
MiningZinc: a Declarative Framework
for Constraint-based Mining

Tias Gunsa, Anton Driesa, Siegfried Nijssena,b, Guido Tackc, Luc De Raedta

aDepartment of Computer Science, KU Leuven {firstname.lastname}@cs.kuleuven.be
bLIACS, Universiteit Leiden s.nijssen@liacs.leidenuniv.nl

cFaculty of IT, Monash University, Australia and National ICT Australia (NICTA)
guido.tack@monash.edu

Abstract

We introduce MiningZinc, a declarative framework for constraint-based data
mining. MiningZinc consists of two key components: a language component
and an execution mechanism.

First, the MiningZinc language allows for high-level and natural modeling
of mining problems, so that MiningZinc models are similar to the mathematical
definitions used in the literature. It is inspired by the Zinc family of languages
and systems and supports user-defined constraints and functions.

Secondly, the MiningZinc execution mechanism specifies how to compute
solutions for the models. It is solver independent and supports both standard
constraint solvers and specialized data mining systems. The high-level problem
specification is first translated into a normalized constraint language (FlatZinc).
Rewrite rules are then used to add redundant constraints or solve subproblems
using specialized data mining algorithms or generic constraint programming
solvers. Given a model, different execution strategies are automatically ex-
tracted that correspond to different sequences of algorithms to run. Optimized
data mining algorithms, specialized processing routines and generic solvers can
all be automatically combined.

Thus, the MiningZinc language allows one to model constraint-based itemset
mining problems in a solver independent way, and its execution mechanism can
automatically chain different algorithms and solvers. This leads to a unique
combination of declarative modeling with high-performance solving.

Keywords: Constraint-based mining, Itemset Mining, Constraint
Programming, Declarative modeling, Pattern Mining
2010 MSC: 70, 90

1. Introduction

The fields of data mining and constraint programming are amongst the most
successful subfields of artificial intelligence. Significant progress in the past few
years has resulted in important theoretical insights as well as the development

Preprint submitted to Artificial Intelligence Journal February 1, 2016

of effective algorithms, techniques, and systems that have enabled numerous
applications in science, society, as well as industry. In recent years, there has
been an increased interest in approaches that combine or integrate principles of
these two fields [1]. This paper intends to contribute towards bridging this gap.

It is motivated by the observation that the methodologies of constraint pro-
gramming and data mining are quite different. Constraint programming has
focused on a declarative modeling and solving approach of constraint satisfac-
tion and optimisation problems. Here, a problem is specified through a so-called
model consisting of the variables of interest and the possible values they can take,
the constraints that need to be satisfied, and possibly an optimization function.
Solutions are then computed using a general purpose solver on the model. Thus
the user specifies what the problem is and the constraint programming system
determines how to solve the problem. This can be summarized by the slogan
constraint programming = model + solver(s).

The declarative constraint programming approach contrasts with the typical
procedural approach to data mining. The latter has focussed on handling large
and complex datasets that arise in particular applications, often focussing on
special-purpose algorithms to specific problems. This typically yields complex
code that is not only hard to develop but also to reuse in other applications.
Data mining has devoted less attention than constraint programming to the
issue of general and generic solution strategies. Today, there is only little sup-
port for formalizing a mining task and capturing a problem specification in a
declarative way. Developing and implementing the algorithms is labor inten-
sive with only limited re-use of software. The typical iterative nature of the
knowledge-discovery cycle [2] further complicates this process, as the problem
specification may change between iterations, which may in turn require changes
to the algorithms.

The aim of this paper is to contribute to bridging the methodological gap
between the fields of data mining and constraint programming by applying the
model + solver approach to data mining.

In constraint programming, high-level languages such as Zinc [3], Essence [4]
and OPL [5] are used to model the problem while general purpose solvers are
used to compute the solutions. Motivated in particular by solver-independent
modeling languages, we devise a modeling language for data mining problems
that can be expressed as constraint satisfaction or optimisation problems. Fur-
thermore, we contribute an accompanying framework that can infer efficient
execution strategies involving both specialized mining systems, and generic con-
straint solvers. This should contribute to making data mining approaches more
flexible and declarative, as it becomes easy to change the model and to reuse
existing algorithms and solvers.

As the field of data mining is diverse, we focus in this paper on one of
the most popular tasks, namely, constraint-based pattern mining. Even for the
restricted data type of sets and binary databases, many settings (supervised and
unsupervised) and corresponding systems have been proposed in the literature;
this makes itemset mining an ideal showcase for a declarative approach to data
mining.

2

The key contribution of this paper is the introduction of a general-purpose,
declarative mining framework called MiningZinc. The design criteria for Min-
ingZinc are:

• to support the high-level and natural modeling of pattern mining tasks;
that is, MiningZinc models should closely correspond to the definitions of
data mining problems found in the literature;

• to support user-defined constraints and criteria such that common ele-
ments and building blocks can be abstracted away, easing the formulation
of existing problems and variations thereof;

• to be solver-independent, such that the best execution strategy can be
selected for the problem and data at hand. Supported methods should in-
clude both general purpose solvers, specialized efficient mining algorithms
and combinations thereof;

• to build on and extend existing constraint programming and data min-
ing techniques, capitalizing on and extending the state-of-the-art in these
fields.

In data mining, to date there is no other framework that supports these four de-
sign criteria. Especially the combination of user-defined constraints and solver-
independence is uncommon (we defer a detailed discussion of related work to
Section 6). In the constraint programming community, however, the design of
the Zinc [3, 6] family of languages and frameworks is in line with the above cri-
teria. The main question that we answer in this paper is hence how to extend
this framework to support constraint-based pattern mining.

We contribute:

1. a novel library of functions and constraints in the MiniZinc language, to
support modeling itemset mining tasks in terms of set operations and
constraints;

2. the ability to define the capabilities of generic solvers and specialized al-
gorithms in terms of constraints, where the latter can solve a predefined
combination of constraints over input and output variables;

3. a rewrite mechanism that can be used to add redundant constraints and
determine the applicability of the defined algorithms and solvers;

4. and automatic composition of execution strategies involving multiple such
specialized or generic solving methods.

The language used is MiniZinc [7] version 2.0, extended with a library of
functions and constraints tailored for pattern mining. The execution mecha-
nism, however, is much more elaborate than that of standard MiniZinc. For
a specific constraint solver, it will translate each constraint individually to a
constraint supported by said solver. Our method can automatically compose
execution strategies with multiple solvers.

The MiningZinc framework builds on our earlier CP4IM framework [8],
which showed the feasibility of constraint programming for pattern mining. This
work started from the modeling experience obtained with CP4IM, but the latter

3

contained none of the above contributions as it was tied to the Gecode solver
and consisted of a low-level encoding of the constraints.

The present paper extends our earlier publication on MiningZinc [9] in many
respects. It considers the modeling and solving of a wider range of data mining
tasks including numeric and probabilistic data, multiple databases and pattern
sets. The biggest change is in the execution mechanism, which is no longer
restricted to using a single algorithm or generic solver. Instead, it uses rewrite
rules to automatically construct execution plans consisting of multiple solver/al-
gorithm components. We also perform a more elaborate evaluation, including
a comparison of automatically composed execution strategies on a novel combi-
nation of tasks.

Structure of the text. Section 2 introduces modeling in MiningZinc using the
basic problem of frequent itemset mining. Section 3 illustrates how a wide
range of constraint-based mining problems can be expressed in MiningZinc. In
Section 4 the execution mechanism behind MiningZinc is explained, and Sec-
tion 5 experimentally demonstrates the capabilities of the approach. Section 6
describes related work and Section 7 concludes.

2. Modeling

MiningZinc builds on the MiniZinc modeling language and is hence suit-
able for data mining problems that can be expressed as constraint satisfac-
tion/enumeration or optimisation problems. We first introduce itemset mining
and constraint-based mining. Using frequent itemset mining as an example, we
demonstrate how this can be formulated as a constraint satisfaction problem in
MiniZinc; and how this relates to the MiningZinc framework.

More advanced problem formulations and related tasks are given in the next
section.

2.1. Pattern mining and itemset mining

Pattern mining is a subfield of data mining concerned with finding patterns,
regularities, in data. Examples of patterns include products that people often
buy together, words that appear frequently in abstracts of papers, recurring
combinations of events in log files, common properties in a large number of
observations, etcetera. Typical in pattern mining is that the pattern is a sub-
structure appearing in the data, so not single words or events but collections
thereof; and that there is a measure for the interestingness of a pattern, often
based on how frequently it appears in the data.

We will focus on pattern mining problems where the patterns are expressible
as sets, also called itemsets. Itemset mining was introduced by Agrawal et
al. [10] as a technique to mine customer transaction databases for sets of items
(products) that people often buy together. From these, unexpected associations
between products can then be discovered.

Since its introduction, itemset mining has been extended in many directions,
including more structured types of patterns such as sequences, trees and graphs.

4

A common issue with pattern mining techniques is that the number of patterns
found can be overwhelming. In this respect, there has been much research on the
use of constraints to avoid finding uninteresting patterns, on ways of removing
redundancy among patterns, as well as different interestingness measures to be
used. An overview can be found in a recent book [11].

The input to an itemset mining algorithm is an itemset database, containing
a set of transactions each consisting of an identifier and a set of items. We denote
the set of transaction identifiers as S = {1, . . . , n} and the set of all items as
I = {1, . . . ,m}. An itemset database D maps transaction identifiers t ∈ S to
sets of items: D(t) ⊆ I.

Definition 1 (Frequent Itemset Mining). Given an itemset database D and
a threshold Freq , the frequent itemset mining problem consists of finding all
itemsets I ⊆ I such that |φD(I)| ≥ Freq , where φD(I) = {t|I ⊆ D(t)}.

The set φD(I) is called the cover of the itemset. It contains all transaction
identifiers for which the itemset is a subset of the respective transaction. The
threshold Freq is often called the minimum frequency threshold. An itemset I
which has |φD(I)| ≥ Freq is called a frequent itemset.

Example 1. Consider a transaction database from a hardware store:

t D(t) t D(t)
1 {Hammer, Nails, Saw} 4 {Nails, Screws, Wood}
2 {Hammer, Nails, Wood} 5 {File, Saw}
3 {File, Saw, Screws, Wood} 6 {Hammer, Nails, Pliers, Wood}

With a minimum frequency threshold of 3, the frequent patterns are: ∅, {Hammer},
{Nails}, {Hammer,Nails}, {Wood}, {Nails,Wood}.

Constraint-based pattern mining methods can leverage additional constraints
during the pattern discovery process; cf. [10, 12, 13]. This has lead to the
research topic of constraint-based itemset mining [14]. Section 3 will present
different constraint-based mining problems in the context of MiningZinc.

2.2. Constraint Programming

Constraint Programming (CP) is a generic method for solving combinatorial
constraint satisfaction (and optimisation) problems. It is a declarative method,
in that it separates the specification of the problem from the actual search for
a solution. On the language side, a number of declarative and convenient lan-
guages have been developed. On the solver side, many generic constraint solvers
are available, including industrial ones. We refer to the Handbook of Constraint
Programming for an extensive overview of technologies and applications [15].

More formally, a Constraint Satisfaction Problem (CSP) is characterized by
a declarative specification of constraints over variables.

Definition 2 (Constraint Satisfaction Problem (CSP)). A CSP P = (V,D, C)
is specified by

5

• a finite set of variables V;

• a domain D, mapping each variable V ∈ V to a set of possible values
D(V);

• a finite set of constraints C.

A variable V ∈ V is called fixed if |D(V)| = 1. An assignment to the variables V
is a domain D for which all its variables are fixed. A domain D′ is called stronger
than a domain D if D′(V) ⊆ D(V) for all V ∈ V. A constraint C(V1, . . . , Vk) ∈ C
is an arbitrary Boolean function on variables {V1, . . . , Vk} ⊆ V. A solution to
a CSP is an assignment to the variables such that all constraints are satisfied,
where the domain D′ of the assignment must be stronger than D, e.g. in D′

each variable V can only be assigned to an element of D(V).

Example 2. Imagine going on a boat trip. There is room to take 2 friends. Of
4 sailing friends, Sjarel and Kaat are better not put on a boat together; Kaat
only wants to go if Nora goes; for Raf anything is fine. This can be modelled
with a set variable F with domain {Sjarel ,Kaat ,Nora,Raf } and constraints
|F | = 2, {Sjarel ,Kaat} * F, (Kaat ∈ F)→ (Nora ∈ F).

A range of practical modeling languages exist that aid a user in formulating
a CSP. Example languages are MiniZinc [3], Essence [4] and OPL [5]. Such
languages define variable types, such as Booleans, integers, sets and floats; and
define a large number of constraints that can be specified. They typically provide
a number of modeling conveniences such as syntactic sugar for accessing an
element of an array, for looping over sets (e.g. forall, exists) and for using
mathematical-like operators such as sums and products.

2.3. MiniZinc and itemset mining in MiniZinc

We build on the MiniZinc [6] modeling language, version 2.0. A MiniZinc
model describes a constraint problem as a sequence of expressions, which can
include parameter declarations, declarations of decision variables, function and
predicate declarations, and constraints. A model describes a parametric prob-
lem class, and it is instantiated by providing values for all the parameters, typ-
ically in a separate data file. An important feature of MiniZinc is that models
are solver-independent. They can be translated in a non-parameterized (in-
stantiated) low-level format called FlatZinc that can contain solver-dependent
constructs. This format is understood by a wide range of different types of
solvers [16], such as CP solvers, MIP (Mixed Integer Linear Programming)
solvers, SAT (Boolean Satisfiability) and SMT (SAT-Modulo-Theories) solvers.

The solver reads and interprets the FlatZinc and computes solutions. The
compiler achieves the specialization for a particular solver through the use of
a solver-specific library of predicate declarations. Such a library declares each
basic constraint as either a solver builtin, which is understood natively by the
target solver, or as a decomposition into simpler constraints that are supported
by the solver.

6

Listing 1: “A simple MiniZinc model”

1 i n t : n ;
2 ar ray [1 . . n] of var 1 . . n : queens ;

3 con s t r a i n t a l l d i f f e r e n t (queens)
4 /\ a l l d i f f e r e n t ([queens [i]− i | i i n 1 . . n])
5 /\ a l l d i f f e r e n t ([queens [i]+ i | i i n 1 . . n]) ;

6 so l ve s a t i s f y ;
7 output [show (queens)] ;

Listing 2: “Constraint-based mining”

1 i n t : Nr I ; i n t : NrT ; i n t : Freq ;
2 ar ray [1 . . NrT] of set of 1 . . Nr I : TDB;

3 var set of 1 . . Nr I : I t e m s ;

4 con s t r a i n t c a r d (c o v e r (I tems ,TDB)) >= Freq ;

5 so l ve s a t i s f y ;
6 output [show (I t e m s)] ;

Listing 1 shows a MiniZinc model of the n-Queens problem (the “Hello
World” of constraint programming). The task is to place n queens on an n× n
chess board so that no two queens attack each other. Line 1 declares n as
a parameter of the model. Line 2 declares an array of n decision variables,
each corresponding to one row of the chessboard. Each decision variable has
domain 1..n, which represents the column in which the queen in that row is
placed (no two queens can be on the same row by definition). The require-
ment to not attack is implemented by a conjunction (written /\) of three calls
to the all different predicate, which constrain their arguments, arrays of expres-
sions, to be pairwise different. The second and third constraints use array com-
prehensions as a way of compactly constructing arrays corresponding to the di-
agonals of the chess board, it is derived from the observation that Qi−Qj 6= i−j
forbids left-to-right diagonals and Qi − Qj 6= j − i forbids right-to-left diago-
nals. Finally, the solve and output items instruct the solver to find one solution
(satisfy) and output the found values for the queens array. Note that a CP
solver might declare that it supports the all different constraint natively in its
library, whereas e.g. the library for a MIP solver would define a decomposition
into linear inequalities.

Itemset mining in MiniZinc. Pattern mining problems can be modeled directly
in MiniZinc. A MiniZinc model of the frequent itemset mining problem is shown
in Listing 2. Lines 1 and 2 define the parameters and data that can be provided
through a separate data file. The model represents the item and transaction
identifiers in I and S by natural numbers from 1 to NrI and 1 to NrT respectively.

7

Listing 3: “Constraint-based mining - cover”

1 f unct ion var set of i n t : c o v e r (var set of i n t : I tems ,
2 ar ray [i n t] of set of i n t : D)
3 = l e t { var set of i n d e x s e t (D) : Cover ;
4 con s t r a i n t f o r a l l (t i n ub (Cover))
5 (t i n Cover <−> I t e m s subset D[t])
6 } i n Cover ;

The dataset D is implemented by the array TDB, mapping each transaction
identifier to the corresponding set of items. The set of items we are looking for
is modeled on line 3 as a set variable with an upper bound restricted to the
set {1, . . . ,NrI}. The minimum frequency constraint is posted on line 4, which
corresponds closely to the formal notation |φD(I)| ≥ Freq .

The cover function on line 4 corresponds to φD(I). A distinguishing fea-
ture of MiniZinc is its support for user defined-predicates, and since version
2.0, user-defined functions [7]. A MiniZinc predicate is a parametric constraint
specification that can be instantiated with concrete variables and parameters,
like in the call to all different in Listing 1. A MiniZinc function a generalisation
to allow for arbitrary return values.

A declaration of the cover function is shown in Listing 3. Recall that the for-
mal definition of cover is φD(I) = {t|I ⊆ D(t)}. The implementation achieves
this function by introducing an auxiliary set variable Cover (line 3) and con-
straining it to contain exactly those transactions that are subsets of Items. The
let { ... } in ... construct is used to introduce auxiliary variables and post con-
straints, before returning a value, in this case the newly introduced Cover, after
the in keyword (line 6). Other MiniZinc functions used here include index set ,
which returns a set of all the indices of an array (similarly index set 1of2 returns
the index set of the first dimension of a two-dimensional array), and ub, which
returns a valid upper bound for a variable. In this particular case, since Cover is
a set variable, ub(Cover) returns a fixed set that is guaranteed to be a superset
of any valid assignment to the Cover variable. Documentation on MiniZinc’s
constructs is available online1.

In the cover() function of Listing 3, the introduced Cover variable is con-
strained to be equal to the cover (in the let statement, lines 4–5). This con-
straint states that for all values t in the declared upper bound of Cover, i.e., all
values that are possibly in Cover, the value t is included in Cover if and only if it
is an element of the cover, i.e. the set Items is contained in transaction t. While
the implementation of cover is not a verbatim translation of the mathematical
definition, MiniZinc enables us to define this abstraction in a library and hide
its implementation details from the users.

This example demonstrates the appeal of using a modeling language like

1http://www.minizinc.org/2.0/doc-lib/doc.html

8

http://www.minizinc.org/2.0/doc-lib/doc.html

Listing 4: “Key abstractions provided by MiningZinc.” For brevity we write ‘set’ for ‘set of
int’ and ‘array[]’ for ‘array[int]’.

1 f unct ion var set : c o v e r (var set : I tems ,
2 ar ray [] of set : TDB) ;
3 f unct ion var set : c o v e r (var set : I tems ,
4 ar ray [,] of i n t : TDB) ;
5 f unct ion var set : c o v e r i n v (var set : Cover ,
6 ar ray [] of set : TDB) ;

7 f unct ion var i n t : we ighted sum (ar ray [] of var i n t : Weights ,
8 var set : I t e m s) ;
9 f unct ion ar ray [] of s t r i n g : p r i n t i t e m s e t (var set : I t e m s) ;

10 f unct ion ar ray [] of s t r i n g : p r i n t i t e m s e t W c o v e r (var set : I tems ,
11 ar ray [] of set : TDB) ;

12 pred i ca te m i n f r e q r e d u n d a n t (var set : I tems ,
13 ar ray [] of set : TDB,
14 i n t : Freq) ;

15 f unct ion ann : i t e m s e t s e a r c h (var set : I t e m s) ;
16 pred i ca te ann : enumerate ;
17 f unct ion ann : q u e r y (s t r i n g db , s t r i n g s q l) ;

MiniZinc for pattern mining: the formulation is high-level, declarative and close
to the mathematical notation, it allows for user-defined constraints like the cover
relation between items and transactions, and it is independent of the actual
solution method.

2.4. MiningZinc

In the example above we defined the cover function using the primitives
present in MiniZinc. An important feature of MiniZinc is that common functions
and predicates can be placed into libraries, to facilitate their reuse in different
models. In this way, MiniZinc can be extended to different application domains
without the need for developing a new language. The language component of
the MiningZinc framework is such a library. Listing 4 lists the signatures of
the key functions and predicates provided by the MiningZinc library; we discuss
each one in turn.

The two key building blocks of the MiningZinc library are the cover and
cover inv functions. Given a dataset, the cover function determines for an item-
set the transaction identifiers that cover it: φD(I) = {t|I ⊆ D(t)} and was
already given in Listing 3.

The cover function is also defined over numeric data following the Boolean
interpretation: a transaction is covered by an itemset if each item has a non-zero
value in that transaction. Listing 5 shows the MiniZinc specification, which uses
a helper function to determine the items in a transaction with non-zero value.
This can be used together with other constraints on the actual numeric data,
as we will show in the following section.

9

Listing 5: “cover constraint over numeric data”

1 f unct ion var set of i n t : c o v e r (var set of i n t : I tems ,
2 ar ray [i n t , i n t] of i n t : DN)
3 = l e t { var set of i n d e x s e t 1 o f 2 (DN) : Cover ;
4 con s t r a i n t f o r a l l (t i n ub (Cover))
5 (t i n Cover <−> I t e m s subset row (DN, t))
6 } i n Cover ;

7 f unct ion set of i n t : row (ar ray [i n t , i n t] of i n t : DN, i n t : t)
8 = { i | i i n i n d e x s e t 2 o f 2 (DN) where DN[t , i] != 0}

Listing 6: “cover inv function and the col helper function”

1 f unct ion var set of i n t : c o v e r i n v (var set of i n t : Cover ,
2 ar ray [i n t] of set of i n t : D)
3 = l e t { var set of min (D) . . max (D) : I tems ,
4 con s t r a i n t f o r a l l (i i n ub (I t e m s))
5 (i i n I t e m s <−> Cover subset c o l (D, i))
6 } i n I t e m s ;

7 f unct ion set of i n t : c o l (ar ray [i n t] of set of i n t : D, i n t : i)
8 = { t | t i n i n d e x s e t (D) where i i n D[t]}

Listing 7: “Redundant minimum frequency constraint”

1 pred i ca te m i n f r e q r e d u n d a n t (var set of i n t : I tems ,
2 ar ray [i n t] of set of i n t : D,
3 i n t : Freq)
4 = l e t { var set of i n t : Cover = c o v e r (I tems ,D) } i n
5 f o r a l l (i i n ub (I t e m s)) (
6 i i n I t e m s −> c a r d (Cover i n t e r s e c t c o l (D, i)) >= Freq
7) ;

The cover inv function computes for a set of transaction identifiers, the items
that are common between all transactions identified. Let D′ be the transpose
of D, that is, the database that maps items to sets of transaction identifiers.
D′(i) consists of the transactions in which item i appears, that is D′(i) = {t ∈
S|i ∈ D(t)}. cover inv can now be defined similarly to cover as follows: ψD(T) =
{i|T ⊆ D′(i)}. The MiningZinc specification is similar to that of cover and given
in Listing 6; it includes a helper function to calculate D′(i).

The library includes other helper functions such as weighted sum and different
ways to print item and transaction sets. The itemset search function defines a
search annotation, which can be placed on the solve item to specify the heuris-
tic that the solver should use. For MiningZinc, this function can be defined
in solver-specific libraries, to enable the use of different search heuristics by
different solvers.

Finally, the library also includes predicates that express redundant con-

10

straints that can be added automatically by the execution mechanism. A redun-
dant constraint is already implied by the model – it does not express an actual
restriction of the solution space – but it can potentially improve solver per-
formance, e.g. by contributing additional constraint propagation. A predicate
implementing a redundant constraint for minimum frequent itemset mining is
shown in Listing 7. It uses the insight that if an itemset must be frequent, then
each item must be frequent as well; hence, items that appear in too few transac-
tions can be removed without searching over them. This can be encoded with a
constraint that performs look-ahead on the items (Listing 7, line 6). See [8] for a
more detailed study of this constraint. Another type of redundant information
available in the library is a search annotation (Listing 4, line 15). This is an an-
notation that can be added to the search keyword, and that specifies the order
in which to search over the variables. An example of a search order that has
been shown to work well for itemset mining is occurrence [8]. We also added the
enumerate search annotation to differentiate, in the model, between satisfaction
(one solution) and enumeration (all solutions) problems. The last annotation is
the query keyword, which can be added to a variable declaration, for example
array [] of set : TDB :: query(”mydb.sql”, ”SELECT tid,item FROM purchases”);. The
execution mechanism will automatically typecheck the expression, execute the
query and add the data as an assignment to that variable. In this way, one can
directly load data from a database, as is common in data mining.

A second instance of the above library exists, with the same signatures, but
where all set variables are internally rewritten to arrays of Boolean variables,
and all constraints and functions are expressed over these Boolean variables.
This alternative formulation can sometimes improve solving performance, and
it enables the use of CP solvers that do not support set constraints natively.

The MiningZinc library, without needing too many constructs, offers mod-
eling convenience for specifying itemset mining problems; this will be demon-
strated in the next section. Its elements will also be used by the framework
described in Section 4 for detecting known mining tasks and when adding re-
dundant constraints.

3. Example problems

Modeling a mining problem in MiningZinc follows the same methodology
as modeling a constraint program: one has to express a problem in terms of
variables with a domain, and constraints over these variables; for example, a set
variable with a minimum frequency constraint over data.

From a data mining perspective, the kind of problem that can be expressed
are enumeration or optimization problems that can be formulated using the
variable types available in MiniZinc: Booleans, integers, sets and floats, and
constraints over these variables. Many itemset mining problems fit this re-
quirement (with the exception of greedy post-processing mechanisms such as
Krimp [17] and other incomplete methods). We now illustrate how to model a
range of diverse but representative itemset mining problems in MiningZinc.

11

Listing 8: “Constraint-based mining”

1 i n t : Nr I ; i n t : NrT ; i n t : Freq ;
2 ar ray [1 . . NrT] of set of 1 . . Nr I : TDB;

3 var set of 1 . . Nr I : I t e m s ;

4 con s t r a i n t c a r d (c o v e r (I tems ,TDB)) >= Freq ;

5 % Clo su r e
6 con s t r a i n t I t e m s = c o v e r i n v (c o v e r (I tems ,TDB) ,TDB) ;

7 % Minimum co s t
8 ar ray [1 . . Nr I] of i n t : i t e m c ; i n t : Cost ;
9 con s t r a i n t sum (i i n I t e m s) (i t e m c [i]) >= Cost ;

10 so l ve s a t i s f y : : enumerate ;

3.1. Itemset Mining with constraints

Listing 8 contains some examples of constraint-based mining constraints
that can be added to the frequent itemset mining model in Listing 2. Line
6, Items = cover inv(cover(Items,TDB),TDB), represents the popular closure con-
straint I = ψD(φD(I)). This closure constraint, together with a minimum
frequency constraint, represents the closed itemset mining problem [18].

Lines 8/9 represent a common cost-based constraint [13]; it constrains the
itemset to have a cost of at least Cost, with item cost and Cost being a user-
supplied array of costs and a cost threshold.

We can use the full expressive power of MiniZinc to define other constraints.
This includes constraints in propositional logic, for example expressing depen-
dencies between (groups of) items/transactions, or inclusion/exclusion relations
between elements. Two more settings involving external data are studied in the
next section.

3.2. Itemset mining with additional numeric data

Additional data can be available from different sources, such as quantities of
products (items) in purchases (transactions), measurements of elements (items)
in physical experiments (transactions) or probabilistic knowledge about item/
transaction pairs. We look at two settings in more detail: high utility itemset
mining and probabilistic itemset mining in uncertain data.

In high utility mining [19] the goal is to search for itemsets with a total
utility above a certain threshold. Assumed given is an external utility e for
each individual item, for example its price, and a utility matrix U that contains
for each transaction a local utility of each item in the transaction, for example
the quantity of that item in that transaction. The total utility of an itemset is∑
t∈φD(I)

∑
i∈I e(i)U(t, i). Listing 9 shows the MiningZinc model corresponding

to this task. Lines 3 and 4 declare the data, and lines 5 to 8 constrain the utility.

12

Listing 9: “High Utility itemset mining”

1 i n t : Nr I ; i n t : NrT ; var set of 1 . . Nr I : I t e m s ;
2 % U t i l i t y data
3 ar ray [1 . . Nr I] of i n t : I t e m P r i c e ; i n t : U t i l ;
4 ar ray [1 . . NrT , 1 . . Nr I] of i n t : UTDB;

5 con s t r a i n t
6 sum (t i n c o v e r (I tems ,UTDB)) (
7 sum (i i n I t e m s) (
8 I t e m P r i c e [i]∗UTDB[t , i])) >= U t i l ;

9 so l ve s a t i s f y : : enumerate ;

Listing 10: “Itemset mining with uncertain data”

1 i n t : Nr I ; i n t : NrT ; var set of 1 . . Nr I : I t e m s ;
2 ar ray [1 . . NrT , 1 . . Nr I] of f l o a t : ProbTDB ; f l o a t : Expected ;

3 con s t r a i n t
4 sum (t i n c o v e r (I tems , ProbTDB)) (
5 p r o d u c t (i i n I t e m s) (
6 ProbTDB [t , i])) >= Expected ;

7 so l ve s a t i s f y : : enumerate ;

It uses the cover function over numeric data (Listing 5, checks that a covered
item is not 0), as well as the actual data to compute the utility.

Another setting is that of probabilistic itemset mining in uncertain data
[20]. Listing 10 shows the MiningZinc model for this task. It is similar to the
problem above, with the exception that the data is now real valued (including
the numeric cover function), and the constraint (lines 3 to 6) is a sum-product.

3.3. Multiple databases

When dealing with multi-relational data, one can consider each relation as
a separate transaction database. We distinguish two different cases: one where
the relations are in a star schema, for example, items that are related to different
transaction databases, and the more traditional multi-relational setting in which
one can identify chains of relations.

When dealing with multiple transaction databases over the same set of items,
one can impose constraints on each of the databases separately. For example,
searching for the itemset with a minimum frequency of α in one database and
a maximum frequency of β in another.

A more advanced setting is that of discriminative itemset mining. This
is the task of, given two databases, finding the itemset whose appearance in
the data is strongly correlated to one of the databases. Consider for example
a transaction database with fraudulent transactions and non-fraudulent ones,
and the task of finding itemsets correlating with fraudulent behavior. Many

13

Listing 11: “Discriminative itemset mining (accuracy)”

1 i n t : Nr I ;
2 ar ray [i n t] of set of 1 . . Nr I : D f r a ud ;
3 ar ray [i n t] of set of 1 . . Nr I : D ok ;

4 var set of 1 . . Nr I : I t e m s ;
5 con s t r a i n t I t e m s = c o v e r i n v (
6 c o v e r (I tems , D f r a ud) , D f r a u d) ;

7 % Opt im i z a t i on f u n c t i o n
8 var i n t : Scor e = c a r d (c o v e r (I tems , D f r a u d)) −
9 c a r d (c o v e r (I tems , D ok)) ;

10 so l ve maximize Sc ore ;

different measures can be used to define what a good correlation is. This has
led to tasks known as discriminative itemset mining, correlated itemset mining,
subgroup discovery, contrast set mining, etc [21].

A discriminative itemset mining task is shown in Listing 11. This is an
optimization problem, and the score to optimize is defined on line 8. One could
also constrain the score instead of optimizing it; that is, add a threshold on the
score and enumerate all patterns that score better. The score is p − n where
p is the number of positive transactions covered and n the number of negative
ones. Optimizing this score (line 10) corresponds to optimizing the accuracy
measure; see [22] for more details. An additional constraint ensures that the
patterns are closed, but only on the transactions in the fraudulent transactions
(one can show that there must always be a closed itemset that maximizes this
score). Note how we reuse the cover and cover inv functions that were also used
in Listing 8.

Multi-relational itemset mining consists of the extraction of patterns
across multiple relations. Consider a database with authors writing papers on
certain topics. A multi-relational mining task would be, for example, to mine for
popular related topics, e.g. topics for which more than α authors have written a
paper covering all topics. Listing 12 lists the MiningZinc model for this problem.
Line 5 constrains the set of papers to those covering all topics, and line 8 states
that authors must have at least one such paper.

Note how the existential relation on line 8 can be changed to variations of
this setting, for example, requiring that authors have at least β such papers:
Authors[a] <−> sum(p in Papers) (AuthorPapers[p]) >= Beta. Other (constraint-based)
multi-relational mining tasks [23] can be expressed as well.

3.4. Mining pattern sets

Instead of mining for individual patterns, we can also formulate mining prob-
lems over a set of patterns. For example, Listing 13 shows the specification of
concept learning in a k-pattern set mining setting [24]. The goal is to find the k
patterns that together best describe the fraudulent transactions, while covering

14

Listing 12: “Multi-relational itemset mining across Authors Papers and Topics”

1 i n t : NrA ; i n t : NrP ; i n t : NrT ; i n t : Alpha ;
2 ar ray [1 . . NrA] of set of 1 . . NrP : AuthorPapers ;
3 ar ray [1 . . NrP] of set of 1 . . NrT : PaperTop ics ;

4 var set of 1 . . NrT : To p i cs ;
5 var set of 1 . . NrP : Papers = c o v e r (Topics , PaperTop ics) ;
6 var set of 1 . . NrA : Authors ;
7 con s t r a i n t f o r a l l (a i n 1 . . NrA) (
8 Authors [a] <−> e x i s t s (p i n Papers) (AuthorPapers [p])) ;

9 con s t r a i n t c a r d (Authors) >= Alpha ;
10 so l ve s a t i s f y : : enumerate ;

few other transactions. It is very similar to the discriminative itemset mining
setting, with the difference that it is assumed that multiple patterns are needed
to find good descriptions of the fraudulent transactions.

Other problems studied in the context of k-pattern set mining and n-ary
pattern mining [24, 25] can be formulated in a similar high-level way.

Pattern sets can have many symmetric solutions [24], which can slow down
search. Symmetry breaking constraints can be added to overcome this, for exam-
ple by lexicographically ordering the itemsets. MiniZinc offers predicates for lex-
icographic constraints between arrays, but not between an array of sets. Using
the helper function in Listing 14, one could add a symmetry breaking constraint
to the concept learning problem of Listing 13 as follows: constraint lex less (Items); .

3.5. Combinations

Using MiningZinc, we can also formulate more complex models. Listing 15
shows an example of such a model where we combine discriminative pattern
mining (Listing 11) and high-utility mining (Listing 9).

We can use this model to find itemsets that both have a high utility and
discriminate well between positive and negative transactions. To our knowledge,
this combined problem has never been studied and no specialized algorithm
exists. In Section 5 we show that several strategies exist to solve this model
using MiningZinc.

4. MiningZinc execution mechanism

The MiniZinc language used in the previous section is declarative and solver-
independent, as we did not impose what kind of algorithm or solving technique
must be used. We now discuss how solving is done in MiningZinc.

Figure 1 shows an overview of the overall execution mechanism. The starting
point of the process is a MiningZinc model. When using a high-level language
like MiniZinc, it is often possible to model a problem in various equivalent ways,

15

Listing 13: “Concept learning”

1 i n t : Nr I ; i n t : K;
2 ar ray [i n t] of set of 1 . . Nr I : D f r a ud ;
3 ar ray [i n t] of set of 1 . . Nr I : D ok ;

4 ar ray [1 . . K] of var set of 1 . . Nr I : I t e m s ;

5 % c l o s e d on D fraud
6 con s t r a i n t f o r a l l (k i n 1 . . K) (
7 I t e m s [k] = c o v e r i n v (c o v e r (I t e m s [k] , D f r a u d) , D f r a u d)) ;

8 var i n t : Scor e = % t o t a l f r a ud − t o t a l tok
9 c a r d (union (k i n 1 . . K) (c o v e r (I t e m s [k] , D f r a ud)))

10 − c a r d (union (k i n 1 . . K) (c o v e r (I t e m s [k] , D ok))) ;

11 so l ve maximize Sc ore ;

Listing 14: “Lex less for array of sets (lex less of two arrays is a MiniZinc global constraint)”

1 pred i ca te l e x l e s s (ar ray [i n t] of var set of i n t : S) =
2 f o r a l l (k i n 1 . . l e n g t h (S)−1) (
3 l e t { set : e l ems = union (ub (S [k]) , ub (S [k +1])) } i n
4 l e x l e s s ([i i n S [k] | i i n e lems)] ,
5 [i i n S [k+1] | i i n e lems])) ;

Listing 15: “High Utility Discriminative itemset mining”

1 i n t : Nr I ; i n t : NrPos ; i n t : NrNeg ; var set of 1 . . Nr I : I t e m s ;
2 % Tran sa c t i on data
3 ar ray [1 . . NrPos] of set of 1 . . Nr I : Pos ;
4 ar ray [1 . . NrNeg] of set of 1 . . Nr I : Neg ;
5 % U t i l i t y data f o r p o s i t i v e s
6 ar ray [1 . . Nr I] of i n t : I t e m P r i c e ;
7 i n t : M i n U t i l ; i n t : MinAcc ;
8 ar ray [1 . . NrPos , 1 . . Nr I] of i n t : UPos ;

9 con s t r a i n t
10 sum (t i n c o v e r (I tems ,UTDB)) (
11 sum (i i n I t e m s) (
12 I t e m P r i c e [i]∗UTDB[t , i])) >= M i n U t i l ;

13 con s t r a i n t I t e m s = c o v e r i n v (c o v e r (I tems , Pos) , Pos) ;

14 con s t r a i n t c a r d (c o v e r (I tems , Pos)) −
15 c a r d (c o v e r (I tems , Neg)) >= MinAcc ;

16 so l ve s a t i s f y : : enumerate ;

16

MiningZinc
model

Data

FlatZinc
Norm-

alization

Execution
plans

Generation

of all plans

Algorithms

Rewrite
rules

Ranked
plans

Ranking
Output

Execution

of one plan

Figure 1: Overview of the MiningZinc toolchain

differing only in syntactic constructs used. The first step in the analysis pro-
cess is hence to transform this model into a medium-level FlatZinc program
(see Section 2.3), which we use as a normalized form for the analysis. This
FlatZinc program is not suitable for solving, since it still uses the high-level
MiningZinc predicates and functions. Given a set of algorithms and rewrite
rules, the FlatZinc program is transformed into all possible sequences of algo-
rithms that can solve the original problem; one such sequence of algorithms is
called an execution plan. Multiple execution plans are generated and ranked
using a simple heuristic ranking scheme. When a plan is chosen (by the user,
or by automatic selection of the highest ranked plan), each of the algorithms in
that plan is executed to obtain the required output.

We now describe each of the components in turn.

4.1. Normalization

The purpose of converting to high-level FlatZinc is to enable reasoning over
the set of constraints and to simplify the detection of equivalent or overlapping
formulations.

FlatZinc is a flattened, normalized representation of a MiniZinc instance (a
model and all its data). A MiniZinc instance is transformed into a FlatZinc pro-
gram by operations such as loop unrolling, introduction of (auxiliary) variables
in one global scope, simplifying constraints by removing constants, and rewrit-
ing constraints in terms of simple built-ins, where possible. It also performs
common subexpression elimination at the global scope: if two identical calls
to an expression are present, one will be eliminated. For example, Listing 15
contains twice the function cover(Items,Pos). In the FlatZinc code, only one call
X = cover(Items,Pos) will remain, and variable X will be shared by all expressions
that contained that call. More details of this procedure are described in [7].

Finally, FlatZinc also supports annotations, for example enumerate in List-
ing 4. During the flattening process, any annotation written in MiniZinc is
passed to FlatZinc. Furthermore, any variable mentioned in the output state-
ment receives a output var annotation. We will use the concept of output vari-
ables versus non-output variables later.

For the purpose of normalization, we use a special version of the MiningZinc
library that defines all MiningZinc predicates and functions as builtins, i.e. with-
out giving a definition in terms of simpler expressions. The resulting FlatZinc
is therefore not suitable for solving (no solver supports these builtins natively),
but it can be analyzed much more easily than the original MiniZinc. It is also

17

much more compact than the FlatZinc generated for a CP solver, since in many
cases the constraints do not need to be unrolled for every row in the dataset.

An important observation is that a FlatZinc program can be seen as a CSP
(V,D, C), where the possible form of constraints in C is limited. More specifically,
constraints are either of the form:

• p(X1, . . . Xn), where p ∈ P is a predicate symbol, and each Xi is ei-
ther a variable in the CSP or a constant. Examples include int le(Y, 1),
set subset(S, {2, 4}); for notational convenience, in the examples we will
represent some of these constraints in infix notation, i.e. Y ≤ 1, S ⊆
{2, 4}.

• (X = f(X1, . . . Xn)), where f ∈ F is a function symbol and each Xi is
either a variable in the CSP or a constant. Examples are Y = set card(S)
and T = cover(I,D), where set card(S) is a function that calculates the
cardinality of the set S, and cover(I,D) is as defined in Section 2. We
refer to these constraints as functional definitions.

Consequently, in FlatZinc functions can only occur on the right-hand side of
an equality constraint. Function and predicate symbols can be either built-in
symbols or user-defined.

Example 3. Consider the problem of finding frequent itemsets on a given
dataset, with minimum frequency of 20 and containing at least 3 items (Listing 2
+ constraint card(Items) >= 3;). We will represent the datasets by {. . .} to indi-
cate that it is a constant. After the automatic flattening process, the FlatZinc
model obtained is the following (leaving the domain implicitly defined):

V = {Items, T, SI, ST}
C = {T = cover(Items, {...}), ST = card(T), SI = card(Items), ST ≥ 20, SI ≥ 3}
annotations = {(Items, “output var”)}

This normalized model then needs to be transformed into an execution plan.

4.2. Generation of all plans

An execution plan specifies which parts of a MiningZinc model are handled
by which algorithms or solving techniques. Concretely, an execution plan is
a sequence of algorithms that together can handle all the constraints that are
present in the model and hence produce the required output.

For example, a possible execution plan for the model of Example 3 could
be to run the LCM algorithm [26] for frequent itemset mining to generate all
itemsets of the given frequency, and then use a general purpose CP solver such
as Gecode to filter the solutions further, only allowing itemsets with at least
three elements.

This section will first describe the different algorithms that can be made
part of MiningZinc, the rewrite rules to construct the plans and finally how all
plans are generated using those rules.

18

4.2.1. Algorithms

We can distinguish two types of algorithms:

• specialized algorithms, which are only capable of solving specific combi-
nations of constraints over input/output variables;

• CP systems, which are capable of solving arbitrary combinations of con-
straints expressed in FlatZinc.

In an execution plan, the execution of an algorithm will be represented by
an atom, consisting of a predicate applied to variables or constants.

Specialized algorithms. These are represented by predicates of fixed arity.
Such predicates are declared through mode statements of the kind

p(±1V1, . . . ,±nVn),

where p is the algorithm name, ±i ∈ {+,−} indicates the mode of a parameter
and Vi is a variable identifier for the parameter.

The interpretation of the modes is as follows:

• the input mode “+” indicates that the algorithm evaluating the predicate
can only be run when this parameter is grounded, that is, its value is
known;

• the output mode “-” indicates that the algorithm evaluating the predicate
will only produce groundings for this parameter.

Example 4. The LCM algorithm for frequent itemset mining is character-
ized by the mode statement LCM (+F,+D,−I), where F represents a support
threshold, D a dataset, and I an itemset. The predicate LCM (F,D, I) is true
for any itemset I that is frequent in dataset D under support threshold F . A
specific atom expressed using this predicate is LCM (10, {. . .}, Items).

In the MiningZinc framework, each specialised algorithm is registered with
the following information:

• its predicate definition p(±1V1, . . . ,±nVn);

• the set of FlatZinc constraints over V1, . . . , Vn that specify the problem
this algorithm can solve (multiple sets can be given in case of multiple
equivalent formulations);

• the binary executable of the algorithm;

• a way to map the input parameters of the predicate (in FlatZinc) to com-
mand line arguments and input files for the algorithm;

• a way to map the output of the algorithm to output parameters (in
FlatZinc).

19

Example 5. Version 5 of the LCM algorithm implements the frequent and
closed itemset mining problems with additional support for a number of con-
straints such as constraints on the size of an itemset and the size of the support
(minimum and maximum). We can consider each combination of constraints as
a different algorithm. For example, the instance of LCMv5 for closed itemset
mining with an additional constraint on the minimum size of the itemset can
be specified as follows:

predicate lcm5 closed minsize(+TDB, +MinFreq, +MinSize, -Items)

constraints:

• C = cover(Items,TDB)

• S = card(C)

• int le(MinFreq, S)

• iC = cover inv(C, TDB)

• set eq(Items,iC)

• Sz = card(Items)

• int le(MinSize, Sz)

command
/path/to/lcm5 C -l MinSize infile(TDB) MinFreq outfile(Items)

conversion infile, outfile: convert between FIMI format and FZN format

In practice we provide syntax for describing multiple instances of the same
algorithm in a more succinct way.

CP systems. In contrast to specialized algorithms, CP systems can operate
on an arbitrary number of variables and constraints. A predicate representing
a CP system can therefore take an arbitrary number of variables as parameter;
furthermore, we assume that it is parameterized with a set of constraints.

Example 6. A predicate GecodeC(V1, . . . , Vn) represents the Gecode CP sys-
tem, where V1, . . . Vn are all variables occurring in the constraint set C with
which the system is parameterized. A specific atom expressed using this pred-
icate is GecodeC(I, T, ST), where C = {T = cover(I,D), ST = card(T), ST ≥
20}; this predicate is true for all combinations of I, T and ST for which the
given constraints are true.

A CP system is capable of finding groundings for all variables that are not
grounded, and hence there are no mode restrictions on the parameters. Typi-
cally, some of the variables occurring in the constraints are not yet grounded,
requiring the CP system to search over them. In case all variables are already
grounded when calling the CP system, the system only has to check whether
the constraints are true.

In the MiningZinc framework, each CP system is registered with the follow-
ing information:

20

• its predicate name (e.g. Gecode);

• the set of FlatZinc constraints it supports, including global constraints;

• the binary executable of the CP system;

• optionally, whether set variables must be translated to a Boolean encoding
before executing the CP system (more on this in Section 4.2.3).

Execution plans. With the two types of algorithm predicates introduced,
we can now define an execution plan as a sequence of atoms over algorithm
predicates. Sequences have to be mode conform, that is, an algorithm must
have its input variables instantiated when it is called.

Example 7. For the model of Example 3 the following is a valid execution plan
that uses the LCM and Gecode predicates of Example 4 and 6:

[LCM (10, {. . .}, I),Gecode(SI=card(I),SI≥3)(I)].

The main challenge is now how to transform the initial FlatZinc program
into an execution plan. The rewrite rules used to do so are described in the
next section.

4.2.2. Rewrite rules

We use rewriting to transform a FlatZinc program into an execution plan.
Specifically, we describe a state of the rewrite process with a tuple

(L,C),

where L is an execution plan, and C is a set of constraints and annotations.
The initial state in the rewrite process is (∅, C), where C is the set of all

FlatZinc constraints and the empty set indicates the initially empty execution
plan; the final state in the rewrite process is (L, ∅), where L represents a valid
execution plan for the initial set of constraints C, and the empty set indicates
that all constraints have been evaluated in the execution plan (modulo the
optional annotations). Rewrite rules will transform states into other states; an
exhaustive search over all possible rewrites will produce all possible execution
plans.

A key concept in these rewrite rules are substitutions. Formally, a substi-
tution θ = {V1/t1, . . .} is a function that maps variables to either variables or
constants. If C is an expression, by Cθ we denote the expression in which all
variables Vi have been replaced with their corresponding values ti according to
θ. If for substitution θ it holds that Cθ ⊆ C ′, the set of constraints C is said
to θ subsume the set of constraints C ′. In the exposition below predicates and
variables are untyped for ease of presentation. FlatZinc is a typed language, so
in practice we only allow variables of the same type to be mapped to each other.

We now define three types of rewrite rules: rules for adding redundant con-
straints, for executing specialized algorithms and for executing CP systems.

21

Rules for redundant constraints. Let C1 and C2 both be sets of constraints
over the same variables, let C1 → C2 hold (C1 entails C2). Since C2 will be true
whenever C1 is, the set of constraints C2 can be added as redundant constraints
to any C ⊇ C1. Taking substitutions into account, we have the following rewrite
rule:

IF C1θ subsumes the set of constraints C,
THEN (L,C) ` (L,C ∪ C2θ).

Example 8. Past work showed that the execution of the frequent itemset
mining task is more efficient in some CP systems if a look-ahead constraint
is added. Let C2 = {minfreq redundant(I,D, V)} represent this look-ahead
constraint (see Section 2.4). This constraint set is entailed by the set of con-
straints C1 = {A = cover(I,D), B = card(A), V ≤ B}. Then for the model of
Example 3 (depicted by CM) we have the following rewrite:

(∅, CM) ` (∅, CM ∪ {minfreq redundancy(I, {. . .}, 20)}).

Redundant constraints are registered in the system with the following infor-
mation:

• a set of constraints C1;

• a function that takes as input the substitution θ and produces a constraint
set C2 over the variables in θ as output.

Rules for specialized algorithms. Recall that all specialised algorithms are
registered with a predicate definition p(±1V1, . . . ,±nVn) and a set of constraints
C that define the problem being solved by this algorithm. Note that not all
variables in C need to be a parameter of the predicate; there can be auxiliary
variables.

Let (L,CM) be a state in the rewriting of an execution plan. The key idea
is that if the set of constraints C of an algorithm subsumes the given set of
constraints CM , then we wish to append its predicate (p) to the execution plan
L. More formally, if L is the current plan, and C subsumes CM with substitution
θ, we can add p(V1θ, . . . , Vnθ) to L.

Example 9. If our model has constraints {T = cover(I, {. . .}), ST = card(T), SI =
card(I), ST ≥ 20, SI ≥ 3}, and our current execution plan is empty (∅); LCM’s
constraint set {T ′ = cover(I ′, D′), ST ′ = card(T ′), ST ′ ≥ V ′} subsumes the
model with the substitution {T ′ 7→ T, I ′ 7→ I,D′ 7→ {. . .}, V ′ 7→ 20}. Hence, we
may add LCM (20, {. . .}, I) to the execution plan.

Removing subsumed constraints from CM . The next important step is to re-
move as many subsumed constraints as possible from CM , to avoid them being
unnecessarily recomputed or verified again. Indeed, running the algorithm will
ensure that these constraints are satisfied, but unfortunately, we cannot always
remove all subsumed constraints.

22

Example 10. If our model has constraints {T = cover(I, {. . .}), ST = card(T),
ST ≥ 20, ST ≤ 40}, and we again use the LCM algorithm to solve part of this
model, we cannot remove the constraints ST = card(T) and T = cover(I,D),
even though they are subsumed; the reason is that the constraint ST ≤ 40,
which is not subsumed, requires the ST value, which is not in the output of the
LCM algorithm.

This problem is caused by auxiliary variables, which occur in the constraint
definition of the algorithm but not in the mode definition.

When Cθ is the set of constraints subsumed by the algorithm, the set CM\Cθ
contains all remaining constraints; if among these remaining constraints there
are constraints that rely on the functionally defined by variables that are not in
the mode definition of the algorithm, we can remove all constraints except the
functional definition constraints necessary to calculate these variables.

More precisely, assume we are given a state (L′, C ′) for a FlatZinc program
with constraints C and output variables Voutput (that is, variables in V that
have a output var annotation). Then let V(L′,C′) be the set of those variables
occurring in C ′ or in Voutput that do not occur in L′, e.g. the free variables
that will still be used later in the execution plan. Let F (L′, C ′, C) = (L′, C ′ ∪
{c ∈ C | c functionally defines a variable in V(L′,C′)}), i.e., this function adds
the functional definitions for variables for which the definitions are missing from
C ′. The inclusion of missing definitions may trigger a need to include further
definitions; the repeated application of this function will yield a fixed point
F ∗(L′, C ′, C).

This function can be used to define the following rewrite rule:

IF Cθ subsumes constraints CM for mode declaration
p(±1V1, . . . ,±nVn), and [L, p(V1θ, . . . , Vnθ)] such
that the substitution is conform to the modes of p,

THEN (L,CM) ` F ∗([L, p(V1θ, . . . , Vnθ)], CM\Cθ,CM).

Continuing on Example 10, we can see that the functional definition constraints
for the variables ST and T that are still used will not be removed. The constraint
ST ≥ 20 will be removed though.

Examples of specialized algorithms. The following are additional examples of
rewriting for specific algorithms available in MiningZinc.

Example 11. Let calcfreq(+I,−F,+D) be a specialized algorithm that cal-
culates the frequency F of an itemset I in a database D. The constraint set
corresponding to this algorithm is {T = cover(I,D), F = card(T)}. Assume we
have the following state:

([LCM (20, D, I)], {T = cover(I,D), F = card(T), F ≤ 40}),

then with the empty substitution the constraint set {T = cover(I,D), F =
card(T)} subsumes the model. Furthermore, as the variable F is in the output

23

of the algorithm calcfreq(I, F,D), and the variable T is not used outside the sub-
sumed set of constraints, we can remove these functional definition constraints.
Hence, we can rewrite this state to

([LCM (20, D, I), calcfreq(I, F,D)], {F ≤ 40}),

Example 12. Let maxsup(+I,+V,+D) be a specialized algorithm that deter-
mines whether the frequency of an itemset I in a database D is lower than a
given threshold V , i.e., the algorithm checks a constraint and has no output.
The constraint set corresponding to this algorithm is {T = cover(I,D), F =
card(T), F ≤ V }. Assume we have the following state:

([LCM (20, D, I)], {T = cover(I,D), F = card(T), F ≤ 40}),

Then we can rewrite this state into:

([LCM (20, D, I),maxsup(I, 40, D)], ∅),

where every solution found by LCM will be checked by the specialized maxsup
algorithm.

Rules for CP systems. The final rewrite rule is the one for the registered
CP systems. We use the following rewrite rule for a state (L,C):

IF cp is a CP system and all constraints in C are sup-
ported by CP system cp

THEN let V1, . . . Vn be the variables occurring in C,
(L,C) ` ([L, cpC(V1, . . . , Vn)], ∅).

Currently, a CP system will always solve all of the remaining constraints. An
alternative rule could be one in which only a subset of the remaining constraints
is selected for processing by a CP system; this would enable more diverse com-
binations where specialized algorithms are used after CP systems. However,
for reasons of simplicity and by lack of practical need, we do not consider this
option further.

Translating set variables to Boolean variables. MiningZinc models are typically
expressed over set variables, however, some CP solvers do not support con-
straints over set variables. In previous work, we found that solvers that do
support set variables are usually more efficient on a Boolean encoding of the set
variables and constraints (for example, constraining the cardinality of a subset
of a variable requires 2 constraints when expressed over sets, yet only 1 linear
constraint in the Boolean encoding).

Hence, for CP solvers we provide a transformation that translates all set
variables into arrays of Boolean variables. For each potential value in the orig-
inal set, we introduce a Boolean variable that represents whether that value
is included in the set or not. Constraints over these set variables are trans-
lated accordingly, e.g. replacing a subset constraint by implications between

24

every pair of corresponding Boolean variables. This Boolean transformation is
done directly on the FlatZinc representation, and transparently to the execution
mechanism.

When registering a CP system in the MiningZinc framework, one can hence
indicate whether set variables must be translated to Booleans just before exe-
cution of the CP system. For systems that support set variables we typically
register two system predicates, one without and one with the Boolean transfor-
mation flag.

4.2.3. Generation of all plans

So far we have focussed on individual rewrite rules and how they can be used
to rewrite a set of constraints C and possibly add a step to an execution plan L.
We now show how different rewrite rules can be combined to create complete
execution plans.

As mentioned before, sequences of execution steps have to be mode conform.
More specifically, for each parameter of an atom the following needs to hold:

• input conform: when the parameter has an input mode, it must either
be ground or instantiated with a variable that has an output mode in an
earlier atom in the sequence;

• output conform: when the parameter has an output mode, it must be
instantiated with a variable that does not have an output mode in any
earlier atom in the sequence.

The search for all execution plans operates in a depth-first manner. In each
node of the search tree, the conditions of all rewrite rules are checked (including
mode conformity). Rules with substitutions that are identical to a rule applied
in one of the parents of the node are ignored. The search then branches over
each of the applicable rules. This continues until no more rules are applicable.
If at that point the set of constraints C in the state (L,C) is empty (modulo
annotations), then L is a valid execution plan.

In practice, as rules for redundant constraint can only add constraints in
our framework, we can restrict them to only be considered if the current plan
L is empty. Furthermore, as rules for specialized algorithms can only remove
constraints, if such a rule is not applicable in a node of the search tree it must
not be considered for any of the descendant nodes either.

One can observe that in the presence of rewrite rules for redundant con-
straints, this process is not guaranteed to terminate for all sets of rewrite rules.
One could use a bound on the depth of search. Currently, we work under the
simplified assumption that the rewrite rules provided to the system by the user
do not lead to an infinite rewrite process. This assumption holds for the exam-
ples used in this article.

4.3. Ranking plans

In the previous step, all possible execution plans are enumerated, leaving
the choice of which execution plan to choose open to the user.

25

In relational databases, a query optimizer attempts to select the most ef-
ficient execution plan from all query plans. Typically, a cost (e.g. number of
tuples produced) is calculated for each step in the plan, and the plan with overall
smallest cost is selected [27].

In MiningZinc, this is more complicated as we are dealing with combinatorial
problems, for which computing or estimating the number of solutions is a hard
problem in itself. Furthermore, different algorithms have different strengths and
weaknesses, leading to varying runtimes depending on the size and properties
of the input data at hand. This has been studied in the algorithm selection and
portfolio literature [28].

In MiningZinc this is further complicated by having chains of algorithms. A
MiningZinc formulation can lead to new execution plans that have never been
observed before, complicating an approach in which each plan is treated as one
meta-algorithm for which we could learn the performance. Additionally, differ-
ent chaining of algorithms can again lead to differences in runtime, depending
on the data generated by the previous algorithms. Nevertheless, the input to
the next algorithm in a chain is not known until all its predecessor algorithms
are run.

The purpose of this paper is not to solve this hard problem. However,
MiningZinc is built around the idea that specialized algorithms should be used
whenever this will be more efficient than generic systems. Hence, we can dis-
criminate between three types of execution plans:

1. Specialized plans: plans consisting of only specialized algorithms

2. Hybrid plans: plans consisting of a mix of both specialized and generic
CP systems

3. Generic plans: plans consisting of only generic CP systems.

We hence propose a heuristic approach to ranking that assumes specialized
plans are always preferred over hybrid ones, and that hybrid ones are preferred
over generic plans. Once all plans are categorized in one of these groups, we
can rank the plans within each group (an example is provided below).

For specialized plans we adopt the simple heuristic that plans with fewer
algorithms are to be preferred over plans with more. The idea is that with
fewer algorithms, probably more of the constraints are pushed into the respec-
tive algorithms. Ties in this ranking are typically caused by having multiple
algorithms that solve the same problem (e.g. frequent itemset mining). One
could use an algorithm selection approach for choosing the plan with the best
‘first’ algorithm in the chain. We did not investigate this further; instead we
assume a global ordering over all algorithms (e.g. the order in which they are
registered in the system), and break ties based on this order.

Hybrid plans are first ordered by number of constraints handled by generic
systems (fewer is better), then by number of algorithms (fewer is better), and
finally we break ties using the global order of the algorithms. Choosing plans
with fewer CP constraints first will prefer solutions where specialized algorithms
solve a larger part of the problem, but it also penalizes the use of redundant
constraints unfortunately. Note that we assume that there is also a global

26

order of all CP systems (for example, based on the latest MiniZinc competition
results).

Finally, generic plans consist of one CP system that solves the entire prob-
lem. Differences in this category come from the use of different redundant
constraints and different CP systems. As this involves only one CP system,
one could very well apply algorithm selection techniques here. As the rank-
ing of generic plans is only important in case there are no specialized or hybrid
plans, we rather use a simple ranking, first based on number of constraints (with
the naive assumption that more redundant constraints are better), then on the
global order of the CP systems.

Example 13. Assume we wish to solve the earlier model

{T = cover(I,D), S = card(T), 20 ≤ S, S ≤ 40},

where the available algorithms are the LCM and FPGrowth specialized itemset
mining algorithms, the maxsup and frequency specialized algorithms and the
Gecode generic CP system (in that order). Then these are the ranked execution
plans:

Specialized:
[LCM (20, D, I),maxsup(I, 40, D)]
[FPGrowth(20, D, I),maxsup(I, 40, D)]

Hybrid:
[LCM (20, D, I), frequency(I, S,D),Gecode(S≤40)(S)]
[FPGrowth(20, D, I), frequency(I, S,D),Gecode(S≤40)(S)]
[LCM (20, D, I),Gecode(T=cover(I,D),S=card(T),S≤40)(I, S, T)]
[FPGrowth(20, D, I),Gecode(T=cover(I,D),S=card(T),S≤40)(I, S, T)]

Generic:
[Gecode(T=cover(I,D),S=card(T),20≤S,S≤40,minfreq redundant(I,D,20)(I, S, T)]
[Gecode(T=cover(I,D),S=card(T),20≤S,S≤40)(I, S, T)]

In the above we assume that LCM and FPGrowth are aware of the redundant
constraint minfreq redundant. If not, there would be variants of each of the
specialized and hybrid strategies with redundant constraints too (they would
be ranked below their non-redundant equivalent as they would have more con-
straints for the CP system).

Note that we proposed just one heuristic way of ordering the strategies,
based on common sense principles. In the experiments, we will investigate the
difference in runtime of the different strategies in more detail.

4.4. Execution of a plan

One plan is executed in a similar way as a Prolog query. The execution pro-
ceeds left-to-right. If all variables are ground then the algorithm simply checks
whether the current grounding (assignment to variables) satisfies the inherent

27

constraints of the algorithm, and if so outputs the same grounding. Other-
wise, the algorithm is used to find all groundings for non-grounded variables.
Each grounding will be passed in turn to the next algorithm. The evaluation
backtracks until all groundings for all predicates have been evaluated.

Note that before executing a specialized algorithm, the accompanying map-
ping from ground FlatZinc variables to input files and command line arguments
is applied. After execution, the mapping from output of the algorithm to (pre-
viously non ground) FlatZinc variables is also performed.

Example 14. In the execution plan of Example 7, [LCM (10, {. . .}, I),
Gecode(SI=card(I),SI≥3)(I)], the database {. . .} is transformed into a LCM’s file
format and the minimum frequency threshold 10 is given as argument to the
LCM executable. LCM then searches for all groundings of the I variable, that is,
all frequent itemsets. Each such itemset is processed using the Gecode system;
variable I is already grounded so it will simply check the constraints (SI =
card(I), SI ≥ 3) for each of the giving groundings of I to a specific itemset. All
assignments to the I variable that satisfy all constraints hence constitute the
output of the execution plan.

5. Experiments

In the experiments we make use of the ability of MiningZinc to enumerate
all execution strategies, and to compare the different strategies that MiningZinc
supports. We focus on the following main questions: 1) what is the computa-
tional overhead of MiningZinc’s model analysis and execution plan generation;
2) what are the strengths and weaknesses of the different solving strategies?

The MiningZinc framework is implemented in Python with key compo-
nents, such as libminizinc2 for the MiniZinc to FlatZinc conversion, written
in C++. Our implementation supports multiple algorithms for executing parts
of a model. All CP solvers have a corresponding rewrite rule, and the spe-
cialized algorithms have one rewrite rule for each task they support. We also
use one rewrite rule for redundant constraints in case of a minimum frequency
constraint. The constraint solvers used are Gecode [29], Opturion’s CPX [30],
Google or-tools [31] and the g12 solvers from the MiniZinc 1.6 distribution [6].
We also provide a custom version of Gecode for fast checking of given solutions
against a FlatZinc model. We use this solver as our default solver (it is the
highest ranked solver) in case a generic CP system is needed merely for con-
straint checking. The constraint-based mining algorithms are LCM version 2
and 5 [26] and Christian Borgelt’s implementations of Apriori (v5.73), Eclat
(v3.74) and FPGrowth (v4.48) [32]; these are the state-of-the art for efficient
constraint-based mining. In our experiments we also used the HUIMine algo-
rithm [33] for high utility mining as found in the SPMF framework [34]. For
correlated itemset mining, the corrmine algorithm is used [35]. Input/output

2http://www.minizinc.org/2.0/

28

mapping for these algorithms is written in Python, as are specialized checking
algorithms like calcfreq and maxsup.

The datasets are from the UCI Machine Learning repository [36]3 and from
the FIMI repository [37]. Experiments were executed on Linux computers with
quad-core Intel i7 processors. Unless stated otherwise we used a timeout of
900 seconds, and a limit on memory usage of 6Gb. The MiningZinc system and
datasets used can be downloaded at http://dtai.cs.kuleuven.be/CP4IM/miningzinc/
the version described in this work will be made available upon acceptance of the
paper.

5.1. Computing all execution strategies

An important part of MiningZinc consists of analyzing a given model and
determining all available execution plans. In our first experiment we focus on
this part of the execution and we analyze the time needed for this process.

Table 1 shows, for increasingly large datasets, the time of (1) normalizing a
model (+ data) to the intermediate FlatZinc representation and (2) generating
and ranking all available execution plans. The models used are combinations
of the constraints shown in Listing 2 (Freq/Fr) and Listing 8 (Clo+MinCost).
Solving times are not shown as they depend on the threshold supplied (and
typically range from seconds to hours, see the following sections).

The table shows that the normalization is quick for small datasets, but can
take some seconds for large datasets. In fact, most time is spent on reading the
data; the libminizinc tool uses the standard MiniZinc parser to read data from
quite verbose text files, it is not optimized for parsing large matrices of data.
This can be sidestepped by loading in the data directly from a database with
the query annotation.

The actual plan generation time is rather low but can increase with the size
of the data and the complexity of the task. The key part here is the subsumption
check of the rewrite rules, which, in case of complex constraint networks over
large datasets, can take a bit of time.

5.2. CP Solver performance

MiningZinc has the ability to automatically add redundant constraints or
transform set variables to Boolean variables. From earlier work [8], we know
that such reformulations can improve the runtime behavior of solvers.

The solver-independence of MiningZinc allows for an easy comparison of dif-
ferent solvers and reformulations. We compare the different reformulations on
three state-of-the-art CP solvers that won medals in the 2013 MiniZinc chal-
lenge: Gecode, Opturion’s CPX, Google’s or-tools. The comparison is done on
a range of datasets for the standard mining tasks of frequent itemset mining and
closed itemset mining. Or-tools does not support constraints over set variables
and hence requires the set to Boolean transformation.

3Downloaded from http://dtai.cs.kuleuven.be/CP4IM/datasets/

29

Dataset #Tr #It %D Freq Fr+Clo
Fr+Clo+
Mincost

zoo-1 101 36 44% 0.052/0.007 0.052/0.009 0.094/0.010
primary-tumor 336 31 48% 0.069/0.007 0.069/0.009 0.109/0.011
soybean 630 50 32% 0.098/0.008 0.091/0.010 0.131/0.012
german-credit 1000 110 35% 0.202/0.012 0.195/0.014 0.229/0.015
hypothyroid 3247 86 50% 0.578/0.024 0.578/0.027 0.594/0.027
mushroom 8124 112 19% 0.780/0.032 0.800/0.036 0.799/0.035
pumsb star 49046 2088 2.4% 13.489/0.546 13.895/0.563 13.459/0.541
retail 88162 16470 0.1% 5.132/0.235 5.290/0.243 5.086/0.233
T10I4D100K 100000 870 1.2% 5.692/0.262 5.821/0.271 5.633/0.259
T40I10D100K 100000 942 4.2% 16.285/0.746 16.707/0.763 16.057/0.723

Table 1: Left, dataset statistics: #Tr=nr. of transactions, #It = nr. of items, %D =
density. Right, time taken by MiningZinc analysis for 3 different tasks; normalization to
FlatZinc/execution plan generation, in seconds.

Gecode CPX or-tools
set set/red bool bool/red set set/red bool bool/red bool bool/red

soybean 2.65 4.02 2.04 2.01 0.58 3.20 3.08 4.62 1.89 1.55
primary-tumor 2.14 11.61 1.30 1.61 2.65 33.20 9.66 6.48 1.07 1.57
vote 3.32 13.48 2.34 2.24 4.16 39.40 20.33 7.28 2.05 2.01
lymph 92.85 220.76 216.53 211.36 110.85 241.37 216.18 222.01 211.25 205.22
mushroom 580.67 308.30 604.41 81.52 46.42 239.37 258.88 259.02 257.27 90.31
hepatitis 386.88 446.16 385.57 376.07 415.24 573.33 478.14 402.42 381.10 374.99
german-credit 523.58 582.50 446.38 310.30 384.35 587.66 422.15 471.99 401.28 366.82
heart-cleveland 568.66 595.44 482.94 425.74 544.58 693.37 556.37 561.27 456.69 428.64
australian-credit 755.83 757.56 674.09 580.25 565.78 761.22 642.44 735.72 643.24 585.40

Table 2: Frequent itemset mining, runtime in seconds averaged over different thresholds. /red
indicates redundant constraints were added. Lowest average runtime per solver in bold.

30

Gecode CPX or-tools
set set/red bool bool/red set set/red bool bool/red bool bool/red

soybean 0.62 1.54 2.36 2.25 0.54 1.92 4.06 3.98 2.16 2.40
primary-tumor 1.86 9.15 3.20 3.31 1.94 22.92 8.97 7.75 3.27 3.69
vote 2.85 11.67 5.67 5.50 3.42 30.67 23.02 10.73 5.76 5.97
lymph 1.90 11.68 4.50 3.59 5.31 70.16 8.16 7.63 3.55 3.86
mushroom 177.92 138.42 432.67 127.03 21.82 59.20 273.64 168.14 111.87 135.79
hepatitis 78.58 312.16 118.29 106.23 384.87 559.34 405.83 247.12 97.59 129.55
german-credit 273.61 443.12 332.36 260.93 353.88 564.18 446.07 415.82 291.00 312.55
heart-cleveland 364.57 464.67 380.53 293.25 427.42 599.48 556.28 410.23 315.58 317.50
australian-credit 489.28 610.58 509.54 422.79 551.05 738.46 618.00 579.33 444.50 455.61

Table 3: Closed frequent itemset mining, runtime in seconds averaged over different thresholds.
/red indicates redundant constraints were added. Lowest average runtime per solver in bold.

Table 2 shows average runtimes for the different reformulations. One can
immediately see that the type of reformulation to use can depend on the solver
used; for Gecode and or-tools, using Boolean variables with redundant con-
straints yields lower average runtimes, while for CPX not using any reformula-
tion is often fastest. CPX uses a lazy clause generation technique that includes
its own lazy transformation from set to Boolean variables.

Looking in more detail at the difference between adding or not adding redun-
dant constraints, we can see that in case of set variables adding these constraints
slows down the process. The redundant constraints added compute a subset of
the itemset for every transaction, which requires each time that an auxiliary
set variable is created. This overhead seems to overshadow the potential gain
in propagation. This is not the case when using the Boolean transformation;
no subset variables need to be created but instead a slice of the Boolean array
representing the itemset is directly used.

Table 3 show the results for closed itemset mining. Interestingly, for closed
itemset mining or-tools consistently performs faster without the redundant con-
straints while Gecode performs faster with them for most of the larger datasets.

As is known in constraint programming, reformulation and adding redundant
constraints may or may not be beneficial, depending on the problem and instance
at hand. This may depend on the solver used as well, as we observed for a
number of typical mining problems. These experiments suggest the potential
of algorithm selection techniques to help the user in choosing the best generic
solver for a problem.

In the next section, we will compare the different solvers with each other
and with specialized mining algorithms.

5.3. Standard tasks

On well-studied data mining tasks, one can expect specialized mining algo-
rithms to be more efficient than generic CP solvers. Indeed, this is also the case
for frequent and closed itemset mining.

Figure 2 shows a number of representative datasets with results for Gecode,
or-tools and CPX compared to mining algorithms Apriori, Eclat and LCMv2.
One can observe the gap in runtime between the CP solvers and mining algo-
rithms. Among the solvers, CPX is faster for high threshold values, but its

31

0.10.20.30.40.5

10−2

10−1

100

101

Frequency

R
u

n
ti

m
e

(s
)

primary-tumor

0.10.20.30.40.5

10−1

100

101

102

103

Frequency

lymph

0.10.20.30.40.5

10−1

100

101

102

Frequency

mushroom

Gecode bool/red or-tools bool/red CPX set Apriori Eclat LCMv2

Figure 2: Comparison of single algorithm strategies for frequent itemset mining.

0.10.20.30.40.5

10−2

10−1

100

101

Frequency

primary-tumor – closed

0.10.20.30.40.5

10−2

10−1

100

101

Frequency

lymph – closed

0.10.20.30.40.5

10−1

100

101

102

Frequency

mushroom – closed

Gecode bool/red or-tools bool/red CPX set Apriori Eclat LCMv2

Figure 3: Comparison of single algorithm strategies for closed frequent itemset mining.

runtime grows somewhat quicker than the other solvers for lower values. The
miners used are all highly optimized and there is little difference in their runtime
to be noticed.

Figure 3 plots a comparison for the task of closed frequent itemset min-
ing. Again the gap between solvers and miners can be observed, as can CPXs
faster growth for lower thresholds. Note that the traditional Apriori algorithm
performs gradually worse than the depth-first Eclat and LCM algorithms for
certain datasets.

While MiningZinc is a convenient tool to perform comparisons between al-
gorithms, its novelty lies in its ability to combine different algorithms in an
automatic way. This is experimentally investigated in the next two sections.

5.4. Variations of standard tasks

In the previous experiments we compared the behavior of different execution
plans that consisted of a single stage. Now we focus on execution plans that
consist of multiple stages.

First, we address the problem of finding all closed itemsets that also satisfy
a minimum size constraint on the size of the itemset.

Figure 4 shows a comparison of 5 approaches to solve this problem:

32

00.10.20.30.40.5

10−2

10−1

100

101

Frequency

R
u

n
ti

m
e

(s
)

primary-tumor – closed minsize

00.10.20.30.40.5

10−2

10−1

100

101

Frequency

lymph – closed minsize

0.10.20.30.40.5
10−2

10−1

100

101

102

103

Frequency

mushroom – closed minsize

Gecode bool/red LCMv2 + Gecode (all) LCMv2 + Gecode LCMv2 + SetCard Eclat

Figure 4: Comparison of hybrid solve strategies for closed frequent itemset mining with a size
constraint (size ≥ 4).

1. Using the CP solver Gecode (with redundant constraints and Boolean
encoding).

2. Using the specialized algorithm LCMv2, followed by a Gecode-based check-
ing CP system that checks all constraints in the model.

3. Using the specialized algorithm LCMv2, followed by a Gecode-based check-
ing CP system that only checks constraints that have not been checked
before (i.c. the size constraint).

4. Using the specialized algorithm LCMv2, followed by a specialized algo-
rithm for post-processing the set cardinality constraints.

5. Using the specialized algorithm Eclat, which is capable of solving the
complete problem.

Across all datasets, we can observe the following trends.
Unsurprisingly, the specialized algorithm is usually the fastest, followed

closely by the specialized post-processor. The difference is negligible in most
cases, and in a few cases the specialized post-processor is faster.

In most cases, a specialized algorithm followed by a generic CP checker is
faster than the pure CP approach, especially when already satisfied constraints
are removed.

We experimented with several larger datasets than mentioned here, for in-
stance, the ‘accidents’ dataset available at the FIMI repository4. For these
datasets the pure CP approach does not work due to the complexity of flatten-
ing the model and data, while the post-processing based approaches are still
able to solve the problem.

Hence, even for large datasets for which a CP-based approach is not possi-
ble, MiningZinc can still be used and can even continue to take advantage of
generic CP technology in the post-processing step (in case only a subset of the
constraints need checking).

4http://fimi.ua.ac.be/

33

0.2 0.1 0.01

0

200

400

600

800 MinAcc=0.5

MinUtil

R
u

n
ti

m
e

(s
)

mushroom

0.2 0.1 0.01

0

50

100

MinAcc=0.01

MinUtil

vote

0.2 0.1 0.01

0

200

400

600

800 MinAcc=0.01

MinUtil

hepatitis

Gecode (set) Corrmine+Gecode HUIMine+Gecode

Figure 5: Comparison of runtimes of different execution plans on a selection of representative
datasets.

5.5. Combinations of tasks

In the previous experiments we focussed mainly on solving models for which
a specialized algorithm exists. In order to analyze the power of MiningZinc,
we now focus on a more complex model that involves solving two well-studied
problems from constraint-based mining: high-utility mining and discriminative
pattern mining. This combined problem was introduced in Section 3, Listing
15.

MiningZinc provides us with three strategies for solving this model: (1) use
a CP solver to solve the entire model, (2) use a specialized algorithm for mining
discriminative itemsets and post-process its results using a CP solver, and (3)
use a specialized high-utility mining algorithm and post-process its result using
a CP solver.

For the data we used a selection of UCI datasets as before, augmented with
randomly generated utilities. These utilities were generated using the procedure
described in [33], that is, the item utilities were generated using a lognormal
distribution (µ = 0, σ = 1), and the amounts were generated uniformly between
1 and 10.

Results are shown in Figure 5 for three datasets. In general, there is no sin-
gle best strategy. However, the strategy with the high utility mining algorithm
typically performs worse than the other two. This is not surprising because (1)
there are typically much more high utility itemsets than there are discriminative
ones, and (2) the remaining constraints for the high-utility strategy are com-
putationally harder to verify since they include calculating the cover set of the
itemset, whereas the other case only requires computing a simple cost function.
Overall, the direct CP solver approach offers a trade-off between the two other
strategies.

To conclude, choosing the best strategy for solving complex models is a non-
trivial task and for this problem it depends on the number of solutions to the
subproblem we are solving first. In many settings, using the most restrictive
algorithm first (in this case discriminative pattern mining) will be the best
choice. When little is known about the expected output of the subproblems,
the pure CP approach can offer a good trade-off for this problem.

34

6. Related Work

In the data mining field, our work is related to that on inductive databases
[38]; these are databases in which both data and patterns are first-class citizens
and can be queried. Most inductive query languages, e.g., [39, 40], extend SQL
with primitives for pattern mining. They have only a restricted language for
expressing mining problems, and are usually tied to one mining algorithm. A
more advanced development is that of mining views [41], which provides lazy
access to patterns through a virtual table. Standard SQL can be used for
querying, and the implementation will only materialize those patterns in the
table that are relevant for the query. This is achieved using a traditional mining
algorithm.

Work on constraint solving for itemset mining [8, 42] has used existing mod-
eling languages. However, these approaches were low-level and solver dependent.
The use of higher-level modeling languages and primitives has been studied be-
fore [43, 24], though again tied to one particular solving technology. MiningZinc
on the other hand enables the use of both general constraint solvers and highly
optimized mining algorithms. Best practices from solver-specific studies, such
as the use of SAT solvers for itemset mining [44, 45] or ASP [46] could be incor-
porated into MiningZinc too. This would require adding rewrite rules for spe-
cific encodings of the constraints into SAT/ASP. Other pattern mining settings
that have been studied in a CP framework such as sequences with wildcards
[47, 48, 49] and sequential patterns [50] can be expressed in MiningZinc too.
The main difference is in the definition of the cover relation, and one could add
such relations to the MiningZinc library as reusable functions.

Recently, a range of constraint solving techniques for pattern mining have
been developed that incorporate an order or preference over patterns, such
as top-k preferred patterns [51], (soft) sky patterns [52] and dominance rela-
tions [53]. These typically employ a form of dynamic CSP solving, where after
each solution found by a solver, new constraints are added to the problem. This
requires a finer-grained reasoning system than the one investigated in this paper.

Other tasks such as clustering have been studied in a declarative constraint-
based setting as well [54, 55]. While being a very different type of data mining
problem, it would be interesting to incorporate these in MiningZinc as well.

We chose Zinc [6] as the basis of our work because it is most in line with our
design criteria. Other modeling languages such as Essence [4], Comet [56] and
OPL [5] have no, or only limited, support for building libraries of user-defined
constraints, and/or are tied to a specific solver.

We employ automatic model transformations such as the MiniZinc to FlatZinc
transformation [7] and a set to Boolean transformation. Model transformations
are a well-studied topic in constraint programming [57, 58], see the ModRef
workshop series [59]. Even for the Zinc family of languages, a range of trans-
formations exist [60], ranging from the ones we employ to transformations into
other solving technology like SAT [61] and SMT [62], and compilation to exe-
cutable machine code [63]. By building on the MiniZinc framework, we will be
able to take advantage of future developments in model transformations for this

35

language.
Rewrite rules have been used in the context of constraint modeling before,

such as Constraint Handling Rules [64]. For Zinc, an ACD term rewrite system
is introduced [63] for specifying model transformations. The difference with our
approach is that we must make a distinction between rewriting the model (e.g.
adding redundant constraints) and using specialized algorithms to solve some
of the constraints. In the latter case, some but certainly not all constraints may
need to be recomputed later. Conjure [58] also uses rewrite rules to transform
CP specifications, with the ability to add redundant symmetry breaking con-
straints and perform algorithm/model selection; the main difference is that our
rewrite process creates compositions of different algorithms instead of a single
CP model.

Finally, the use of multiple algorithms for solving constraint satisfaction
problems has been studied in constraint programming before, most notable in
the hybridization of both generic constraint programming and optimization/OR
techniques [65]. Several approaches have been studied including to incorporate
algorithms in CP solvers by means of global constraints, to incorporate infor-
mation of one algorithm (such as relaxations of IP solvers) as constraints in a
CP system [66] or to add CP propagation inside an integer programming sys-
tem [67]; see [68] for a nice overview of hybrid algorithms in CP. The idea of
chaining specialized algorithms for enumeration problems and the automatic
detection of such execution strategies has, to the best of our knowledge, not
been studied before.

7. Conclusions

MiningZinc aims at bringing the benefits of the declarative modeling + solv-
ing approach from the field of constraint programming to the field of data min-
ing. It extends the modeling language MiniZinc with a library for constraint-
based itemset mining. Furthermore, an execution mechanism has been designed
to support a wide range of general purpose and specialized solvers and to allow
for different execution strategies. Its implementation incorporates many state-
of-the-art constraint programming and data mining solvers, as well as specialized
algorithms. The resulting architecture is flexible and extensible. The experi-
ments have shown that this leads to execution strategies with state-of-the-art
performance for many known as well as novel constraint-based mining tasks.

The benefits of the modeling + solving approach to data mining are many-
fold. First, it allows for the natural and declarative modeling and solving
of many constraint-based data mining problems. Second, it provides a uni-
form interface to many data mining systems. It is very expressive through its
use of constraint programming technology and can tackle a wide spectrum of
constraint-based mining tasks. This should facilitate the comparison of different
algorithms as well as the re-use of software. A potential benefit of the modeling
+ solving approach to data mining is also the possible emergence of standard
languages and (integrated) systems for data mining, as in constraint program-
ming. Current limitations are that the problem must be expressed over integer

36

and set variables (no other explicit data structures), and that search is assumed
to be exhaustive (no greedy/heuristic approximations).

Data mining also raises new challenges for constraint programming as the
solutions offered by the modeling + solving approach need to be competitive
with that of standard data mining algorithms. This is non-trivial because data
mining algorithms are highly optimized for specific tasks and large datasets,
while generic constraint solvers may struggle in particular with the size of the
problems.

The approach taken in MiningZinc is to provide a rewrite mechanism for
generating different execution plans that may involve different algorithms, each
addressing part of the task. Experiments have shown that the performance
of different execution plans can vary greatly, which invites for automatic al-
gorithm selection techniques. However, the breadth of problems that can be
formulated, different execution plans that can be produced and the sensitivity
of some problems towards a single threshold raises challenges. Other directions
for future work include the investigation of heuristic search strategies and the
extension of the framework towards more complex pattern types and other data
mining tasks such as clustering [55].

Acknowledgements. This work was supported by the Research Foundation—Flanders

by means of a Postdoc grant and by the European Commission under the project “In-

ductive Constraint Programming”, contract number FP7-284715, as well as the KU

Leuven GOA 13/010 “Declarative Modeling Languages for Machine Learning and Data

Mining”. NICTA is funded by the Australian Department of Broadband, Communi-

cations and the Digital Economy and the Australian Research Council.

References

[1] L. De Raedt, S. Nijssen, B. O’Sullivan, P. Van Hentenryck, Constraint
programming meets machine learning and data mining (dagstuhl seminar
11201)., Dagstuhl Reports 1 (5) (2011) 61–83.

[2] J. Han, M. Kamber, Data Mining: Concepts and Techniques, Morgan Kauf-
mann, 2000.

[3] K. Marriott, N. Nethercote, R. Rafeh, P. J. Stuckey, M. Garcia De
La Banda, M. Wallace, The design of the Zinc modelling language, Con-
straints 13 (3) (2008) 229–267.

[4] A. Frisch, W. Harvey, C. Jefferson, B. M. Hernández, I. Miguel, Essence:
A constraint language for specifying combinatorial problems, Constraints
13 (3) (2008) 268–306.

[5] P. Van Hentenryck, The OPL optimization programming language, MIT
Press, 1999.

[6] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, G. Tack,
MiniZinc: Towards a standard CP modelling language, in: CP, Vol. 4741
of LNCS, Springer, 2007, pp. 529–543.

37

[7] P. Stuckey, G. Tack, MiniZinc with functions, in: Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization
Problems, Vol. 7874 of LNCS, Springer Berlin Heidelberg, 2013, pp. 268–
283.

[8] T. Guns, S. Nijssen, L. De Raedt, Itemset mining: A constraint program-
ming perspective, Artif. Intell. 175 (12-13) (2011) 1951–1983.

[9] T. Guns, A. Dries, G. Tack, S. Nijssen, L. De Raedt, MiningZinc: A mod-
eling language for constraint-based mining, in: Proceedings of the Twenty-
Third International Joint Conference on Artificial Intelligence, AAAI Press,
2013, pp. 1365–1372.

[10] R. Agrawal, T. Imielinski, A. N. Swami, Mining association rules between
sets of items in large databases, in: Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, ACM Press, 1993, pp.
207–216.

[11] C. C. Aggarwal, J. Han (Eds.), Frequent Pattern Mining, Springer, 2014.

[12] H. Mannila, H. Toivonen, Levelwise search and borders of theories in knowl-
edge discovery, Data Min. Knowl. Discov. 1 (3) (1997) 241–258.

[13] F. Bonchi, C. Lucchese, Extending the state-of-the-art of constraint-based
pattern discovery, Data Knowl. Eng. 60 (2) (2007) 377–399.

[14] J.-F. Boulicaut, B. Jeudy, Constraint-based data mining, in: Data Mining
and Knowledge Discovery Handbook, 2nd Edition, Springer, 2010, pp. 339–
354.

[15] F. Rossi, P. v. Beek, T. Walsh, Handbook of Constraint Programming
(Foundations of Artificial Intelligence), Elsevier Science Inc., New York,
NY, USA, 2006.

[16] P. J. Stuckey, R. Becket, J. Fischer, Philosophy of the MiniZinc challenge,
Constraints 15 (3) (2010) 307–316.

[17] J. Vreeken, M. Leeuwen, A. Siebes, Krimp: Mining itemsets that compress,
Data Min. Knowl. Discov. 23 (1) (2011) 169–214.

[18] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Discovering frequent closed
itemsets for association rules, in: Database Theory, Vol. 1540 of LNCS,
Springer, 1999, pp. 398–416.

[19] R. Chan, Q. Yang, Y.-D. Shen, Mining high utility itemsets, in: ICDM,
2003, pp. 19–26.

[20] C. K. Chui, B. Kao, E. Hung, Mining frequent itemsets from uncertain data,
in: Advances in Knowledge Discovery and Data Mining, 11th Pacific-Asia
Conference, PAKDD 2007, Nanjing, China, May 22-25, 2007, Proceedings,
2007, pp. 47–58.

38

[21] P. K. Novak, N. Lavrac, G. I. Webb, Supervised descriptive rule discovery:
A unifying survey of contrast set, emerging pattern and subgroup mining,
J. Mach. Learn. Res. 10 (2009) 377–403.

[22] J. Fürnkranz, P. A. Flach, ROC ’n’ rule learning – towards a better under-
standing of covering algorithms, Machine Learning 58 (1) (2005) 39–77.

[23] S. Nijssen, A. Jimenez, T. Guns, Constraint-based pattern mining in multi-
relational databases, in: Proceedings of the 11th IEEE International Con-
ference on Data Mining Workshops,, IEEE, 2011, pp. 1120–1127.

[24] T. Guns, S. Nijssen, L. De Raedt, k-Pattern set mining under constraints,
IEEE Transactions on Knowledge and Data Engineering 25 (2) (2013) 402–
418.

[25] M. Khiari, P. Boizumault, B. Crémilleux, A generic approach for modeling
and mining n-ary patterns, in: ISMIS, 2011, pp. 300–305.

[26] T. Uno, M. Kiyomi, H. Arimura, LCM ver. 2: Efficient mining algorithms
for frequent/closed/maximal itemsets, in: FIMI, Vol. 126 of CEUR Work-
shop Proceedings, CEUR-WS.org, 2004.

[27] R. Elmasri, S. Navathe, Fundamentals of Database Systems, 6th Edition,
Addison-Wesley Publishing Company, USA, 2010.

[28] L. Kotthoff, Algorithm selection for combinatorial search problems: A sur-
vey, AI Magazine 35 (3) (2014) 48–60.

[29] C. Schulte, G. Tack, M. Lagerkvist, Gecode, a generic constraint develop-
ment environment, www.gecode.org (2013).

[30] Opturion, CPX (2014).
URL http://www.opturion.com/cpx.html

[31] N. van Omme, L. Perron, V. Furnon, or-tools user’s manual, Tech. rep.,
Google (2014).

[32] C. Borgelt, Frequent item set mining, Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 2 (6) (2012) 437–456.

[33] M. Liu, J. Qu, Mining high utility itemsets without candidate generation,
in: Proceedings of the 21st ACM international conference on Information
and knowledge management, ACM, 2012, pp. 55–64.

[34] P. Fournier-Viger, A. Gomariz, A. Soltani,
T. Gueniche, Spmf: Open-source data mining platform,
http://www.philippe-fournier-viger.com/spmf/ (2013).

[35] S. Nijssen, T. Guns, L. De Raedt, Correlated itemset mining in ROC space:
A constraint programming approach, in: KDD, ACM, 2009, pp. 647–656.

39

http://www.opturion.com/cpx.html
http://www.opturion.com/cpx.html

[36] A. Frank, A. Asuncion, UCI machine learning repository, available from
http://archive.ics.uci.edu/ml (2010).

[37] B. Goethals, M. J. Zaki, Advances in frequent itemset mining implemen-
tations: report on FIMI’03, in: SIGKDD Explorations, Vol. 6, 2004, pp.
109–117.

[38] H. Mannila, Inductive databases and condensed representations for data
mining, in: ILPS, 1997, pp. 21–30.

[39] R. Meo, G. Psaila, S. Ceri, A new SQL-like operator for mining association
rules, in: VLDB, 1996, pp. 122–133.

[40] T. Imielinski, A. Virmani, MSQL: A query language for database mining,
Data Mining and Knowledge Discovery 3 (1999) 373–408.

[41] H. Blockeel, T. Calders, É. Fromont, B. Goethals, A. Prado, C. Robardet,
An inductive database system based on virtual mining views, Data Min.
Knowl. Discov. 24 (1) (2012) 247–287.

[42] M. Järvisalo, Itemset mining as a challenge application for answer set enu-
meration, in: Logic Programming and Nonmonotonic Reasoning, Vol. 6645
of LNCS, Springer, 2011, pp. 304–310.

[43] J.-P. Métivier, P. Boizumault, B. Crémilleux, M. Khiari, S. Loudni, A
constraint language for declarative pattern discovery, in: ACM Symposium
on Applied Computing, ACM, 2012, pp. 119–125.

[44] R. Henriques, I. Lynce, V. M. Manquinho, On when and how to use SAT
to mine frequent itemsets, CoRR abs/1207.6253.

[45] E. Coquery, S. Jabbour, L. Sais, Y. Salhi, et al., A SAT-based approach
for discovering frequent, closed and maximal patterns in a sequence., in:
European Conference on Artificial Intelligence (ECAI), Vol. 242, 2012, pp.
258–263.

[46] M. Järvisalo, Itemset mining as a challenge application for answer set enu-
meration, in: Logic Programming and Nonmonotonic Reasoning - 11th
International Conference, LPNMR 2011, Vancouver, Canada, May 16-19,
2011. Proceedings, 2011, pp. 304–310.

[47] S. Jabbour, L. Sais, Y. Salhi, Boolean satisfiability for sequence mining, in:
Proceedings of the 22nd ACM international conference on information &
knowledge management, ACM, 2013, pp. 649–658.

[48] E. Coquery, S. Jabbour, L. Sais, A constraint programming approach for
enumerating motifs in a sequence, in: Data Mining Workshops (ICDMW),
2011 IEEE 11th International Conference on, IEEE, 2011, pp. 1091–1097.

40

[49] A. Kemmar, W. Ugarte, S. Loudni, T. Charnois, Y. Lebbah, P. Boizu-
mault, B. Cremilleux, Mining relevant sequence patterns with CP-based
framework, in: Tools with Artificial Intelligence (ICTAI), 2013 IEEE 25th
International Conference on, IEEE, IEEE Computer Society, 2014, pp. 552–
559.

[50] J.-P. Métivier, S. Loudni, T. Charnois, A constraint programming approach
for mining sequential patterns in a sequence database, in: ECML/PKDD
2013 Workshop on Languages for Data Mining and Machine Learning, 2013,
also available as arXiv:1311.6907.

[51] S. Jabbour, L. Sais, Y. Salhi, The top-k frequent closed itemset mining
using top-k SAT problem, in: Machine Learning and Knowledge Discovery
in Databases, Springer, 2013, pp. 403–418.

[52] W. Ugarte, P. Boizumault, S. Loudni, B. Crémilleux, A. Lepailleur, Soft
threshold constraints for pattern mining, in: Eleventh International Confer-
ence on Integration of Artificial Intelligence (AI) and Operations Research
(OR) techniques in Constraint Programming (CPAIOR-14), 2014.

[53] B. Negrevergne, A. Dries, T. Guns, S. Nijssen, Dominance programming for
itemset mining, in: 13th IEEE International Conference on Data Mining,,
IEEE Computer Society, 2013, pp. 557–566.

[54] J.-P. Métivier, P. Boizumault, B. Crémilleux, M. Khiari, S. Loudni, Con-
strained clustering using SAT, in: Advances in Intelligent Data Analysis
XI, Springer, 2012, pp. 207–218.

[55] K.-C. Duong, C. Vrain, et al., A declarative framework for constrained
clustering, in: ECML/PKDD, Machine Learning and Knowledge Discovery
in Databases, Springer, 2013, pp. 419–434.

[56] P. Van Hentenryck, L. Michel, Constraint-Based Local Search, MIT Press,
2005.

[57] P. Flener, J. Pearson, M. Ågren, Introducing ESRA, a relational language
for modelling combinatorial problems, in: LOPSTR, Vol. 3018 of LNCS,
Springer, 2003, pp. 214–232.

[58] A. Frisch, C. Jefferson, B. M. Hernández, I. Miguel, The rules of constraint
modelling, in: IJCAI, Professional Book Center, 2005, pp. 109–116.

[59] A. Frisch, et al., International workshops on constraint modelling and re-
formulation.
URL http://www-users.cs.york.ac.uk/~frisch/ModRef/

[60] R. Becket, S. Brand, M. Brown, G. J. Duck, T. Feydy, J. Fischer, J. Huang,
K. Marriott, N. Nethercote, J. Puchinger, R. Rafeh, P. J. Stuckey, G. Wal-
lace, The many roads leading to rome: Solving Zinc models by various
solvers (2008).

41

http://www-users.cs.york.ac.uk/~frisch/ModRef/
http://www-users.cs.york.ac.uk/~frisch/ModRef/
http://www-users.cs.york.ac.uk/~frisch/ModRef/

[61] J. Huang, Universal Booleanization of constraint models, in: P. Stuckey
(Ed.), Principles and Practice of Constraint Programming, Vol. 5202 of
LNCS, Springer Berlin Heidelberg, 2008, pp. 144–158.

[62] M. Bofill, M. Palah́ı, J. Suy, M. Villaret, fzn2smt,
http://ima.udg.edu/Recerca/lap/fzn2smt/index.html (2011).

[63] G. J. Duck, L. De Koninck, P. J. Stuckey, Cadmium: An implementation
of ACD term rewriting, in: ICLP, Vol. 5366 of LNCS, Springer, 2008, pp.
531–545.

[64] T. Frühwirth, Constraint Handling Rules, Cambridge University Press,
2009.

[65] F. Ajili, M. Wallace, Hybrid problem solving in eclipse, in: M. Milano (Ed.),
Constraint and Integer Programming, Vol. 27 of Operations Research/-
Computer Science Interfaces Series, Springer US, 2004, pp. 169–206.

[66] F. Focacci, A. Lodi, M. Milano, Exploiting relaxations in cp, in: Constraint
and Integer Programming, Vol. 27 of Operations Research/Computer Sci-
ence Interfaces Series, Springer US, 2004, pp. 137–167.

[67] T. Achterberg, T. Berthold, T. Koch, K. Wolter, Constraint integer pro-
gramming: A new approach to integrate cp and mip, in: L. Perron, M. A.
Trick (Eds.), Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems, Vol. 5015 of LNCS,
Springer Berlin Heidelberg, 2008, pp. 6–20.

[68] M. Wallace, Hybrid algorithms in constraint programming, in: F. Azevedo,
P. Barahona, F. Fages, F. Rossi (Eds.), Recent Advances in Constraints,
Vol. 4651 of LNCS, Springer Berlin Heidelberg, 2007, pp. 1–32.

42

	Introduction
	Modeling
	Pattern mining and itemset mining
	Constraint Programming
	MiniZinc and itemset mining in MiniZinc
	MiningZinc

	Example problems
	Itemset Mining with constraints
	Itemset mining with additional numeric data
	Multiple databases
	Mining pattern sets
	Combinations

	MiningZinc execution mechanism
	Normalization
	Generation of all plans
	Algorithms
	Rewrite rules
	Generation of all plans

	Ranking plans
	Execution of a plan

	Experiments
	Computing all execution strategies
	CP Solver performance
	Standard tasks
	Variations of standard tasks
	Combinations of tasks

	Related Work
	Conclusions

