
Constraint-Based Querying for Bayesian
Network Exploration ?

Behrouz Babaki†, Tias Guns†, Siegfried Nijssen†,∗, and Luc De Raedt†

† KU Leuven, Celestijnenlaan 200A, 3000 Leuven - Belgium
∗ Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden - The Netherlands

Abstract. Understanding the knowledge that resides in a Bayesian net-
work can be hard, certainly when a large network is to be used for the
first time, or when the network is complex or has just been updated.
Tools to assist users in the analysis of Bayesian networks can help. In
this paper, we introduce a novel general framework and tool for an-
swering exploratory queries over Bayesian networks. The framework is
inspired by queries from the constraint-based mining literature designed
for the exploratory analysis of data. Adapted to Bayesian networks, these
queries specify a set of constraints on explanations of interest, where an
explanation is an assignment to a subset of variables in a network. Char-
acteristic for the methodology is that it searches over different subsets of
the explanations, corresponding to different marginalizations. A general
purpose framework, based on principles of constraint programming, data
mining and knowledge compilation, is used to answer all possible queries.
This CP4BN framework employs a rich set of constraints and is able to
emulate a range of existing queries from both the Bayesian network and
the constraint-based data mining literature.

1 Introduction

Understanding a Bayesian network is not always easy. In particular users who
are faced with a large network for the first time, or with networks that are
dynamically updated when new data arrives, may not understand the knowledge
encoded in such a network. It has been argued that BN’s (especially those used
for diagnosis) should be extensively evaluated before being used in practice [15].

While the Bayesian network literature already provides a set of queries and
corresponding inference techniques that are helpful in gaining a better under-
standing of a network, most of the standard queries specify (and fix) the variables
of interest, and then either ask for a most likely assignment to the variables or
the computation of a particular probability.

This contrasts with common practice in the field of exploratory data mining,
where one aims at understanding data by discovering and analyzing patterns.
Since the seminal work on frequent itemset mining by Agrawal et al. [1], numer-
ous techniques for exploratory mining of patterns under constraints have been

? This work is published in proceedings of IDA 2015. The final publication is available
at http://link.springer.com/chapter/10.1007/978-3-319-24465-5 2

developed [14]. The notions of frequency and pattern in constraint-based pattern
mining actually correspond to the notions of probability and explanation in a
Bayesian network. In pattern mining, one typically searches over a space of pos-
sible patterns. In Bayesian networks, this corresponds to searching over subsets
of variables and their values. In this paper, we exploit the similarities between
these two fields and introduce constraint-based queries for Bayesian networks.

The contribution of this paper is three-fold. First, inspired by constraint-
based mining, we introduce an expressive set of exploratory queries for Bayesian
networks. Secondly, we identify how these queries can be expressed as con-
straints over the variables and joint distribution of the Bayesian network. Fi-
nally, we show how these constraints can be expressed as a generic constraint
program, combining ideas from constraint programming, itemset mining and
knowledge compilation, in particular CP4IM [9] and arithmetic circuits (AC) [5].
Our method operates on the arithmetic circuit directly and can hence be applied
to any graphical model that can be compiled into an AC. By doing so, we bridge
the gap between constraint-based pattern mining and graphical models and con-
tribute towards more intelligent analysis of Bayesian networks.

2 Examples of Bayesian Network Exploration

After introducing a Bayesian Network and BN pattern, we show examples of
exploratory queries over a Bayesian network in an illustrative scenario.

Bayesian network pattern A Bayesian network G is a directed acyclic graph
where each node represents a random variableXi in X = {X1, . . . , Xn}. Let PaGXi

denote the parents of Xi in G. A joint distribution P over the set of variables
X is said to factorize according to G if P (X1, . . . , Xn) can be expressed as the
product

∏n
i=1 P (Xi|PaGXi

). We denote such a distribution by PG . We denote by
D(Xi) the domain of variable Xi, that is, the possible values the variable can
take. An assignment of value xi to variable Xi is denoted by (Xi = xi).

Definition 1 (BN pattern). A pattern A over PG is a partial assignment, that
is, an assignment to a subset of the variables X in G: A = {(X1 = x1), . . . , (Xm =
xm)}, where the Xi are different variables and xi is a possible value in D(Xi).

The probability of a pattern A, denoted by PG(A), is P ((X1 = x1), . . . , (Xm =
xm)), that is, the marginal probability of the assignment. Our queries below will
enumerate all satisfying BN patterns.

Example constraint-based queries Assume the manager of a New York car
insurance company has just obtained a Bayesian network that describes the
factors influencing cost claims of customers, cf. the in Figure 1. She wants to
analyze the network to be able to assess costs, get more insight and provide rec-
ommendations to her personnel. In order to do so, she is interested in exploring
patterns of interest in the network and poses a number of queries.

Q1. What are likely patterns given the evidence PropertyCost = Million? These
claims impose high costs on the company. Using a minimum probability of 0.015,
she obtains 12 patterns, most of which contain either SeniorTrain = False or
Theft = False. She is not interested in these and excludes them while lowering
the threshold in the next query.

OtherCarCost

SocioEcon
Age

GoodStudent

ExtraCar
Mileage

VehicleYear
RiskAversion

SeniorTrain

DrivingSkill MakeModel

DrivingHist

DrivQuality
Antilock

Airbag CarValue HomeBase AntiTheft

Theft

OwnDamage

OwnCarCost

PropertyCostLiabilityCostMedicalCost

Cushioning

Ruggedness Accident

Fig. 1: The car insurance network [2].

Q2. What are likely pat-
terns that do not con-
tain SeniorTrain=False

and Theft=False given
the evidence Property-

Cost = Million (with
threshold θ = 0.0105)?
She now gets 76 patterns,
among which the pattern
A = {PropertyCost =

Million, DrivingSkill =

Substandard, DrivQual-

ity = Poor, Liabili-

tyCost = Thousand},
which she finds interest-
ing as it indicates a con-
nection between high property cost, the driving capabilities of the customer, and
the liability cost incurred. However, she wonders whether the pattern cannot be
simplified.

Q3. Is there a simplification of pattern A with the same probability? She finds a
variant of pattern A in which DrivingSkill=Substandard is removed, indicating
that this assignment was implied and that there is some determinism in the
network.

Now, turning her attention to the variable “Age”, our manager wonders:

Q4. Are there any patterns that would allow to distinguish the age groups Adoles-

cent and Senior? She queries for patterns that have widely varying conditional
probabilities when conditioned on each of these. After excluding the variables
SeniorTrain and GoodStudent, which she already knows about, one of the top
patterns is {RiskAversion = Cautious, OtherCarCost = Thousand}. Indeed
the probability of having a cautious personality and incurring low third-party
costs is nearly 6 times higher in senior customers.

Finally, a machine learning expert suggests to use a network trained on the
company data instead (a simple näıve Bayes model). She wonders:

Q5. What are the patterns that have different probabilities according to the orig-
inal and learned network? It turns out that the pattern {Airbag=False, An-

tiLock=False, VehicleYear=Older} has the largest difference of probabilities,
hence the näıve Bayes model ignores the well-known relation between these three
variables (namely older cars are rarely equipped with these safety components).

Q1: probability(A,G, θ), superset(A, {PropertyCost=Million})
Q2: probability(A,G, θ), superset(A, {PropertyCost=Million}),

exclude(A, {SeniorTrain, Theft})
Q3: maxprobability(A,G, θ′), free(A,G), subset(A, {PropertyCost = Million,

DrivingSkill = Substandard, DrivQuality = Poor, LiabilityCost =Thousand})
Q4: exclude(A, {SeniorTrain, GoodStudent}),

ev-difference(A,G, {Age=Adolescent}, {Age=Senior}, β)
Q5: difference(A,G1,G2, β)

Table 1: The example queries expressed using constraints over pattern A.

3 BN query framework

We now formalize the queries above using constraints over patterns. Many other
queries can be formulated this way, leading to a general querying framework.

Definition 2 (BN Pattern Query). Consider a joint probability distribution
PG represented by a Bayesian network G. We denote the set of all patterns of
PG by I. A BN pattern query Q is a tuple (PG , C) where C : I → {0, 1} is a
conjunction of constraints over a pattern. Pattern A is a solution for Q if C(A) =
1. The result of a query consists of all patterns that satisfy the constraints.

The queries used in the examples in Section 2 are given in Table 1. Most
constraints have close counterparts in the constraint-based pattern mining liter-
ature. The main difference is that the notion of (relative) frequency of a pattern
in a database is replaced by the probability of the pattern in the BN. The con-
straints and their definitions are listed in Table 2 and explained below.

Probability constraint. Query Q1 requires that the probability of a pattern A
according to PG should be larger than a threshold θ. We call this constraint
probability(A,G, θ) and a pattern that respects it θ-probable. This definition is
similar to the definition of a frequency constraint in frequent pattern mining.

Sub/superset and exclusion constraints Query Q1 also requires that patterns
include given assignments. We enforce this with a superset constraint. Similarly,
we can use exclude(A, V) to exclude variables from the pattern as in query Q2.
The definition is given in Table 2, where vars(A) are the variables occurring in A.

Note that a superset constraint is conceptually similar to adding evidence in
Bayesian networks, only that in our setting the computed probabilities will need
to be normalized by the probability of the evidence to obtain the conditional
probability.

Freeness, maximality and closedness constraint Query Q3 requires that a pat-
tern does not contain redundant variable assignments. This is similar to the
well-studied problem of simplifying explanations by excluding irrelevant vari-
ables [18], e.g. because of deterministic relations between assignments [7]. For
pattern A = B ∪ C (where B ∩ C = ∅), if variable assignments in B determine
those in C, i.e., PG(A) = PG(B), we consider those in the set C irrelevant. We

code mathematical notation CP formulation

Prb PG(A) ≥ θ F1 ≥ θ
Mxp PG(A) ≤ θ F1 ≤ θ
Sbs A ⊆ B ∀i : Qi 6= 0 =⇒ (Xi = Qi) ∈ B
Sps B ⊆ A ∀(Xi = xi) ∈ B : Qi = xi

Exc B ∩ vars(A) = ∅ ∀Xi ∈ vars(B) : Qi = 0

Fre ∀(X = x) ∈ A : PG(A\(X = x)) > PG(A) ∀i : Qi 6= 0→
(∑

j Di,j

)
> F1

Max
∀X /∈ vars(A), ∀x ∈ D(X) :

PG(A ∪ {(X = x)}) < θ
∀i : Qi = 0→

∧
j(Di,j < θ)

Cls
∀X /∈ vars(A), ∀x ∈ D(X) :

PG(A ∪ {(X = x)}) < PG(A)
∀i : Qi = 0→

∧
j(Di,j < F1)

Dif |PGa(A)− PGb(A)|≥ β |F1
a − F1

b|≥ β
Ddf |PG(A)− rD(A)|≥ β |F1 − R|≥ β
Vdf |PG(A ∪B)/PG(B)− PG(A ∪ C)/PG(C)|≥ β |F1

a/ca − F1
b/cb|≥ β

Table 2: constraints for BN pattern queries over patterns A, B, and C
and network G. Constraints are represented by three-letter codes Prb:
probability(A,G, θ); Mxp: maxprobability(A,G, θ); Sbs: subset(A,B); Sps:
superset(A,B); Exc: exclude(A,B); Fre: free(A,G); Max: maximal(A,G, θ);
Cls: closed(A,G); Dif: difference(A,Ga,Gb, β); Ddf: DB-difference(A,G,D, β);
and Vdf: ev-difference(A,G, B,C, β).

call a pattern free if none of its assignments is irrelevant. This definition is sim-
ilar to the definition of free patterns in data mining [3]. In the presence of a
superset constraint, the free constraint should only consider variables that are
not required by the superset constraint.

Inspired by the related notions of maximality and closedness in frequent
itemset mining, we introduce these for BN patterns too. They enforce that a
pattern A does not have any superset that is θ-probable (i.e. maximal(A,G, θ))
or has the same probability as A (i.e. closed(A,G)).

Difference constraints Queries Q4 and Q5 both ask for patterns that demon-
strate a difference between two probabilistic models. Let PG1(A) and PG2(A)
be the probability of pattern A according to networks G1 and G2. The con-
straint difference(A,G1,G2, β) requires that the difference of the probability of a
pattern in these two networks is larger than β. In Q4, the two networks are
obtained by assigning a variable in the original network to different values
(B={Age=Adolescent} and C={Age=Senior} respectively). This can be for-
mulated over network G using the constraint ev-difference(A,G, B,C, β). This
constraints compares the conditional probability of A given evidence B or C.

Another variation can be used for testing the correlations between a Bayesian
network and an actual dataset. This constraint compares the probability of a
pattern in network G with the relative frequency of the corresponding itemset
in the database D. We call this constraint DB-difference(A,G,D, β).

4 Formulating BN Pattern Queries As Constraint
Programming Problems

In the Bayesian network literature, typically algorithms that search in the space
of assignments are developed for specific constraints and scoring functions, which
limits their general applicability (see Section 6 for a discussion of related work).
In data mining, a recent trend is the use of generic solvers for handling a wide
range of constraints in a uniform way.

We observe that there is a relationship between itemsets and BN patterns,
as each variable assignment (Xi = xi) can be seen as one item, and hence a
BN pattern can be seen as an itemset. Using this insight, we adapt the con-
straint programming for itemset mining framework [9] to reason over Bayesian
networks. This framework has proven to support a wide range of constraints and
exploratory queries over itemsets. Building on this framework, and hence the use
of CP solvers, enable us to address a wide range of queries without the need to
develop multiple specialized algorithms.

We first introduce the basics of constraint programming (CP), and explain
how Bayesian networks can be encoded in CP in the form of an arithmetic circuit.
We then explain how the constraints identified in Table 2 can be expressed in
this framework.

Constraint Programming. Constraint programming is used to solve Con-
straint Satisfaction Problems (CSP) [17]. Constraint programming systems use
generic solvers that search for solutions to a given CSP specification.

A CSP specification P = (V,D, C) consists of a set V of variables; D is the
domain and maps every variable V ∈ V to a range of values D(V); and C is a set
of constraints over subsets of V. Generic solvers can be used to find all solutions
that satisfy the constraints. These solvers use a combination of search (assigning
a variable to a value) and propagation (per constraint, removing assignments
from the domain that would violate that constraint) [17]. Many such generic yet
efficient solvers exist.

BN pattern in Constraint Programming (CP) We can encode a BN pat-
tern A = {(X1 = x1), . . . , (Xm = xm)} in CP by introducing a CP variable
Qi for every network variable Xi. The domain of the CP variable Qi consists
of |D(Xi)|+1 values, where D(Xi) is the set of possible values the BN vari-
able Xi can take: value 0 to represent that Xi is not part of the pattern, e.g.
it is marginalized over, and values 1 . . . |D(Xi)| that each represent a possible
assignment to the BN variable Xi.

BN pattern queries in CP Each of the constraints C of a BN pattern query
(PG , C) can be formulated through CP constraints over the Qi variables. We
discuss this for each of the constraints in turn.

Probability constraint We will need to repeatedly compute the probability of a
pattern, hence, we want this computation to be fast and ideally incremental. For
this reason, we choose to first compile the BN into an Arithmetic Circuit (AC) [5].
Computing the probability of a partial assignment takes time polynomial to the
size of the AC, though that size is exponential to the BN size in the worst
case. Nevertheless, using ACs is generally recognized as one of the most effective
techniques for exact computation of probabilities [5], especially when doing so
repeatedly.

+ 0.5

××

++ λ2,2λ1,2λ1,1 λ2,1

×× ××

λ3,2 λ3,10.8 0.2

B1,1 B2,1 B3,1 B1,2 B2,2B3,2

×F1

Fig. 2: Arithmetic circuit for a BN with 3 variables
with domain {1, 2} with X1 the parent of X2 and
X3. Square boxes represent CP variables.

Figure 2 shows an exam-
ple AC, consisting of prod-
uct nodes, sum nodes, con-
stants and indicator vari-
ables (ignore the square boxes
for now). The Boolean indi-
cator variables λi,j indicate
whether (Xi = j). For ease of
notation we will assume that
the domain of the Bayesian
variables is represented by
consecutive integers starting
from 1. To compute the prob-
ability of a partial assignment
{(X2 = 1), (X3 = 2)} we set
λ2,1 = 1, λ2,2 = 0, λ3,1 =
0, λ3,2 = 1. X1 is not in the pattern and needs to be marginalized away, so
we set ∀k ∈ D(X1) : λ1,k = 1. Then, one computes the values of the internal AC
nodes bottom-up, according to their operation (× or +). The value of the root
node is the requested probability.

This can be encoded in CP for arbitrary ACs: for each indicator variable λi,j
in the AC, we introduce a Boolean CP variable Bi,j ; the relation between the
indicator variables and the CP variables Qi is then modeled by the following
constraints (recall that Qi = 0 means variable Xi is not in the pattern):

Qi = 0→ ∧j (Bi,j = 1) ∀i
Qi = k → (Bi,k = 1) ∧ (∧j 6=k(Bi,j = 0)) ∀i,∀k 6= 0

We then introduce real-valued variable P , which will represent the computed
probability. For this, we introduce an auxiliary real-valued variable Fv for each
node in the circuit (round circles in Fig. 2). Assume each node has a unique iden-
tifier v, with the root node having identifier 1. Leaf nodes are either constants
or indicator variables. The constants assign their corresponding Fv variable to a
fixed value. For the indicator variables λi,j , the corresponding Fv variables are
channeled to their Boolean counterparts Bi,j meaning they must take the same
value (either 0 or 1). The internal nodes are then simply encoded by their op-
eration, namely constraint Fv =

∏
w∈Ch(v) Fw for product nodes and constraint

Fv =
∑
w∈Ch(v) Fw for sum nodes, where Ch(v) are the identifiers of the children

of node v in the AC.
Because of these constraints, when all Qi (and hence Bi) variables are as-

signed, each Fv represents the value of that node of the AC, and the root node
F1 is the probability of the BN pattern. F1 can then be used in a minimum
probability constraint, see Table 2, right column.

Subset, superset and exclusion constraints Including evidence and excluding as-
signments in the pattern is done by constraining the relevant Qi variables ap-
propriately, as indicated in Table 2.

Freeness constraint To enforce this constraint, as explained in Section 3, we
need to reason over the probability of subsets of a pattern. To do so, we use
the observation that for an assignment (Xi = k) ∈ A: PG(A\{(Xi = k)}) =∑
j PG((A\{(Xi = k)}) ∪ {(Xi = j)}). Fortunately, using ACs we can efficiently

compute these terms, as they correspond to derivatives of the function f encoded
by the AC [5]. The latter work shows that for partial assignment A we have
PG((A\{(Xi = k)}) ∪ {(Xi = j)}) = ∂f

∂λi,j
(A). It was also shown that this can

be computed for all nodes (and hence variables X) simultaneously using the
derivatives of its parents in the AC, together with the values that we store in Fv
variables.

To compute these derivatives, we introduce a real-valued CP variable Dv
for every node v in the circuit. The value of Dv’s corresponding to leaves λi,j ,
denoted by Di,j for ease of notation, will represent the derivative of AC w.r.t

λi,j : ∀i, j Di,j = ∂f
∂λi,j

(A). Hence Di,j = PG((A\{(Xi = k)}) ∪ {(Xi = j)}).
Following the formulation in [5], the constraints below encode the computa-

tion of the D variables, where we denote by Pa+(v) the identifiers of summation
parents and by Pa∗(v) those of multiplication parents;

Dv =
∑

w∈Pa+(v)

Dw +
∑

w∈Pa∗(v)

(Dw
∏

v′∈Ch(w)
v′ 6=v

Fv) ∀v

D1 = 1

To formulate the free constraint from Table 2 over the CP variables, we
use the fact that given (Xi = k) ∈ A: PG(A\(Xi = k)) =

∑
j Di,j and that

PG(A) = F1.
Maximality and closedness constraints can be formulated using the same

building blocks (c.f. table 2).

Difference constraints Comparing the probability of two networks over the same
variables can be done by encoding the two ACs and formulating a mathematical
constraint over the respective F1 root node variables (Table 2).

Using CP allows us to easily mix different problems, such as combining the
constraints of itemset mining in databases and BN’s in a single CP model. The
variable F1 can be computed as before, while the relative frequency of a database

Network #BN-n c.Time(s) #AC-n #AC-e θ #Sols s.Time(s)

HeparII 70 0.701 6963 13272
0.9 664 9.96
0.8 24025 341.83

Win95pts 76 0.528 2786 6184
0.99 65 0.61
0.95 214645 444.1

Insurance 27 0.374 34742 113788
0.9 12 2.76
0.4 6662 383.66

Table 3: Probability queries over three benchmarks network, with #BN-n: number
of BN nodes; c.Time: compilation time; #AC-n/e: number of AC nodes/edges; θ:
probability threshold; #Sols: number of solutions, and s.Time: solving time.

over the same variables can be computed using a constraint programming for
itemset mining formulation [9]. In Table 2 we materialize the relative frequency
through a CP variable R.

As we have shown, many constraints over the pattern and the network can
be readily formulated in CP. Furthermore, as these are standard CP constraints,
existing CP solvers can be used to enumerate the satisfying BN patterns.

5 Experiments

We used the ACE 1 compiler (version 2) for generating arithmetic circuits from
Bayesian networks. The networks were compiled with parameters “ -noTabular
-cd06 -dtBnMinfill”. We used the Gecode 2 CP solver version 4.2.1. Exper-
iments were run on Linux PCs with Intel 2.83GHz processors and 8GB of RAM.

Execution times for example queries To give an indication of execution
times, we report the runtimes for the example queries of section 2 in Table 4a.
The value of β for queries Q4 and Q5 was 0.08 and 0.25, respectively. The
compilation time (not included in the reported runtimes) was 0.374 seconds.

To investigate the influence of size of BN and AC, we ran a simple query with
only a probability(A,G, θ) constraint on three benchmark networks3. Table 3
reports BN and AC size, θ threshold and runtimes. AC compilation time is small.
Observe that in Table 3 the two larger networks have smaller AC’s, because of
their other structural properties (see [5] for more details). While bigger ACs
require more runtime, the number of solutions has a major impact on runtime
too. This can be controlled up to some extend by adding extra constraints.

Comparison with sampling An obvious alternative to our proposed method
for executing itemset queries is to first sample a database from the joint distribu-
tion and then perform constraint-based itemset mining queries on the sampled

1 http://reasoning.cs.ucla.edu/ace/
2 http://www.gecode.org
3 available at http://www.bnlearn.com/bnrepository/

Query Q1 Q2 Q3

Time(s) 1.63 11.7 11.67

Query Q4 Q5

Time(s) 58.41 12.11

(a)

#Samples Precision Recall Time(s)

100 0.39 0.76 7.59
1000 0.73 0.94 20.08
10000 0.97 0.93 375.95

(b)

Table 4: (a) Execution times of example queries, and (b) Quality of results of sampling
method as compared against the solutions of exact method.

database. Using this approach, one can execute the BN pattern queries using a
constraint-based itemset mining system such as [9].

We investigate how this compares to our proposed method. We used two
BNs: the first was the insurance network, which we will call BN1. The network
BN2 is a näıve Bayes version of BN1 (With PropertyCost as root, and all non-
cost observed variables as children) which we trained on 10000 samples from
BN1. Compilation time for BN1 was 0.374 and 0.212 seconds for BN2. We then
sampled a database of size 500 from BN2, which we call DB2.

In the approximate method, we sampled databases of varying sizes from BN1.
We then searched for itemsets for which the relative frequency in the database
and DB2 had a difference larger than 0.1. Table 4b presents the precision and
recall of BN patterns found by the approximate method, compared to those found
by our exact method. The results indicate that for a decent approximation, one
needs to sample a large database which in turn leads to high computational
costs. In comparison, the runtime of the exact method was 5.63 seconds.

6 Related work

Much attention in the Bayesian network literature has gone to the problem of
finding explanations given some evidence. These explanation queries typically
use a scoring function to find the best explanation. In contrast to queries like
MAP and MPE, we do not fix which variables must be in or not in the pattern,
instead we conceptually search over all possible marginalizations. There are other
explanation queries that share this feature. These typically use specific scoring
functions, such as the generalized Bayes factor of [19]. The explanation queries
are constrained optimisation problems instead of enumeration problems. Our
framework on the other hand is made for exploration queries and enumerates all
satisfying BN patterns instead of computing the ‘optimal’ one.

There is also a body of work on discarding irrelevant variables from expla-
nations [18, 6, 19, 11], as the free constraint does in our framework. In [6] each
explanation found by a K-MPE algorithm is simplified by removing assignments
that are considered irrelevant; [11] makes a trade-off between high probability
and specificity. [18] proposes a definition for relevance and gives an algorithm
that excludes irrelevant variables from the MAP assignments. This is a specific
optimization query which is solved by a best-first-search algorithm.

Related to discriminating a BN network from a database, in [10] the authors
search for subsets of variables rather than partial assignments. These attribute

sets are then used to modify the BN to better reflects the correlations present
in the data. In other studies, a Bayesian network is used to filter itemsets or
association rules found in a database. In [8], first an itemset mining algorithm
is applied to a database to find a number of association rules, and then these
rules are scored using the probability in the Bayesian and the concept of D-
separation. In [12] the itemsets found by the well-known apriori algorithm are
scored according to a Bayesian network, and the itemsets and attribute sets with
highest scores are obtained in a post-processing step. The main difference with
the discriminative setting considered in our work is that we compare patterns in
the database and the network during search instead of post-processing them.

Our framework combines constraints with probabilistic computations. In sim-
ilar spirit, there has been work on combining (deterministic) constraint networks
with probabilistic networks [13]. The main difference is that in the resulting net-
works, all satisfying assignments are aggregated to compute a single probability
value; on the other hand, we enumerate all possible partial assignments and
compute their (marginal) probability.

7 Conclusions

We have investigated the problem of exploring Bayesian networks by querying
for BN patterns (partial assignments) under constraints. The work is inspired by
all the work on exploring data using constraint-based pattern mining techniques.
We have shown that similar queries and constraints as used in the constraint-
based pattern mining community can be used. This results in novel querying
abilities for BNs. The proposed execution strategy is to compile the BN into
an arithmetic circuit, and formulate and reason over that in a constraint pro-
gramming framework. Such an approach supports a wide range of queries and
constraints in a flexible and declarative manner.

Our work currently focusses on enumeration queries, as is typical in pattern
mining. However, it could also be used in an optimisation setting over a scoring
function, where its generality would allow one to add arbitrary constraints on
top of the scoring function. In future work, the approach could also be adapted
to problems beyond enumerating BN pattern queries, such as verifying mono-
tonicity of Bayesian networks [16] or computing same-decision probability [4].
Our method may also be valuable for mining patterns over data, when evaluat-
ing the interestingness of the patterns using a BN (in our case, during search).
Given the generality of the method, efficiency can be a concern though. Effi-
ciency could be improved by using global constraints that can reason over the
AC more efficiently, instead of using a decomposition over auxiliary variables F.

Acknowledgments. This work was supported by the European Commission under

the project “Inductive Constraint Programming” contract number FP7-284715 and by

the Research Foundation–Flanders by means of two Postdoc grants. We gratefully ac-

knowledge useful comments and contributions from Guy Van den Broeck and Angelika

Kimmig.

References

1. Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining association rules
between sets of items in large databases. In Peter Buneman and Sushil Jajodia,
editors, SIGMOD Conference, pages 207–216. ACM Press, 1993.

2. John Binder, Daphne Koller, Stuart J. Russell, and Keiji Kanazawa. Adaptive
probabilistic networks with hidden variables. Machine Learning, 29(2-3):213–244,
1997.

3. Jean-François Boulicaut and Baptiste Jeudy. Mining free itemsets under con-
straints. In Proc. IDEAS ’01, pages 322–329. IEEE Computer Society, 2001.

4. Suming Jeremiah Chen, Arthur Choi, and Adnan Darwiche. Algorithms and appli-
cations for the same-decision probability. J. Artif. Intell. Res., 49:601–633, 2014.

5. Adnan Darwiche. A differential approach to inference in bayesian networks. J.
ACM, 50(3):280–305, 2003.

6. Luis M. de Campos, José A. Gámez, and Seraf́ın Moral. Simplifying explanations
in bayesian belief networks. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 9(4):461–490, 2001.

7. Marek J Druzdzel and Henri J Suermondt. Relevance in probabilistic mod-
els:“backyards” in a “small world”. In Working notes of the AAAI–1994 Fall
Symposium Series: Relevance, pages 60–63, 1994.

8. Clément Fauré, Sylvie Delprat, Jean-François Boulicaut, and Alain Mille. Iterative
bayesian network implementation by using annotated association rules. In Man-
aging Knowledge in a World of Networks, 15th International Conference, EKAW
2006, Proceedings, volume 4248, pages 326–333, 2006.

9. Tias Guns, Siegfried Nijssen, and Luc De Raedt. Itemset mining: A constraint
programming perspective. Artif. Intell., 175(12-13):1951–1983, 2011.

10. Szymon Jaroszewicz, Tobias Scheffer, and Dan A. Simovici. Scalable pattern min-
ing with bayesian networks as background knowledge. Data Min. Knowl. Discov.,
18(1):56–100, 2009.

11. Johan Kwisthout. Most inforbable explanations: Finding explanations in bayesian
networks that are both probable and informative. In ECSQARU, volume 7958,
pages 328–339. Springer, 2013.

12. Rana Malhas and Zaher Al Aghbari. Interestingness filtering engine: Mining
bayesian networks for interesting patterns. Expert Syst. Appl., 36(3):5137–5145,
2009.

13. Robert Mateescu and Rina Dechter. Mixed deterministic and probabilistic net-
works. Annals of Mathematics and Artificial Intelligence, 54(1-3):3–51, 2008.

14. Siegfried Nijssen and Albrecht Zimmermann. Constraint-based pattern mining.
In Charu C. Aggarwal and Jiawei Han, editors, Frequent Pattern Mining, pages
147–163. Springer, 2014.

15. K Wojtek Przytula, Denver Dash, and Don Thompson. Evaluation of bayesian
networks used for diagnostics. 60:1–12, 2003.

16. Merel T. Rietbergen, Linda C. van der Gaag, and Hans L. Bodlaender. Provisional
propagation for verifying monotonicity of bayesian networks. In ECAI, volume 263,
pages 759–764, 2014.

17. Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint pro-
gramming. Elsevier, 2006.

18. Solomon Eyal Shimony. The role of relevance in explanation I: irrelevance as
statistical independence. Int. J. Approx. Reasoning, 8(4):281–324, 1993.

19. Changhe Yuan, Heejin Lim, and Tsai-Ching Lu. Most relevant explanation in
bayesian networks. J. Artif. Intell. Res. (JAIR), 42:309–352, 2011.

