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Abstract. We describe the reformulation and execution mechanism of
MiningZinc, a declarative framework for constraint-based data mining.
The MiningZinc execution mechanism determines how to compute so-
lutions for MiningZinc models. It is solver independent and supports
both standard constraint solvers and specialized data mining systems.
The high-level problem specification is first translated into a normalized
constraint language. Rewrite rules are then used to add redundant con-
straints or solve subproblems using specialized data mining algorithms
or generic constraint programming solvers. Given a model, different exe-
cution strategies are automatically extracted that correspond to different
sequences of algorithms to run. Optimized data mining algorithms, spe-
cialized processing routines and generic solvers can all be automatically
combined, leading to tailored high-performance solving of the declarative
models.

1 Introduction

The fields of data mining and constraint programming are amongst the most
successful subfields of artificial intelligence. Yet, their methodologies are quite
different. Constraint programming advocates a declarative modeling and solving
approach to constraint satisfaction and optimisation problems. Data mining on
the other hand has focussed on handling large and complex datasets that arise in
particular applications, often focussing on special-purpose algorithms to specific
problems. This typically yields complex code that is very efficient, but hard to
modify or reuse in other applications. Nevertheless, there is a need for generic
techniques that can handle variations of known tasks as well as application-driven
constraints [1,2].

However, when using generic declarative modeling languages, the perfor-
mance of the underlying solvers is orders of magnitudes slower than state-of-
the-art specialized systems.

The aim of this paper is to contribute to bridging the methodological gap
between the fields of data mining and constraint programming. We do this by in-
vestigating effective ways to transform declarative specifications of mining prob-
lems, such that generic solvers, specialised algorithms and combinations thereof



can be used. This should contribute to making data mining approaches more
flexible and declarative, as it becomes easy to change the model and to reuse
existing algorithms and solvers.

As the field of data mining is diverse, we focus in this paper on one of the most
popular tasks, namely, constraint-based pattern mining. Even for the restricted
data type of sets and binary databases, many settings and corresponding systems
have been proposed in the literature[3]; this makes it an ideal showcase for a
declarative approach to data mining.

The language used is MiniZinc [4] version 2.0, extended with a library of
functions and constraints that are common in constraint-based itemset mining.
The choice of language is driven by the need for solver-independence and the
ability to define user-defined functions. The execution mechanism is much more
elaborate than that of standard MiniZinc. The standard mechanism translates
individual constraints to constraints that are supported by a specific solver.
Our method reasons over groups of constraints and can automatically compose
execution strategies involving multiple solvers.

The MiningZinc framework builds on our earlier CP4IM framework [5], which
showed the feasibility of constraint programming for pattern mining. The present
paper also extends our earlier publication on MiningZinc [6], whose execution
mechanism was restricted to using a single algorithm or generic solver. Instead,
we now use rewrite rules to automatically construct execution plans consisting
of multiple solver/algorithm components. This workshop paper is a summary of
an upcoming journal paper.

2 Modeling constraint-based mining problems

We will focus on pattern mining problems where the patterns are expressible as
sets, also called itemsets. Itemset mining was introduced by Agrawal et al. [7] as
a technique to mine customer transaction databases for sets of items (products)
that people often buy together. From these, unexpected associations between
products can then be discovered. Since then, itemset mining has been extended in
many directions, including more structured types of patterns such as sequences,
trees and graphs as well as many applications [3].

The input to an itemset mining algorithm is an itemset database, containing
a set of transactions each consisting of an identifier and a set of items. We denote
the set of transaction identifiers as S = {1, . . . , n} and the set of all items as
I = {1, . . . ,m}. An itemset database D maps transaction identifiers t ∈ S to
sets of items: D(t) ⊆ I.

Definition 1 (Frequent Itemset Mining). Given an itemset database D and
a threshold Freq, the frequent itemset mining problem consists of finding all item-
sets I ⊆ I such that |φD(I)| ≥ Freq, where φD(I) = {t|I ⊆ D(t)}.
The set φD(I) is called the cover of the itemset. It contains all transaction
identifiers for which the itemset is a subset of the respective transaction. The
threshold Freq is often called the minimum frequency threshold. An itemset I
which has |φD(I)| ≥ Freq is called a frequent itemset.



Listing 1.1. “Constraint-based mining”

1 i n t : Nr I ; i n t : NrT ; i n t : Freq ;
2 ar ray [ 1 . . NrT ] of set of 1 . . Nr I : TDB;

3 var set of 1 . . Nr I : I t ems ;

4 con s t r a i n t ca rd ( cove r ( I tems ,TDB) ) >= Freq ;

5 so l ve s a t i s f y ;
6 output [ show ( I t ems ) ] ;

Listing 1.2. “Constraint-based mining - cover”

1 f unct ion var set of i n t : c o v e r ( var set of i n t : I tems ,
2 ar ray [ i n t ] of set of i n t : D)
3 = l e t { var set of i n d e x s e t (D) : Cover ;
4 con s t r a i n t f o r a l l ( t i n ub ( Cover ) )
5 ( t i n Cover <−> I t ems subset D[ t ] )
6 } i n Cover ;

Example 1. Consider a transaction database from a hardware store:

t D(t) t D(t)
1 {Hammer, Nails, Saw} 4 {Nails, Screws, Wood}
2 {Hammer, Nails, Wood} 5 {File, Saw}
3 {File, Saw, Screws, Wood} 6 {Hammer, Nails, Pliers, Wood}

With a minimum frequency threshold of 3, the frequent patterns are: ∅, {Hammer},
{Nails}, {Hammer,Nails}, {Wood}, {Nails,Wood}.

Constraint-based pattern mining methods can leverage additional constraints
during the pattern discovery process; cf. [7,8,9]. This has lead to the research
topic of constraint-based itemset mining [10]. It is in this constraint-based setting
that the rich modeling facilities of constraint programming are appealing.

2.1 Itemset mining in standard MiniZinc

Itemset mining problems can be modeled directly in MiniZinc. A MiniZinc model
of the frequent itemset mining problem is shown in Listing 1.1. We assume famil-
iarity with the syntax. The model represents the item and transaction identifiers
in I and S by natural numbers from 1 to NrI (= n) and 1 to NrT (= m) respec-
tively (lines 1 and 2). The dataset D is implemented by the array TDB, mapping
each transaction identifier to the corresponding set of items. The set of items we
are looking for is modeled on line 3. The minimum frequency constraint is posted
on line 4, which corresponds closely to the formal notation |φD(I)| ≥ Freq , where
φ is a function named cover.

A distinguishing feature of MiniZinc is its support for user defined-predicates,
and since version 2.0, user-defined functions [4]. A declaration of the cover

function is shown in Listing 1.2. Recall that the formal definition of cover is



φD(I) = {t|I ⊆ D(t)}. While the implementation of cover is not a verbatim
translation of the mathematical definition, MiniZinc enables us to define this
abstraction in a library and hide its implementation details from the users.

This example demonstrates the appeal of using a modeling language like
MiniZinc for pattern mining: the formulation is high-level, declarative and close
to the mathematical notation, it allows for user-defined constraints like the cover
relation between items and transactions, and it is independent of the actual
solution method.

2.2 MiningZinc

MiniZinc allows one to place common functions and predicates into libraries,
to facilitate their reuse in different models. The language component of the
MiningZinc framework is such a library.

The two key building blocks of the MiningZinc library are the cover and
cover inv functions. The cover function φD(I) = {t|I ⊆ D(t)} was already given
in Listing 1.2. For brevity we ommit the cover inv function ψD, but see [6]. The
library includes other helper functions such as weighted sum and different ways
to print item and transaction sets.

The library also includes predicates that express redundant constraints that
can be added automatically by the execution mechanism. A redundant constraint
is already implied by the model – it does not express an actual restriction of
the solution space – but it can potentially improve solver performance, e.g. by
contributing additional constraint propagation.

Another type of redundant information available in the library is a search
annotation. This is an annotation that can be added to the search keyword, and
that specifies the order in which to search over the variables. We also added the
enumerate search annotation to differentiate, in the model, between satisfaction
(one solution) and enumeration (all solutions) problems.

Direct database access Another annotation we added is the query keyword, which
can be added to a variable declaration, for example:
array [] of set of int : TDB :: query(”mydb.sql”, ”SELECT tid,item FROM purchases”);

The execution mechanism will automatically typecheck the expression, execute
the query and add the data as an assignment to that variable. In this way, one
can directly load data from a database, as is common in data mining.

2.3 Constraint-based mining in MiningZinc

Modeling a mining problem in MiningZinc follows the same methodology as
modeling a constraint program: one has to express a problem in terms of variables
with a domain, and constraints over these variables; for example, a set variable
with a minimum frequency constraint over data.

From a data mining perspective, the kind of problem that can be expressed
are enumeration or optimization problems that can be formulated using the



Listing 1.3. “Constraint-based mining”

1 i n t : Nr I ; i n t : NrT ; i n t : Freq ;
2 ar ray [ 1 . . NrT ] of set of 1 . . Nr I : TDB;

3 var set of 1 . . Nr I : I t ems ;

4 con s t r a i n t ca rd ( cove r ( I tems ,TDB) ) >= Freq ;

5 % Clo su r e
6 con s t r a i n t I t ems = c o v e r i n v ( cove r ( I tems ,TDB) ,TDB) ;

7 % Minimum co s t
8 ar ray [ 1 . . Nr I ] of i n t : i t em c ; i n t : Cost ;
9 con s t r a i n t sum( i i n I t ems ) ( i t em c [ i ] ) >= Cost ;

10 so l ve s a t i s f y : : enumerate ;

variable types available in MiniZinc: Booleans, integers, sets and floats, and con-
straints over these variables. Many itemset mining problems fit this requirement
(with the exception of incomplete methods).

Listing 1.3 is a constraint-based mining model that extends the MiniZinc
model in Listing 1.1. Line 6, Items = cover inv(cover(Items,TDB),TDB), represents
the popular closure constraint I = ψD(φD(I)). This closure constraint, together
with a minimum frequency constraint, represents the closed itemset mining prob-
lem, see [11] for details. Lines 8/9 represent a common cost-based constraint [9];
it constrains the itemset to have a cost of at least Cost, with item cost and
Cost being a user-supplied array of costs and a cost threshold.

We can use the full expressive power of MiniZinc to define other constraints.
This includes constraints in propositional logic, for example expressing depen-
dencies between (groups of) items/transactions, or inclusion/exclusion relations
between elements. Many such constraints have been studied in the literature [1],
though for the remaining of this paper we will use frequent, closed and cost-based
itemset mining as running examples.

3 MiningZinc execution mechanism

The MiniZinc language shown in the previous section is declarative and solver-
independent, as we did not impose what kind of algorithm or solving technique
must be used. We now discuss how solving is done in MiningZinc.

Figure 1 shows an overview of the overall execution mechanism. The starting
point of the process is a MiningZinc model. The first step in the analysis process
is to transform this model into a FlatZinc program [17], which we use as a nor-
malized form for simplifying the analysis. Given a set of algorithms and rewrite
rules, the FlatZinc program is then transformed into all possible sequences of
algorithms that can solve this problem; one such sequence of algorithms is called
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Fig. 1. Overview of the MiningZinc toolchain

an execution plan. Multiple execution plans are generated and ranked using a
simple heuristic ranking scheme. When a plan is chosen (by the user, or by auto-
matic selection of the highest ranked plan), each of the algorithms in that plan
is executed to obtain the required output.

We now describe each of the components in turn.

3.1 Normalization

The purpose of converting to FlatZinc is to enable reasoning over a set of con-
straints instead of having to reason over nested constraints and loops. This also
simplifies the detection of equivalent or overlapping formulations.

A MiniZinc instance is transformed into a FlatZinc program by operations
such as loop unrolling, introduction of (auxiliary) variables in one global scope,
simplifying constraints by removing constants, and rewriting constraints in terms
of simple built-ins, where possible [4]. It also performs common subexpression
elimination at the global scope. For example, Listing 1.3 contains twice the func-
tion cover(Items,TDB). In the FlatZinc code, only one call X = cover(Items,TDB)

will remain, and variable X will be shared by all expressions that contained that
call. FlatZinc also supports annotations, for example enumerate in Listing 1.3.

For the purpose of normalization, we use a special version of the MiningZinc
library that defines all MiningZinc predicates and functions as builtins, i.e. with-
out giving a definition in terms of simpler expressions. This allows us to reason
at the level of the library and is also more compact than the FlatZinc generated
for a CP solver, since the definitions typically loop over the data.

An important observation is that a FlatZinc program can be seen as a CSP
(V,D, C), where the possible form of constraints in C is limited. More specifically,
constraints are either of the form:

– p(X1, . . . Xn), where p ∈ P is a predicate symbol, and each Xi is either a vari-
able in the CSP or a constant. Examples include int le(Y, 1), set subset(S, {2, 4});
for notational convenience, in the examples we will represent some of these
constraints in infix notation, i.e. Y ≤ 1, S ⊆ {2, 4}.

– (X0 = f(X1, . . . Xn)), where f ∈ F is a function symbol and each Xi is
either a variable in the CSP or a constant. Examples are Y = set card(S)
and T = cover(I,D), where set card(S) is a function that calculates the
cardinality of the set S, and cover(I,D) is as defined in Section 2. We refer
to these constraints as functional definitions.



Example 2. Consider the problem of finding frequent itemsets with minimum
frequency of 20 and containing at least 3 items (Listing 1.1 + card(Items) >= 3).
We represent the datasets by {. . .} to indicate that it is a constant. The normal-
ized FlatZinc model obtained is the following (leaving the domain implicit):

V = {Items, T, SI, ST}
C = {T = cover(Items, {...}), ST = card(T ), SI = card(Items), ST ≥ 20, SI ≥ 3}

3.2 Execution plans and algorithm predicates

An execution plan specifies which parts of a MiningZinc model are handled by
which algorithms or solving techniques in sequence. In an execution plan, the
execution of an algorithm or CP solver will be represented by an atom, consisting
of a predicate applied to variables or constants.

Specialized algorithms These are represented by predicates of fixed arity.
Such predicates are declared through mode statements of the kind

p(±1V1, . . . ,±nVn),

where p is the algorithm name, ±i ∈ {+,−} indicates the mode of a parameter
and Vi is a variable identifier for the parameter. The interpretation of the modes
is as follows:

– the input mode “+” indicates that the algorithm evaluating the predicate
can only be run when this parameter is grounded, that is, its value is known;

– the output mode “-” indicates that the algorithm evaluating the predicate
will only produce groundings for this parameter.

Example 3. The LCM algorithm for frequent itemset mining is characterized by
the mode statement LCM (+F,+D,−I), where F represents a support thresh-
old, D a dataset, and I an itemset. It is true for any F -frequent itemset I. A
specific atom expressed using this predicate is LCM (10, {. . .}, Items).

CP systems In contrast to specialized algorithms, CP systems can operate
on an arbitrary number of variables and constraints. A predicate representing
a CP system has therefore no fixed arity, and we assume that the predicate is
parameterized with a set of constraints. There are also no mode restrictions as
a CP system will find groundings to all non-ground variables.

Example 4. A predicate GecodeC(V1, . . . , Vn) represents the Gecode solver, where
V1, . . . Vn are all variables occurring in the constraint set C with which the system
is parameterized. A specific atom expressed using this predicate is GecodeC(I, T, ST ),
where C = {T = cover(I,D), ST = card(T ), ST ≥ 20}; this predicate is true
for all combinations of I, T and ST for which the given constraints are true.



Execution plans We can now define an execution plan as a sequence of atoms
over algorithm predicates. Sequences have to be mode conform, that is, an algo-
rithm must have its input variables instantiated when it is called.

Example 5. For the model of Example 2 the following is a valid execution plan
that uses the LCM and Gecode predicates of Example 3 and 4:
[LCM (10, {. . .}, I),Gecode(SI=card(I),SI≥3)(I)].

3.3 Building an execution plan with rewrite rules

We use rewriting to transform a FlatZinc program into an execution plan. Specif-
ically, we describe a state of the rewrite process with a tuple (L,C), where L is
an execution plan, and C is a set of constraints and annotations. The ` symbol
denotes the transition of one state to another.

The initial state in the rewrite process is (∅, C), where C is the set of all
FlatZinc constraints and the empty set indicates the initially empty execution
plan; the final state in the rewrite process is (L, ∅), where L represents a valid ex-
ecution plan for the initial set of constraints C, and the empty set indicates that
all constraints have been evaluated in the execution plan (modulo the optional
annotations). Rewrite rules will transform states into other states; an exhaustive
search over all possible rewrites will produce all possible execution plans.

A key concept in these rewrite rules are substitutions. Formally, a substitution
θ = {V1/t1, . . .} is a function that maps variables to either variables or constants.
If C1 is an expression, by C1θ we denote the expression in which all variables
Vi have been replaced with their corresponding values ti according to θ. If for
substitution θ it holds that C1θ ⊆ C, the set of constraints C1 is said to θ subsume
the set of constraints C. In the exposition below predicates and variables are
untyped for ease of presentation. FlatZinc is a typed language, so in practice we
only allow variables of the same type to be mapped to each other.

We now define three types of rewrite rules: rules for adding redundant con-
straints, for executing specialized algorithms and for executing CP systems.

3.3.1 Rules for redundant constraints Let C1 be a set of constraints and
C2 an equivalent or implied, but typically much more involved, constraint set
over the same variables. We call C2 a redundant constraint set given constraints
C ⊇ C1. Taking substitutions to match variables names into account, we have
the following rewrite rule:

IF C1θ subsumes the set of constraints C (e.g. C1θ ⊆ C),
THEN (L,C) ` (L,C ∪ C2θ).

Example 6. Past work showed that the execution of the frequent itemset mining
task is more efficient in some CP systems if the frequency constraint is veri-
fied for each item individually, as well as for the entire itemset [5]. Let C2 =
{minfreq redundant(I,D, V )} represent the per-item frequency constraints. C2

is redundant to the set of constraints C1 = {A = cover(I,D), B = card(A), V ≤
B}. Then for the model of Example 2 (depicted by CM ) we have the rewriting:

(∅, CM ) ` (∅, CM ∪ {minfreq redundancy(I, {. . .}, 20)}).



3.3.2 Rules for specialized algorithms All specialized algorithms have a
predicate definition p(±1V1, . . . ,±nVn) and a set of constraints C that define
the problem this algorithm solves. Note that not all variables in C need to be a
parameter of the predicate; there can be auxiliary variables.

Let (L,CM ) be a state in the rewriting of an execution plan. The key idea
is that if the set of constraints C of an algorithm subsumes the given set of
constraints CM , then we wish to append its predicate (p) to the execution plan
L. More formally, if L is the current plan, and C subsumes CM with substitution
θ, we can add p(V1θ, . . . , Vnθ) to L.

Example 7. If our model has constraints {T = cover(I, {. . .}), ST = card(T ), SI =
card(I), ST ≥ 20, SI ≥ 3}, and our current execution plan is empty (∅); LCM’s
constraint set {T ′ = cover(I ′, D′), ST ′ = card(T ′), ST ′ ≥ V ′} subsumes the
model with the substitution {T ′ 7→ T, I ′ 7→ I,D′ 7→ {. . .}, V ′ 7→ 20}. Hence, we
may add LCM (20, {. . .}, I) to the execution plan.

Removing subsumed constraints from CM The next important step is to remove
as many as possible of the subsumed constraints in C from CM . Indeed, running
the algorithm will ensure that these constraints are satisfied, so we can avoid
unnecessarily recomputing or verifiying them again. Unfortunately, we cannot
always remove all subsumed constraints.

Example 8. If our model has constraints {T = cover(I, {. . .}), ST = card(T ),
ST ≥ 20, ST ≤ 40}, and we again use the LCM algorithm to solve part of this
model, we cannot remove the constraints ST = card(T ) and T = cover(I,D),
even though they are subsumed; the reason is that the constraint ST ≤ 40,
which is not subsumed, requires the ST value, which is not in the output of the
LCM algorithm.

This problem is caused by auxiliary variables, which occur in the constraint
definition of the algorithm but not in the mode definition. If these auxiliary
variables are also used outside the constraint set of this algorithm, they may not
be removed. Let C ′ ⊆ C be all constraints defining the algorithm that do not
contain such auxiliary variables. We can now define the following rewrite rule
for specialized algorithms:

IF Cθ subsumes constraints CM for mode declaration
p(±1V1, . . . ,±nVn) such that [L, p(V1θ, . . . , Vnθ)] is
conform the modes of p,

THEN (L,CM ) ` ([L, p(V1θ, . . . , Vnθ)], CM \ C ′θ).

3.3.3 Rules for CP systems The final rewrite rule is the one for CP systems.
We use the following rewrite rule for a state (L,C):

IF solver is a CP system and all constraints in C are
supported by the CP system

THEN let V1, . . . , Vn be the variables occurring in C,
(L,C) ` ([L, solverC(V1, . . . , Vn)], ∅).



Currently, a CP system will always solve all of the remaining constraints. An
alternative rule could be one in which only a subset of the remaining constraints
is selected for processing by a CP system. For reasons of simplicity and by lack
of practical need, we do not consider this option further.

Translating set variables to Boolean variables MiningZinc models are typically
expressed over set variables, however, some CP solvers do not support constraints
over set variables. In previous work, we found that solvers are typically more
efficient on a Boolean encoding rather than reasoning over set variables directly.

Hence, for CP solvers we provide a transformation that translates all set vari-
ables into arrays of Boolean variables. For each potential value in the original set,
we introduce a Boolean variable that represents whether that value is included
in the set or not. Constraints over these set variables are translated accordingly,
e.g. replacing a subset constraint by implications between every pair of corre-
sponding Boolean variables. This Boolean transformation is done directly on the
FlatZinc representation, and transparently to the execution mechanism.

When registering a CP system in the MiningZinc framework, one can indicate
whether set variables must be translated to Booleans just before execution.

3.4 Generation of all plans

So far we have focussed on individual rewrite rules and how they can be used
to rewrite a set of constraints C and possibly add a step to an execution plan
L. We now show how different rewrite rules can be combined to create complete
execution plans.

As mentioned before, sequences of execution steps have to be mode conform.
More specifically, for each parameter of an atom the following needs to hold:
when the parameter has an input mode, it must either be ground or instantiated
with a variable that has an output mode in an earlier atom in the sequence; when
the parameter has an output mode, it must be instantiated with a variable that
does not have an output mode in any earlier atom in the sequence.

The search for all execution plans operates in a depth-first manner. In each
node of the search tree, the conditions of all rewrite rules are checked (including
mode conformity). Rules with substitutions that are identical to a rule applied
in one of the parents of the node are ignored. The search then branches over
each of the applicable rules. This continues until no more rules are applicable.
If at that point the set of constraints C in the state (L,C) is empty (modulo
annotations), then L is a valid execution plan.

In practice, as rules for redundant constraint can only add constraints in our
framework, we can restrict them to only be considered if the current plan L
is empty. One can observe that in the presence of rewrite rules for redundant
constraints, this process is not guaranteed to terminate for all sets of rewrite
rules. One could use a bound on the depth of search. Currently, we work under
the simplified assumption that the rewrite rules provided to the system by the
user do not lead to an infinite rewrite process. This assumption holds for the
examples used in this article.



3.5 Ranking plans

In the previous step, all possible execution plans are enumerated, leaving the
choice of which execution plan to choose open to the user.

In relational databases, a query optimizer attempts to select the most effi-
cient execution plan from all query plans. Typically, a cost (e.g. number of tuples
produced) is calculated for each step in the plan, and the plan with overall small-
est cost is selected [12]. For combinatorial problems, computing or estimating
the number of solutions produced is a hard problem in itself. Furthermore, al-
gorithms are typically sensitive to the size and properties of the input data at
hand. Choosing the best individual algorithm for a task has been studied in
the algorithm selection and portfolio literature [13]. In MiningZinc on the other
hand, we have to choose the best execution plan, which may consist of chains of
algorithms.

Using an approach in which each plan is treated as one meta-algorithm is
not feasible as a MiningZinc formulation can lead to new execution plans that
have never been observed before. Additionally, different chaining of algorithms
can also lead to differences in runtime, depending on the data generated by the
previous algorithms. Furthermore, the input to the next algorithm in a chain is
not known until all its predecessor algorithms are run.

This work does not aim to solve the hard problem of plan selection. How-
ever, MiningZinc is built around the idea that specialized algorithms should be
used whenever this will be more efficient than generic systems. Hence, we can
discriminate between three types of execution plans:

1. Specialized plans: plans consisting of only specialized algorithms
2. Hybrid plans: plans consisting of a mix of both specialized and generic CP

systems
3. Generic plans: plans consisting of only generic CP systems.

We hence propose a heuristic approach to ranking that assumes specialized
plans are always preferred over hybrid ones, and that hybrid ones are preferred
over generic plans. Once all plans are categorized in one of these groups, we can
rank the plans within each group (an example is provided below).

For specialized plans we adopt the simple heuristic that plans with fewer
algorithms are to be preferred over plans with more. The idea is that with
fewer algorithms, probably more of the constraints are pushed into the respective
algorithms. We assume a global ordering over algorithms to break ties.

Hybrid plans are first ordered by number of constraints handled by generic
systems (fewer is better), then by number of algorithms (fewer is better), and
finally we break ties using a global ordering of the algorithms.

Finally, generic plans consist of one CP system that solves the entire problem.
We rank them based on the number of constraints (more is better, e.g. redundant
constraints) and break ties using a global ordering of solvers. One could apply
standard algorithm selection techniques here.

We proposed just one heuristic way of ordering the strategies, based on com-
mon sense principles. We leave more advanced mechanisms for future work.



3.6 Execution of a plan

One plan is executed in a similar way as a Prolog query. The execution proceeds
left-to-right. An algorithm is used to find all groundings for non-grounded vari-
ables. If all variables are ground this amounts to checking whether the constraints
are satisfied. Each grounding will be passed in turn to the next algorithm. The
evaluation backtracks until all groundings for all predicates have been evaluated.

Example 9. In the execution plan of Example 5, [LCM (10, {. . .}, I),
Gecode(SI=card(I),SI≥3)(I)], the database {. . .} is transformed into a LCM’s file
format and the minimum frequency threshold 10 is given as argument to the
LCM executable. LCM then searches for all groundings of the I variable, that is,
all frequent itemsets. Each such itemset is processed using the Gecode system;
variable I is already grounded so it will simply check the constraints (SI =
card(I), SI ≥ 3) for each of the giving groundings of I to a specific itemset. All
assignments to the I variable that satisfy all constraints hence constitute the
output of the execution plan.

4 Experiments

The MiningZinc framework is implemented in Python with key components,
such libminizinc4 for the MiniZinc to FlatZinc conversion, written in C++.
The constraint solvers used are Gecode [14], Opturion’s CPX [15], Google or-
tools [16] and the g12 solvers from the MiniZinc 1.6 distribution [17]. We also
provide a custom version of Gecode for fast checking of given solutions against
a FlatZinc model. We use this solver as our default solver (it is the highest
ranked solver) in case a generic CP system is needed merely for constraint check-
ing. The constraint-based mining algorithms are LCM version 2 and 5 [18] and
Christian Borgelt’s implementations of Apriori (v5.73), Eclat (v3.74) and FP-
Growth (v4.48) [19]; these are the state-of-the art for efficient constraint-based
mining. Input/output mapping for these algorithms is written in Python, as are
specialized checking algorithms like calcfreq and maxsup.

The datasets are from the UCI Machine Learning repository [20] and from the
FIMI repository [21]. Experiments were run on linux computers with quad-core
Intel i7 processors. The MiningZinc system and datasets used can be downloaded
at http://dtai.cs.kuleuven.be/CP4IM/miningzinc/.

Cost of computing all execution strategies Table 1 shows, for increasingly
large datasets, the time of (1) normalizing a model (+ data) to the intermediate
FlatZinc representation and (2) generating and ranking all available execution
plans. The models used are combinations of the constraints shown in Listing 1.1
(Freq/Fr) and Listing 1.3 (Clo+MinCost). Solving times are not shown as they
depend on the threshold supplied (see the following experiments).

4 http://www.minizinc.org/2.0/



Dataset #Tr #It Freq Fr+Clo
Fr+Clo+
Mincost

primary-tumor 336 31 0.069 / 0.007 0.069 / 0.009 0.109 / 0.011
mushroom 8124 112 0.780 / 0.032 0.800 / 0.036 0.799 / 0.035
pumsb star 49046 2088 13.489 / 0.546 13.895 / 0.563 13.459 / 0.541
retail 88162 16470 5.132 / 0.235 5.290 / 0.243 5.086 / 0.233
T40I10D100K 100000 942 16.285 / 0.746 16.707 / 0.763 16.057 / 0.723

Table 1. Left, dataset statistics: #Tr=nr. of transactions, #It = nr. of items.
Right, MiningZinc analysis for 3 different tasks (frequent, frequent+closed and fre-
quent+closed+mincost); time taken for normalization to FlatZinc/execution plan gen-
eration in seconds.

Gecode CPX or-tools
set set/red bool bool/red set set/red bool bool/red bool bool/red

primary-tumor 2.14 11.61 1.30 1.61 2.65 33.20 9.66 6.48 1.07 1.57
lymph 92.85 220.76 216.53 211.36 110.85 241.37 216.18 222.01 211.25 205.22
mushroom 580.67 308.30 604.41 81.52 46.42 239.37 258.88 259.02 257.27 90.31
hepatitis 386.88 446.16 385.57 376.07 415.24 573.33 478.14 402.42 381.10 374.99
heart-cleveland 568.66 595.44 482.94 425.74 544.58 693.37 556.37 561.27 456.69 428.64
australian-credit 755.83 757.56 674.09 580.25 565.78 761.22 642.44 735.72 643.24 585.40

Table 2. Frequent itemset mining, runtime in seconds averaged over different thresh-
olds. /red indicates the minfreq redundant constraint was added. Lowest average run-
time per solver in bold.

The table shows that the normalization is quick for small datasets, but can
take some seconds for large datasets. In fact, most time is spent on reading the
data; the libminizinc tool uses the standard MiniZinc parser to read data and it
is not optimized for parsing large matrices. This can be sidestepped by loading
in the data directly from a database with the query annotation.

CP Solver performance MiningZinc has the ability to automatically add re-
dundant constraints or transform set variables to Boolean variables. We compare
this on three state-of-the-art CP solvers that won medals in the 2013 MiniZinc
challenge: Gecode, Opturion’s CPX, Google’s or-tools. Or-tools does not support
constraints over set variables and requires the set to Boolean transformation.

Table 2 shows average runtimes for the different reformulations. In general,
different datasets have different characteristics and different numbers of frequent
itemsets. However, one can immediately see that the type of reformulation to use
can depends mostly on the solver used; for Gecode and or-tools, using Boolean
variables with redundant frequency constraints yields lower average runtimes,
while, surprisingly, for CPX not using any reformulation is often fastest. CPX
uses a lazy clause generation technique that includes its own lazy transformation
from set to Boolean variables.

In case of set variables adding redundant constraints seems to mostly slow
down the process. When using the Boolean transformation it often improves
efficiency, sometimes significantly.

Different execution plans We now look at the problem of finding all closed
itemsets that also satisfy a minimum size constraint on the size of the itemset.
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Fig. 2. Comparison of hybrid solve strategies for closed frequent itemset mining with
a size constraint (size ≥ 4).

Figure 2 shows a comparison of 5 approaches to solve this problem: a) Using
Gecode (with redundant frequency constraints and Boolean encoding); b) using
the specialized algorithm LCMv2, followed by Gecode that checks all constraints
in the model; c) using LCMv2, followed by Gecode checking only non-stasified
constraints (i.c. the size constraint); d) LCMv2 and a specialized algorithm for
post-processing the size constraint; e) using the specialized algorithm Eclat which
can solve the complete problem.

Across all datasets, we observe unsurprisingly that the specialized algorithm
is usually the fastest. It is followed closely by the specialized post-processor
and difference is negligible in most cases. A specialized algorithm followed by a
generic CP checker is often faster than the pure CP approach, especially when
already satisfied constraints are removed. We also experimented with several
larger datasets than shown above. For these datasets the pure CP approach
does not work due to the complexity of flattening the model and data, while the
post-processing based approaches are still able to solve the problem.

5 Related Work

Work on constraint solving for itemset mining [5,22] has used existing modeling
languages. However, these approaches were low-level and solver dependent. The
use of higher-level modeling languages and primitives has been studied before
[23,24], though again tied to one particular solving technology.

We chose MiniZinc [17] as the basis of our work because it is most in line
with our design criteria. Other modeling languages such as Essence [25], Comet
[26] and OPL [27] have no, or only limited, support for building libraries of
user-defined constraints, and/or are tied to a specific solver.

We employ automatic model transformations such as the MiniZinc to FlatZinc
transformation [4] and a set to Boolean transformation. Model transformations
are a well-studied topic in constraint programming [28,29]. Even for the Zinc
family of languages, a range of transformations exist [30], ranging from the ones



we employ to transformations into other solving technology like SAT [31] and
SMT [32], and compilation to executable machine code [33]. By building on the
MiniZinc framework, we will be able to take advantage of future developments in
model transformations for this language. Conjure [29] also uses rewrite rules to
transform CP specifications, with the ability to add implied symmetry breaking
constraints and perform algorithm/model selection; the main difference is that
our rewrite process creates compositions of different algorithms in addition to
different CP models.

Finally, the use of multiple algorithms for solving constraint satisfaction
problems has been studied in constraint programming before, most notable in
the hybridization of both generic constraint programming and optimization/OR
techniques [34]. Several approaches have been studied including to incorporate
algorithms in CP solvers by means of global constraints, to incorporate infor-
mation of one algorithm (such as relaxations of IP solvers) as constraints in a
CP system [35] or to add CP propagation inside an integer programming sys-
tem [36]; see [37] for a nice overview of hybrid algorithms in CP. The idea of
chaining specialized algorithms for enumeration problems and the automatic
detection of such strategies has, to our best knowledge, not been studied before.

6 Conclusions

MiningZinc applies the declarative modeling + solving paradigm from constraint
programming to the field of data mining. Data mining raises new challenges as
the solutions offered by the declarative paradigm need to be competitive with
that of standard data mining algorithms. This is non-trivial because mining
algorithms are highly optimized for large datasets, in contrast to generic solvers.

The approach taken in MiningZinc is to provide a rewrite mechanism for
generating different execution plans that may involve different algorithms, each
addressing part of the task. To achieve this, MiningZinc extends the solver-
independent modeling language MiniZinc with a library for constraint-based
itemset mining. Its execution mechanism can automatically detect and compose
different solving methods, including general purpose constraint solvers, special-
ized mining algorithms and other specialized algorithms.

Experiments have shown that the performance of different execution plans
can vary greatly, which invites for automatic algorithm selection techniques.
However, the breadth of problems that can be formulated, different execution
plans that can be produced and the sensitivity of some problems towards a single
threshold raises challenges. Other directions for future work include the investi-
gation of heuristic search strategies and the extension of the framework towards
more complex pattern types and other data mining tasks such as clustering [38].
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