N in the proof of Proposition 1.5, we see that the form q0 is the generic fiber
of a nonsingular quadratic form on N⊥P /NP . We have deg(N⊥/N) = 0 by
Proposition 2.9, and since q0 is anisotropic on N⊥/N it is extended from A
by Corollary 2.7. We have thus proved :

THEOREM 3.4. Let q be a nonsingular quadratic form on a finitely
generated right A-module. The anisotropic kernel of qL is extended from A.

APPENDIX : VECTOR BUNDLES OVER CONICS

We give in this appendix an elementary proof of the classification of vector
bundles over conics used in §2. The elementary character of our approach is
based on the representation of vector bundles over conics or over the projective
line as triples consisting of the generic fiber, the module of sections over an
affine open set, and the stalks at the complement, which consists in one or
two closed points ; see §A.2 and §A.3.

A.1 MATRICES

Let K be an arbitrary field and let u be an indeterminate on K . Let w0

and w∞ be respectively the u -adic and the u−1 -adic valuations on the field
K(u) (with value group Z ). Consider the following subrings of K(u) :

OV = K[u, u−1], OS = {x ∈ K(u) | w0(x) ≥ 0 and w∞(x) ≥ 0}.
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The following theorem is equivalent to Grothendieck’s classification of
vector bundles over the projective line [7], as we will see in §A.2. (See [9]
for an elementary proof of another statement on matrices that is equivalent to
Grothendieck’s theorem.)

THEOREM A.1. For every matrix g ∈ GLn(K(u)) there exist matrices
p ∈ GLn(OS) and q ∈ GLn(OV ) such that

pgq = diag
(
(u− 1)k1 , . . . , (u− 1)kn

)
for some k1 , . . . , kn ∈ Z .

Proof. The case n = 1 is easy : using unique factorization in K[u] ,
we may factor every element in K(u)× as g = p · (u − 1)k · uα where
w0(p) = w∞(p) = 0, hence p ∈ O×S . The rest of the proof is by induction
on n . In view of the n = 1 case, it suffices to show that we may find
p ∈ GLn(OS) , q ∈ GLn(OV ) such that p · g · q is diagonal. Since OV is a
principal ideal domain, we may find a matrix q1 ∈ GLn(OV ) such that

gq1 =


a1 0 · · · 0
∗
... g1

∗


where a1 is the gcd of the entries in the first row of g . By induction, we may
assume the theorem holds for g1 and thus find p2 ∈ GLn(OS) , q2 ∈ GLn(OV )
such that

p2gq1q2 =


a1 0 0 · · · 0
b2 a2 0 · · · 0
b3 0 a3 · · · 0
...

...
...

. . .
...

bn 0 0 · · · an


for some a2 , . . . , an ∈ K(u)× and some b2 , . . . , bn ∈ K(u) . To complete
the proof, it now suffices to apply (n− 1) times the following lemma :

LEMMA A.2. Let a, b, c ∈ K(u) with a, c 6= 0 . There exists p ∈ GL2(OS) ,
q ∈ GL2(OV ) such that the matrix

p ·
(

a 0
b c

)
· q

is diagonal.
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The proof uses the following approximation property :

PROPOSITION A.3. For every f ∈ K(u)× , there exists λ ∈ OV such that
w0(f − λ) ≥ 0 and w∞(f − λ) > 0 .

Proof. We first show, by descending induction on w0(f ) , that there exists
λ0 ∈ OV such that w0(f − λ0) ≥ 0 : if w0(f ) ≥ 0 we may take λ0 = 0.
Otherwise, let f = ab−1uα where a , b ∈ F[u] are not divisible by u . For
µ = a(0)b(0)−1uα ∈ OV we have

w0(f − µ) > α = w0(f ),

hence induction yields µ0 ∈ OV such that w0
(
(f −µ)−µ0

)
≥ 0, and we may

take λ0 = µ+ µ0 .
Fix λ0 ∈ OV such that w0(f − λ0) ≥ 0. If w∞(f − λ0) > 0 we are done.

Otherwise, let

f − λ0 =
anun + · · ·+ a0

bmum + · · ·+ b0

with an , . . . , a0 , bm , . . . , b0 ∈ K , an , bm 6= 0, so that w∞(f − λ0) =

m− n ≤ 0. Let µ1 = anb−1
m un−m ∈ F[u] . We have

w∞
(
(f − λ0)− µ1

)
> m− n = w∞(f − λ0).

Again, arguing by induction on w∞(f − λ0) , we may find µ2 ∈ F[u] such
that

w∞
(
(f − λ0)− µ2

)
> 0.

Note that w0(µ2) ≥ 0 since µ2 ∈ F[u] . Therefore,

w0
(
(f − λ0)− µ2

)
≥ min

(
w0(f − λ0), w0(µ2)

)
≥ 0,

so we may choose λ = λ0 + µ2 .

Proof of Lemma A.2. For f ∈ K(u)× , let w(f ) = w0(f ) + w∞(f ) . Note
that w is not a valuation, but it is multiplicative and w(u) = 0. We shall argue
by induction on w(a)−w(c) ∈ Z ; but first note that by multiplying

(
a 0
b c

)
on

the right by
(

1 0
0 uα

)
for α = w0(a)− w0(c) , we may assume w0(a) = w0(c) .

By Proposition A.3, there exists λ ∈ OV such that

w0(bc−1 − λ) ≥ 0 and w∞(bc−1 − λ) > 0.

We then have w0(b − λc) ≥ w0(c) = w0(a) and w∞(b − λc) > w∞(c) .
Multiplying

(
a 0
b c

)
on the right by

(
1 0
−λ 1

)
yields
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a 0
b c

)
·
(

1 0
−λ 1

)
=

(
a 0

b− λc c

)
.

Thus, we may substitute b− λc for b and thus assume

(A.1) w0(b) ≥ w0(c) = w0(a) and w∞(b) > w∞(c).

If w∞(b) ≥ w∞(a) , then a−1b ∈ OS and the lemma follows from the equation

(A.2)
(

1 0
−a−1b 1

)
·
(

a 0
b c

)
=

(
a 0
0 c

)
.

We now start our induction on w(a) − w(c) . If w(a) − w(c) ≤ 0, then
since w0(a) = w0(c) we have w∞(a) ≤ w∞(c) . By (A.1) it follows that
w∞(b) > w∞(a) and we are done by (A.2). If w(a) − w(c) > 0 but
w∞(b) ≥ w∞(a) , we may also conclude by (A.2). For the rest of the proof,
we may thus assume w∞(a) > w∞(b) > w∞(c) . If w0(b) > w0(a) , then in
view of the equation (

1 0
1 1

)
·
(

a 0
b c

)
=

(
a 0

a + b c

)
we may substitute a + b for b . In that case, we have

w0(a + b) = min
(
w0(a), w0(b)

)
= w0(a)

and
w∞(a + b) = min

(
w∞(a), w∞(b)

)
= w∞(b).

Thus, in all cases we may assume

w0(b) = w0(a) = w0(c) and w∞(a) > w∞(b) > w∞(c).

Then ab−1 ∈ OS . Consider(
1 −ab−1

0 1

)
·
(

a 0
b c

)
·
(

0 1
1 0

)
=

(
−ab−1c 0

c b

)
.

We have

w(−ab−1c)− w(b) = w(a) + w(c)− 2w(b) = w∞(a) + w∞(c)− 2w∞(b).

Since w∞(b) > w∞(c) we have

w∞(a) + w∞(c)− 2w∞(b) < w∞(a)− w∞(c).

But w(a)−w(c) = w∞(a)−w∞(c) , hence w(−ab−1c)−w(b) < w(a)−w(c) .
By induction, the lemma holds for

(
−ab−1c 0

c b

)
, hence also for

(
a 0
b c

)
.
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A.2 VECTOR BUNDLES OVER P1
K

We use the same notation as in §A.1.

DEFINITION A.4. A vector bundle over P1
K is a triple E = (E,EV ,ES)

consisting of a finite-dimensional K(u) -vector space E , a finitely generated
OV -module EV ⊂ E , and a finitely generated OS -module ES ⊂ E such that

E = EV ⊗OV K(u) = ES ⊗OS K(u).

The rank of E is rkE = dim E . The intersection EV ∩ ES is a K -vector
space, which is called the space of global sections of E . We use the notation

Γ(E) = EV ∩ ES.

Since OV and OS are principal ideal domains, the OV - and OS -modules EV

and ES are free. Their rank is the rank n of E . Let (ei)n
i=1 (resp. (fi)n

i=1 ) be
a base of the OV -module EV (resp. the OS -module ES ). Each of these bases
is a K(u) -base of E , hence we may find a matrix g = (gij)n

i,j=1 ∈ GLn(K(u))
such that

(A.3) ej =

n∑
i=1

figij for j = 1, . . . , n .

The degree degE is defined as

degE = w0(det g) + w∞(det g) ∈ Z.

To see that this integer does not depend on the choice of bases, observe
that a change of bases substitutes for the matrix g a matrix g′ of the form
g′ = pgq for some p ∈ GLn(OS) and q ∈ GLn(OV ) . We have det p ∈ O×S ,
hence w0(det p) = w∞(det p) = 0. Likewise, det q ∈ O×V = K× ⊕ uZ , so
w0(det q) + w∞(det q) = 0, and it follows that w0(det g) + w∞(det g) =

w0(det g′) + w∞(det g′) .
A morphism of vector bundles (E,EV ,ES) → (E′,E′V ,E

′
S) over P1

K is a
K(u) -linear map ϕ : E → E′ such that ϕ(EV ) ⊂ E′V and ϕ(ES) ⊂ E′S .

EXAMPLE A.5. Vector bundles of rank 1 . Since OV and OS are principal
ideal domains, every vector bundle of rank 1 is isomorphic to a triple
E = (K(u), fOV , gOS) for some f , g ∈ K(u)× . Using unique factorization
in K[u] we may find p ∈ O×S , k , α ∈ Z such that f g−1 = p · (u− 1)k · uα .
Multiplication by g−1p−1(u − 1)−k is a K(u) -linear map ϕ : K(u) → K(u)
such that ϕ(f ) = uα and ϕ(g) = p−1(u − 1)−k . Since u ∈ O×V , it follows
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that ϕ(fOV ) = OV . Likewise, since p ∈ O×S , we have ϕ(gOS) = (u− 1)−kOS .
Therefore, ϕ defines an isomorphism E

∼→ (K(u),OV , (u−1)−kOS) . For n ∈ Z ,
we write

OP1
K
(n) = (K(u),OV , (u− 1)nOS).

If g ∈ K(u)× satisfies w0(g) +w∞(g) = −n , then g · (u− 1)−nu−w0(g) ∈ O×S ,
hence the arguments above yield

(A.4) (K(u),OV , gOS) ' (K(u),OV , (u− 1)nOS) = OP1
K
(−w0(g)− w∞(g)).

By definition of the degree,

degOP1
K
(n) = w0

(
(u− 1)−n)+ w∞

(
(u− 1)−n) = n.

The vector space of global sections of OP1
K
(n) is easily determined : by

definition, we have

Γ(OP1
K
(n)) = OV ∩ (u− 1)nOS

= {f ∈ OV | w0(f ) ≥ w0((u− 1)n), w∞(f ) ≥ w∞((u− 1)n)}.

Since w0(u− 1) = 0 and w∞(u− 1) = −1, we have

Γ(OP1
K
(n)) = {f ∈ K[u] | deg f ≤ n},

hence

dim Γ(OP1
K
(n)) =

{
0 if n < 0,

1 + n if n ≥ 0.

THEOREM A.6 (Grothendieck). For every vector bundle E on P1
K , there

exist integers k1 , . . . , kn ∈ Z such that

E ' OP1
K
(k1)⊕ · · · ⊕OP1

K
(kn).

Proof. Let E = (E,EV ,ES) be of rank n . Let (ei)n
i=1 (resp. (fi)n

i=1 ) be a
base of the OV -module EV (resp. the OS -module ES ), and let g = (gij)n

i,j=1 ∈
GLn(K(u)) be the change of base matrix as in (A.3). Slightly abusing the
matrix notation, for (A.3) we write simply

(A.5) (e1, . . . , en) = (f1, . . . , fn) · g.

Theorem A.1 yields matrices p ∈ GLn(OS) and q ∈ GLn(OV ) such that

(A.6) pgq = diag
(
(u− 1)−k1 , . . . , (u− 1)−kn

)
for some k1 , . . . , kn ∈ Z .

Define f ′1 , . . . , f ′n and e′1 , . . . , e′n by the equations
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(f ′1, . . . , f
′
n) = (f1, . . . , fn) · p−1 and (e′1, . . . , e

′
n) = (e1, . . . , en) · q.

Because p ∈ GLn(OS) , the sequence (f ′i )n
i=1 is a base of ES . Likewise, (e′i)

n
i=1

is a base of EV , and from (A.5) and (A.6) we derive

(e′1, . . . , e
′
n) = (f ′1, . . . , f

′
n) · diag

(
(u− 1)−k1 , . . . , (u− 1)−kn

)
.

Thus,

E =

n⊕
i=1

e′iK(u), EV =

n⊕
i=1

e′iOV , ES =

n⊕
i=1

e′i(u− 1)kiOS.

These equations mean that the map E → K(u)⊕n that carries each vector to
the n -tuple of its coordinates in the base (e′i)

n
i=1 defines an isomorphism of

vector bundles
E
∼→ OP1

K
(k1)⊕ · · · ⊕OP1

K
(kn).

COROLLARY A.7. For every vector bundle E on P1
K , the K -vector

space of global sections Γ(E) is finite-dimensional. More precisely, if E '
OP1

K
(k1)⊕ · · · ⊕OP1

K
(kn) for some k1 , . . . , kn ∈ Z , then

dim Γ(E) =

n∑
i=1

max(1 + ki, 0) and degE =

n∑
i=1

ki.

Proof. If E = E1 ⊕ E2 , then Γ(E) = Γ(E1) ⊕ Γ(E2) and degE =

degE1+degE2 . Since each Γ(OP1
K
(n)) is finite-dimensional and degOP1

K
(n) = n

(see Example A.5), the corollary follows.

From the formula for dim Γ(E) , it is easily seen by tensoring E with
OP1

K
(k) for various k ∈ Z that the integers k1 , . . . , kn such that E '

OP1
K
(k1)⊕ · · · ⊕OP1

K
(kn) are uniquely determined up to permutation.

A.3 VECTOR BUNDLES OVER CONICS

Let L be the function field of a smooth projective conic C over a field F .
Assume C has no rational point over F , and let ∞ be a point of degree 2
on C with residue field K separable over F . Let v∞ be the corresponding
discrete valuation on L and O∞ be its valuation ring. Let also OU ⊂ L be
the affine ring of C \{∞} , which is the intersection of all the valuation rings
of the F -valuations on L other than v∞ .

Let CK = C× Spec K be the conic over K obtained by base change, and
let f : CK → C be the projection. Since CK has a rational point, we have
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CK ' P1
K , i.e., the composite field KL is a purely transcendental extension

of K . We may find u ∈ KL such that KL = K(u) and the two valuations of
K(u) extending v∞ are w0 and w∞ , the u -adic and u−1 -adic valuations of
K(u) . Thus, using the notation of §A.2,

OU ⊗F K = OV and O∞ ⊗F K = OS.

REMARK A.8. A concrete description of the rings defined above can
be obtained by representing C as the Severi–Brauer variety of a quaternion
division algebra Q . Write V for the 3-dimensional subspace of trace 0
quaternions. Then q(v) := v2 is a quadratic form on V and the conic C is
the quadric in the projective plane P(V) given by the equation q = 0. Every
closed point of degree 2 on C is determined by an equation ϕ = 0 for
some nonzero linear form ϕ ∈ V∗ . If (r, s) is a base of kerϕ ⊂ V , then the
equation (xr + ys)2 = 0 has the solution x = −q(s) , y = rs in F(rs) , hence
F(rs) is the residue field of the corresponding point. Let ∞ be the closed
point on C determined by a linear form ϕ such that F(rs) is a separable
quadratic extension of F . Let also t ∈ V be a nonzero vector orthogonal
to kerϕ for the polar form bq of q . If t ∈ kerϕ , then bq(t, t) = 0, hence
char F = 2. Moreover, t is a linear combination of r and s , and the equations
bq(t, r) = bq(t, s) = 0 yield bq(r, s) = 0. This is a contradiction because then
the minimal polynomial of rs , which is X2 − bq(r, s)X + q(r)q(s) , is not
separable. Therefore, in all cases the choice of ∞ guarantees that (r, s, t) is
a base of V . Let (x, y, z) be the dual base of V∗ . Then the conic C is given
by the equation

(xr + ys + zt)2 = 0,

and ∞ is the point determined by the equation z = 0. Because t is orthogonal
to r and s , the equation of the conic simplifies to

(xr + ys)2 + z2t2 = 0.

Let U = C \ {∞} ; then

OU = F
[x

z
,

y
z

]
⊂ F

(x
z
,

y
z

)
= L.

The equation of the conic shows that y
z is a root of a quadratic equation

over F( x
z ) , hence every element in L has a unique expression of the form

f ( x
z ) + y

zg( x
z ) for some rational functions f , g with coefficients in F . If v∞

is the discrete valuation of the local ring O∞ , then

v∞

(x
z

)
= v∞

(y
z

)
= −1.
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More precisely, for f , g , h polynomials in one variable over F , with h 6= 0,

v∞

( f ( x
z ) + y

zg( x
z )

h( x
z )

)
= deg h−max(deg f , 1 + deg g).

We claim that we may take for u the element x
z rs + y

z q(s) . To see this, let ι
denote the nontrivial L -automorphism of KL . For u = x

z rs + y
z q(s) we have

ι(u) = x
z sr + y

z q(s) , and from the equation of the conic it follows that

(A.7) u . ι(u) =
q(s)
z2 (xr + ys)2 = −q(s)q(t) ∈ F×.

This equation shows that for every valuation w of KL extending v∞ we have
w(u) = −w

(
ι(u)
)

. Moreover, from u = x
z rs + y

z q(s) and u− ι(u) = x
z (rs− sr)

it follows that
w(u) ≥ min

(
v∞

(x
z

)
, v∞

(y
z

))
= −1

and
−1 = v∞

(x
z

)
≥ min

(
w(u), w

(
ι(u)
))
.

Therefore, either w(u) = −w
(
ι(u)
)

= 1, i.e., w = w0 , or w(u) = w
(
ι(u)
)

=

−1, i.e., w = w∞ .

The following result is folklore. (For proofs in characteristic different
from 2, see Pfister [17, Prop. 1] and the references on [17, p. 260]. Our
arguments below are close to those in Milgram–Ranicki [15, Lemma 6.7].)

LEMMA A.9. The ring OU is a principal ideal domain.

Proof. Let I ⊂ OU be an ideal. Since OV = K[u, u−1] is a principal ideal
domain, we may find f ∈ OV such that I⊗F K = fOV . As I⊗F K is preserved
by ι , we have fOV = ι(f )OV , hence ι(f )f−1 ∈ O×V = K× ⊕ uZ . Let a ∈ K×

and α ∈ Z be such that

(A.8) ι(f )f−1 = auα.

Since NKL/L(ι(f )f−1) = 1, it follows by (A.7) that

NKL/L(auα) = NK/F(a)
(
−q(s)q(t)

)α
= 1.

If α is odd, let α = 2β − 1 and a
(
−q(s)q(t)

)β
= b + crs with b , c ∈ F .

Then NK/F(b + crs) = −q(s)q(t) , hence

(cr + bq(s)−1s)2 + t2 = 0.
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Thus, the conic C has an F -rational point, a contradiction. Therefore, α is
even. Let α = 2β . Then from (A.7) and (A.8) we have

ι(uβ f ) · (uβ f )−1 = a
(
−q(s)q(t)

)β ∈ K×.

By Hilbert’s Theorem 90, we may find b ∈ K× such that a
(
−q(s)q(t)

)β
=

bι(b)−1 . Then
ι(buβ f ) = buβ f ∈ L×.

Since buβ ∈ O×V , we have fOV = buβ fOV , hence I = buβ fOU .

DEFINITION A.10. A vector bundle over C is a triple E = (E,EU,E∞)
consisting of a finite-dimensional L -vector space E , a finitely generated OU -
module EU ⊂ E , and a finitely generated O∞ -module E∞ ⊂ E such that

E = EU ⊗OU L = E∞ ⊗O∞ L.

The rank of E is rkE = dim E . The intersection EU ∩ E∞ is an F -vector
space called the space of global sections of E . We write

Γ(E) = EU ∩ E∞.

The degree of a vector bundle over C is defined as for vector bundles over
P1

K : Since OU and O∞ are principal ideal domains, the OU - and O∞ -modules
EU and E∞ are free of rank rkE . Let (ei)n

i=1 (resp. (fi)n
i=1 ) be a base of

the OU -module EU (resp. the O∞ -module E∞ ). Each of these bases is an
L -base of E , hence we may find a matrix g = (gij)n

i,j=1 ∈ GLn(L) such that

(A.9) ej =

n∑
i=1

figij for j = 1, . . . , n .

The degree degE is defined as

degE = 2v∞(det g) ∈ Z.

To see that this integer does not depend on the choice of bases, observe
that a change of bases substitutes for the matrix g a matrix g′ of the form
g′ = pgq for some p ∈ GLn(O∞) and q ∈ GLn(OU) . We have det p ∈ O×S ,
hence v∞(det p) = 0. Likewise, det q ∈ O×U , hence v(det q) = 0 for every
F -valuation v of L other than v∞ . Since the degree of every principal
divisor is zero, it follows that we also have v∞(det q) = 0. Therefore,
v∞(det g) = v∞(det g′) .
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A morphism of vector bundles (E,EU,E∞)→ (E′,E′U,E
′
∞) over C is an

L -linear map ϕ : E → E′ such that ϕ(EU) ⊂ E′U and ϕ(E∞) ⊂ E′∞ . When
ϕ : E ↪→ E′ is an inclusion map, the vector bundle E = (E,EU,E∞) is said
to be a subbundle of E′ = (E′,E′U,E

′
∞) . If moreover EU = E ∩ E′U and

E∞ = E ∩ E′∞ , then the triple (E′/E,E′U/EU,E′∞/E∞) is a vector bundle,
which we call the quotient bundle and denote by E′/E . In particular, for
every morphism ϕ : E → E′ we may consider a subbundle kerϕ of E and,
provided that ϕ(EU) = ϕ(E) ∩ E′U and ϕ(E∞) = ϕ(E) ∩ E′∞ , a vector bundle
cokerϕ , which is a quotient of E′ .

EXAMPLE A.11. Vector bundles of rank 1. We use the representation of
the conic C in Remark A.8. The same arguments as in Example A.5 show that
every vector bundle of rank 1 over C is isomorphic to a triple (L,OU, ( x

z )nO∞)
for some n ∈ Z . The degree of this vector bundle is 2n ; therefore we write

OC(2n) = (L,OU,
(x

z

)n
O∞).

Note that for any g ∈ L× we have as in (A.4)

(L,OU, gO∞) ' OC(−2v∞(g)).

For the vector space of global sections we have

Γ(OC(2n)) = {f ∈ OU | v∞(f ) ≥ n}

=

{
f
(x

z

)
+

y
z
g
(x

z

)
| deg f ≤ n, deg g ≤ n− 1

}
.

Therefore,

(A.10) dim Γ(OC(2n)) =

{
2n + 1 if n ≥ 0,

0 if n < 0.

We may extend scalars of every vector bundle over C to get a vector
bundle over P1

K : for any vector bundle E = (E,EU,E∞) over C , we define

f ∗(E) = (E ⊗F K, EU ⊗F K, E∞ ⊗F K).

This f ∗(E) is a vector bundle over P1
K of rank rk f ∗(E) = rkE . If K = F(α) ,

every vector in E ⊗F K has a unique expression in the form x ⊗ 1 + y ⊗ α
with x , y ∈ E . This vector is in EU ⊗F K (resp. E∞ ⊗F K ) if and only if x ,
y ∈ EU (resp. x , y ∈ E∞ ), hence

(A.11) Γ
(
f ∗(E)

)
= Γ(E)⊗F K.
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Since every OU -base of EU is an OV -base of EU ⊗F K and every O∞ -base
of E∞ is an OS -base of E∞ ⊗F K , we can compute the degree of E and
the degree of f ∗(E) with the same matrix g ∈ GLn(L) (see (A.9)). We get
degE = 2v∞(det g) and deg f ∗(E) = w0(det g) +w∞(det g) . Because w0 and
w∞ are the two valuations of K(u) extending v∞ , it follows that

(A.12) deg f ∗(E) = degE.

There is a construction in the opposite direction : every vector bundle
E′ = (E′,E′V ,E

′
S) over P1

K yields a vector bundle f∗(E′) over C by restriction
of scalars, i.e., by viewing E′ as a vector space over L , E′V as a module over
OU , and E′S as a module over O∞ . Thus, rk f∗(E′) = 2 rkE′ , and

Γ
(
f∗(E′)

)
= Γ(E′) (viewed as an F -vector space).

For the next proposition, we let ι denote the nontrivial automorphism of
K(u) over L . For every K(u) -vector space E′ , we let ιE′ denote the twisted
K(u) -vector space defined by

ιE′ = {ιx | x ∈ E′}

with the operations

ιx + ιy = ι(x + y) and (ιx)λ = ι(xι(λ))

for x , y ∈ E′ and λ ∈ K(u) . For every OV -module E′V and every OS -module
E′S , the twisted modules ιE′V and ιE′S are defined similarly. We may thus
associate a twisted vector bundle ιE′ to every vector bundle E′ over P1

K . Note
that ι(u) ∈ u−1F× (see (A.7)), hence ι interchanges the valuations w0 and
w∞ . Therefore, w0(ι(δ))+w∞(ι(δ)) = w0(δ)+w∞(δ) for every δ ∈ K(u)× . It
follows that deg ιE′ = degE′ ; in particular, ιOP1

K
(n) ' OP1

K
(n) for all n ∈ Z ,

and Grothendieck’s theorem (Theorem A.6) yields ιE′ 'E′ for every vector
bundle E′ over P1

K .

PROPOSITION A.12.
(i) For every vector bundle E over C , we have

f∗f ∗(E) 'E ⊕E.

(ii) For every vector bundle E′ over P1
K , we have a canonical isomor-

phism
f ∗f∗(E′) 'E′ ⊕ ιE′,

and an isomorphism f ∗f∗(E′) 'E′ ⊕E′ .
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Proof. (i) Let α ∈ K be such that K = F(α) . For every L -vector space E ,
mapping x⊗1+y⊗α to (x, y) for x , y ∈ E defines an L -linear isomorphism
E ⊗F K ∼→ E ⊕ E . We thus get an isomorphism f∗f ∗(E) 'E ⊕E .

(ii) For every K(u) -vector space E′ , we identify E′ ⊗F K with E′ ⊗ ιE′

by mapping x ⊗ λ to (xλ, (ιx)λ) . We thus get a canonical isomorphism
f ∗f∗(E′) 'E′ ⊕ ιE′ .

COROLLARY A.13. For every vector bundle E′ over P1
K ,

deg f∗(E′) = 2 degE′.

Proof. Proposition A.12(ii) and (A.12) yield

deg f∗(E′) = deg(E′ ⊕E′) = 2 degE′.

COROLLARY A.14. For every n ∈ Z we have
(i) f ∗

(
OC(2n)

)
' OP1

K
(2n) ,

(ii) f∗
(
OP1

K
(2n)

)
' OC(2n)⊕OC(2n) .

Moreover, f∗
(
OP1

K
(2n + 1)

)
is an indecomposable vector bundle of rank 2 and

degree 4n + 2 over C .

Proof. From the definitions of OC(2n) and f ∗ , we have

f ∗
(
OC(2n)

)
= (K(u),OV , tnOS).

By (A.4) it follows that

f ∗
(
OC(2n)

)
' OP1

K
(−w0(tn)− w∞(tn)) = OP1

K
(2n).

This proves (i). Moreover, applying f∗ to each side, we get

f∗
(
OP1

K
(2n)

)
' f∗f ∗

(
OC(2n)

)
,

and (ii) follows from Proposition A.12(i).
By definition, it is clear that f∗

(
OP1

K
(2n+1)

)
is a vector bundle of rank 2.

Corollary A.13 shows that its degree is 4n+2, and it only remains to show that
this vector bundle is indecomposable. Any nontrivial decomposition involves
two vector bundles of rank 1, and has therefore the form

f∗
(
OP1

K
(2n + 1)

)
' OC(2m1)⊕OC(2m2)

for some m1 , m2 ∈ Z . By applying f ∗ to each side and using (i) and
Proposition A.12(ii), we obtain

OP1
K
(2n + 1)⊕OP1

K
(2n + 1) ' OP1

K
(2m1)⊕OP1

K
(2m2).

This is a contradiction because the Grothendieck decomposition in Theo-
rem A.6 is unique up to permutation of the summands.
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We write IC(4n + 2) = f∗
(
OP1

K
(2n + 1)

)
. In the rest of this section, our

goal is to prove that every vector bundle over C decomposes in a unique way
in a direct sum of vector bundles of the form OC(2n) and IC(4n + 2) .

PROPOSITION A.15. For every vector bundle E over C , the space of
global sections Γ(E) is finite-dimensional.

Proof. This readily follows from (A.11) and Corollary A.7.

COROLLARY A.16. For every vector bundle E over C , the F -algebra
EndE is finite-dimensional. Moreover, the idempotents in EndE split : every
idempotent e ∈ EndE yields a decomposition E = ker e ⊕ im e. If E does
not decompose into a sum of nontrivial vector bundles, then EndE is a local
ring (i.e., the noninvertible elements form an ideal).

Proof. For E = (E,EU,E∞) , we have EndE = Γ(EndE) where

EndE = (EndL E, EndOU EU, EndO∞ E∞).

Therefore, Proposition A.15 shows that the dimension of EndE is finite. This
algebra is therefore right (and left) Artinian. If e ∈ EndE is an idempotent,
then for every vector x ∈ E we have x =

(
x− e(x)

)
+ e(x) , hence

E = ker e⊕ im e, EU = (EU ∩ ker e)⊕ (EU ∩ im e),

E∞ = (E∞ ∩ ker e)⊕ (E∞ ∩ im e).

This shows that e splits. If E is indecomposable, then EndE has no nontrivial
idempotents. It follows from Lam [14, Cor. (19.19)] that EndE is a local
ring.

The properties of EndE established in Corollary A.16 allow us to use the
general approach to the Krull–Schmidt theorem in Bass [2, Ch. I, (3.6)] (see
also Lam [14, (19.21)]) to derive the following “Krull–Schmidt” result :

COROLLARY A.17. Every vector bundle over C decomposes into a sum
of indecomposable vector bundles, and the decomposition is unique up to
isomorphism and the order of summands.

Note that the existence of a decomposition into indecomposable vector
bundles is clear by induction on the rank.
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THEOREM A.18. Every vector bundle E over C has a decomposition of
the form

E ' OC(2k1)⊕ · · · ⊕OC(2kr)⊕IC(4`1 + 2)⊕ · · · ⊕IC(4`m + 2)

for some k1 , . . . , kr , `1 , . . . , `m ∈ Z . The sequences (k1, . . . , kr) and
(`1, . . . , `m) are uniquely determined by E up to permutation of the entries.

Proof. In view of Corollary A.17, it only remains to show that the vector
bundles OC(2k) and IC(4`+ 2) are the only indecomposable vector bundles
over C up to isomorphism. Suppose E is an indecomposable vector bundle
over C . Grothendieck’s theorem (Theorem A.6) yields integers n1 , . . . , np ∈ Z
such that

f ∗(E) ' OP1
K
(n1)⊕ · · · ⊕OP1

K
(np).

Applying f∗ to each side, we get by Proposition A.12(i)

E ⊕E ' f∗
(
OP1

K
(n1)
)
⊕ · · · ⊕ f∗

(
OP1

K
(np)
)
.

If n1 is even, then f∗
(
OP1

K
(n1)
)
' OC(n1)⊕OC(n1) by Corollary A.14, hence

p = 1 and E ' OC(n1) . If n1 is odd, then f∗
(
OP1

K
(n1)
)

is indecomposable
by Corollary A.14, hence we must have E ' f∗

(
OP1

K
(n1)
)

= IC(2n1) (and
p = 2, and n2 = n1 ).

EXAMPLE A.19. The tautological vector bundle. We use the representation
of C in Remark A.8. Let

QC = OC(0)⊗F Q = (QL,QU,Q∞)

where QL = L⊗F Q , QU = OU ⊗F Q , Q∞ = O∞⊗F Q . Consider the element

e :=
x
z

r +
y
z

s + t ∈ QL

and the 2-dimensional right ideal E = eQL . We define the bundle T =

(E,EU,E∞) by
EU = E ∩ QU and E∞ = E ∩ Q∞.

LEMMA A.20. We have
(a) EU = eQ ·OU = erOU ⊕ esOU ,
(b) E∞ = e z

y Q ·O∞ = e z
y rO∞ ⊕ e z

y tO∞ .

Proof. We first note that

(A.13) e
x
z

r + e
y
z

s + et = e2 = 0.
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Since erOU + esOU ⊂ EU , to prove (a) it suffices to show EU ⊂ eQ ·OU and
eQ ⊂ erOU + esOU . We start with the second inclusion.

It follows from (A.13) that

(A.14) et = −e
x
z

r − e
y
z

s ∈ erOU + esOU.

Write ` := rs ∈ Q . Note that ` /∈ F and (rF + sF)` = rF + sF . Multiplying
(A.14) by ` on the right, we then get

(A.15) et` = −e
x
z

r`− e
y
z

s` ∈ er`OU + es`OU = erOU + esOU.

Also t` /∈ V : for if t` ∈ V then V` = V , hence ` lies in the orthogonal
of V for the bilinear form TrdQ(XY) ; it follows that ` ∈ F , a contradiction.
Therefore, (r, s, t, t`) is a base of Q . The inclusion eQ ⊂ erOU +esOU follows
from (A.14) and (A.15).

We next show EU ⊂ eQ · OU . Equations (A.14) and (A.15) show that
eQL is spanned by er and es , hence every element ξ ∈ EU has the form
ξ = erλ + esµ for some λ , µ ∈ L . We show that the hypothesis ξ ∈ QU

implies λ , µ ∈ OU . Let denote the quaternion conjugation. Since ξ ∈ QU ,
we have ξs− sξ ∈ QU . Computation yields

ξs− sξ = (ers− sre)λ = (trs− srt)λ.

By the choice of t we have bq(t, r) = bq(t, s) = 0, hence t anticommutes
with r and s , and therefore

ξs− sξ = (rs− sr)tλ.

Since rs − sr 6= 0 and ξs − sξ ∈ QU , it follows that λ ∈ OU . Therefore,
esµ = ξ − erλ ∈ QU , hence eµ ∈ QU . It follows that µ ∈ OU , because
eµ = r x

zµ+ s y
zµ+ tµ . The proof of (a) is thus complete.

The proof of (b) is similar. Since e z
y rO∞ + e z

y tO∞ ⊂ E∞ , it suffices to
prove E∞ ⊂ e z

y Q · O∞ and eQ ⊂ erO∞ + esO∞ . We again start with the
second inclusion.

It follows from (A.13) that

(A.16) es = −e
x
y

r − e
z
y

t ∈ erO∞ + etO∞.

Write m := rt ∈ Q . Note that m /∈ F and (rF + tF)m = rF + tF . Multiplying
(A.16) by m on the right, we then get

(A.17) esm = −e
x
y

rm− e
z
y

tm ∈ ermO∞ + etmO∞ = erO∞ + etO∞.
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Also sm /∈ V since Vm 6= V . Therefore, (r, s, t, sm) is a base of Q . The
inclusion eQ ⊂ erO∞ + esO∞ follows from (A.16) and (A.17).

It also follows from (A.16) and (A.17) that eQL is spanned by e z
y r and

e z
y t , hence every element ξ ∈ E∞ has the form ξ = e z

y rλ + e z
y tµ for some

λ , µ ∈ L . We show that ξ ∈ Q∞ implies λ , µ ∈ O∞ . Since t anticommutes
with r and s , we have

ξt − tξ = (ert − tre)
z
y
λ = (sr − rs)tλ.

Because ξt− tξ ∈ Q∞ , it follows that λ ∈ O∞ . Then ξ−e z
y rλ = e z

y tµ ∈ Q∞ ,
and it follows that µ ∈ O∞ .

It follows from (A.16) that the change of base matrix between the bases
(er, es) and (e z

y r, e z
y t) is equal to( y

z − x
z

0 −1

)
.

Therefore, degT = 2v∞( y
z ) = −2. Note also that Γ(T) = {0} because

EU∩E∞ = E∩Q and Q is a division algebra. Therefore, T is indecomposable
because if T ' OC(2m) ⊕ OC(2p) for some m , p ∈ Z then comparing the
degrees we see that m + p = −1. But then one of m , p must be nonnegative,
and then OC(2m) or OC(2p) has nonzero global sections. Thus, we must have
T ' IC(−2) .

Note that Q acts naturally on the bundle T , i.e., T is a Q -module
bundle, so we have a canonical embedding Qop ↪→ EndT . In fact, since
T ' IC(−2) we have by Corollary A.22 and (2.2)

End(T) ' T ⊗T∨ ' IC(−2)⊗IC(2) ' OC(0)⊕4.

Therefore, dim EndT = 4, hence

EndT ' Qop ' Q.

Since IC(2n) = IC(−2)⊗OC(n + 1) for all odd n (see (2.3)), we also have

(A.18) End
(
IC(2n)

)
' Q for all odd n .

A.4 DUALITY

The dual of a vector bundle E = (E,EU,E∞) over C is the vector bundle

E∨ = (HomL(E,L), HomOU (EU,OU), HomO∞ (E∞,O∞)).
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PROPOSITION A.21. degE∨ = − degE .

Proof. Let (ei)n
i=1 be an OU -base of EU and (fi)n

i=1 be an O∞ -base of
E∞ , and let g = (gij)n

i,j=1 ∈ GLn(L) be defined by the equations

ej =

n∑
i=1

figij for j = 1, . . . , n .

So, by definition, degE = 2v∞(det g) . The dual bases (e∗i )n
i=1 and (f ∗i )n

i=1
are bases of HomOU (EU,OU) and HomO∞ (E∞,O∞) respectively, and they are
related by

e∗j =

n∑
i=1

f ∗i g
′
ij for j = 1, . . . , n ,

where the matrix g′ = (g′ij)
n
i,j=1 is (gt)−1 . Therefore, det g′ = (det g)−1 and

degE∨ = − degE .

COROLLARY A.22. If E ' OC(2k1)⊕ · · · ⊕OC(2kr)⊕IC(4`1 + 2)⊕ · · · ⊕
IC(4`m + 2) for some k1 , . . . , kr , `1 , . . . , `m ∈ Z , then

E∨ ' OC(−2k1)⊕ · · · ⊕OC(−2kr)⊕IC(−4`1 − 2)⊕ · · · ⊕IC(−4`m − 2).

Proof. OC(2k)∨ is a vector bundle of rank 1 and degree −2k , hence
O(2k)∨ ' OC(−2k) . Similarly, IC(4`+2)∨ is an indecomposable vector bundle
of rank 2 and degree −4`− 2, hence IC(4`+ 2)∨ ' IC(−4`− 2) .
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