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Abstract. The standard, transactional setting of pattern mining as-
sumes that data is subdivided in transactions; the aim is to find patterns
that can be mapped onto at least a minimum number of transactions.
However, this setting can be hard to apply when the aim is to find graph
patterns in databases consisting of large graphs. For instance, the web,
or any social network, is a single large graph that one may not wish
to split into small parts. The focus in network analysis is on finding
structural regularities or anomalies in one network, rather than finding
structural regularities common to a set of them. This requires us to revise
the definition of key concepts in pattern mining, such as support, in the
single-graph setting. Our contribution is a support measure that we prove
to be computationally less expensive and often closer to intuition than
other measures proposed. Further we prove several properties between
these measures and experimentally validate the efficiency of our measure.
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1 Introduction

The traditional transactional setting of pattern mining is popular for many types
of data with well-known examples being basket analysis [1], or molecular frag-
ment mining [10]. As stated in the abstract, the single-graph setting introduces
problems that do not appear in the transactional setting; the most prominent
one being the definition of the support of a pattern. Näıve definitions of support
have the problem that they are not anti-monotonic; thus they cannot be used ef-
fectively in pattern mining, as anti-monotonicity is required to prune the search
space. To address this problem, Kuramochi and Karypis [7] as well as Fiedler
and Borgelt [5] studied anti-monotonic support measures based on computing
maximum independent sets (MIS ) in overlap graphs.

Anti-monotonicity is however not the only requirement for efficient frequent
pattern mining. It is also important that the frequency measure can be evaluated
efficiently. We argue that the computation of overlap-based support measures is
not feasible in many graph databases, and that more scalable support measures
are needed to enable the use of frequent graph mining algorithms on network
data. We propose a new support measure, and provide practical and theoreti-
cal evidence that this measure is more scalable, more general and more widely
applicable than the support measures mentioned earlier. We show how this mea-
sure, and the overlap-graph based measures, relate to each other, thus providing
deeper understanding in support measures for graph mining.
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2 The Support of a Pattern

A labeled graph g = (Vg, Eg, λg) consists of a set of nodes Vg, a set of edges
Eg ⊆ Vg ×Vg and a labeling function λg : Vg ∪Eg → Σ that maps each element
of the graph to an element of the alphabet Σ. Let GΣ be the set of all graphs
over the alphabet Σ. We define support as a function σ : GΣ × GΣ → N.

As stated earlier, minimum support needs to be anti-monotonic to allow
efficient search. This means that for all graphs g, p and p′, where p is a subgraph
of p′, it must hold that σ(p, g) ≥ σ(p′, g). Anti-monotonicity is quite easily upheld
in the transactional setting, but is more tricky for the single-graph setting. The
cause of this problem is that it is not clear what exactly should be counted.

Occurrence of a Pattern Given a pattern p = (Vp, Ep, λp) and a data graph
g = (Vg, Eg, λg), an occurrence is a function ϕ : Vp → Vg mapping the nodes
of p to the nodes in g such that (I) ∀v ∈ Vp ⇒ λp(v) = λg(ϕ(v)) and (II)
∀(u, v) ∈ Ep ⇒ (ϕ(u), ϕ(v)) ∈ Eg. The image of a set of nodes in an occurrence is
denoted ϕ(Vp) = {ϕ(v)|v ∈ Vp}; similarly, we define the image of a set of edges.

The problem of the support measure on a single graph is explained in Fig-
ure 1. p1 has one occurrence in g, and p2 is a specialization of p1. What is the
support of p2 in g? In the transactional setting every instance with at least one
occurrence counts. This is undesirable in the single-graph setting, since every
graph would have a support of either zero or one. A näıve measure that assigns
a support of 2 in our example, would not be anti-monotonic.

Single Graph Support Measures For the support measure introduced in
[7], all possible occurrences ϕi of a pattern p in the graph g are calculated. An
overlap-graph is constructed where each occurrence ϕi corresponds to a node and
there is an edge (ϕj , ϕk) iff ϕj(Ep)∩ϕk(Ep) 6= ∅ (i.e.: ϕj and ϕk share an edge).
The support for the pattern p is defined as the size of the maximum independent
set (MIS ) of the overlap-graph. For example, in Figure 2 there would be three
occurrences of the pattern p in the graph g. Even though [7] defined overlap in
terms of edges, the concept can also be applied to vertices. For this case, we
formalize the following binary relationship:

Definition 1. A simple overlap of occurrences ϕ and ϕ′ of pattern p exists if

ϕ(Vp) ∩ ϕ′(Vp) 6= ∅ .

We denote the support measure based on simple overlap as σ•. It can be shown
that this support measure is anti-monotonic. However, solving a MIS problem
is NP-complete.

A refinement of the simple overlap based support measure was introduced in
[5] and named harmful overlap. We will denote this by σ◦. The basic idea of this
measure is that some of the simple overlaps can be disregarded without harming
the anti-monotonicity of the support measure. As before, an overlap graph is
constructed and the support is defined as the size of the MIS. Different is the
definition of overlap:

Definition 2. A harmful overlap of occurrences ϕ and ϕ′ of pattern p exists if

∃v ∈ Vp : ϕ(v), ϕ′(v) ∈ ϕ(Vp) ∩ ϕ′(Vp).
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Note that both simple overlap σ• and harmful overlap σ◦ are based on shared
nodes here. However, All measures can be used either based on edges or on nodes.

Both measures rely on computing an overlap graph, and subsequently solving
a MIS problem. We propose a measure of support, which avoids potentially
expensive MIS computations1. It is based on the number of unique nodes in the
graph g = (Vg, Eg) to which a node of the pattern p = (Vp, Ep) is mapped.

Definition 3. The minimum image based support of p in g is defined as

σ∧(p, g) = min
v∈Vp

|{ϕi(v) : ϕi is an occurrence of p in g}|

By taking the node in p which is mapped to the least number of unique nodes
in g, we can ensure the anti-monotonicity of σ∧. From our definition of support,
we can deduce several computational benefits: (i) instead of O(n2) potential
overlaps, where n is the possibly exponential number of occurrences, we only
need to maintain a set of data vertices for every node in the pattern, which can
be done in O(n); (ii) we do not need to solve an NP complete MIS problem; (iii)
it is not necessary to compute all occurrences: it is sufficient to determine for
every pair of v ∈ Vp and v′ ∈ Vg if there is one occurrence in which ϕ(v) = v′.
The computational burden can be reduced further by taking into account the
automorphisms of the pattern graph.

Relationships and Dependencies All measures introduced are based on the
occurrence of patterns, but they can give different results on the same data. An
example for how the three measures work and that they give different results
can be found in Figure 2.

Nevertheless, several relationships between these measures hold. We can show
that our measure σ∧ is an upper bound for the harmful overlap measure σ◦, which
is in turn an upper bound for the simple overlap based measure σ•.

Theorem 1. σ∧ is an upper bound for σ◦: ∀p ∈ P : σ∧(p, T ) ≥ σ◦(p, T )

Proof. Let v∗ = arg min
v∈Vp

|{ϕi(v) : ϕi an occurrence of p in T }|. Then we know

that ∀ϕ, ϕ′ : ϕ(v∗) = ϕ′(v∗) there is a harmful overlap of ϕ and ϕ′ and hence at
most one of the occurrences ϕ and ϕ′ can be a member of the MIS. From this
the claim follows. ⊓⊔

Theorem 2. σ◦ is an upper bound for σ•: ∀p ∈ P : σ◦(p, T ) ≥ σ•(p, T )

Proof. We know that for all ϕ, ϕ′ such that ϕ and ϕ′ overlap harmfully, there
is a simple overlap. Hence the overlap graphs for both measures have the same
nodes, and the edges for the harmful overlap are a subset of the edges for the
simple overlap. Thus, the harmful overlap contains less constraints for the MIS,
and the set is at least as big as for the simple overlap. ⊓⊔

Finally it is easy to see that all described measures are bounded by the real
number of pattern occurrences in the graph.

1 This paper is an extended version of a paper presented at a workshop without
publications [2].
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Fig. 1. The support problem in
a single graph g: p1 occurs once.
How often occurs p2?

Fig. 2. A graph with four different occurrences of a
pattern. The three discussed measures evaluate to
σ• = 1 < σ◦ = 2 < σ∧ = 3.

Pattern 1 2 3 4 5 6 7 8 9 10

Nodes in Pattern 2 2 3 3 3 4 4 4 4 5

Image-based support 110 110 100 95 77 97 68 77 64 82

# Occurrences 432 418 1696 1606 815 5428 7380 2254 816 15878

Time for Occurrences ≈ 0s ≈ 0s ≈ 0s ≈ 0s ≈ 0s ≈ 0s ≈ 0s ≈ 0s ≈ 0s ≈ 0s

Edges in overlap-graph 3825 8714 328925 226886 167026 6662049 8362729 1401907 265249 66155623

Time for MIS 1s 1s 31s 57s 4s 958s 2456s 73s 2s >45m

Size MIS 69 92 42 65 36 24 45 32 62 -

Pattern 11 12 13 14 15 16 17 18 19 20

Nodes in Pattern 5 6 7 8 9 10 11 12 13 14

Image-based support 68 80 69 69 66 66 63 63 62 62

# Occurrences 7988 44254 116580 287954 658540 1386328 2711828 5039624 9125850 16409046

Time for Occurrences ≈ 0s 2s 7s 22s 1m4s 2m56s 7m34s 18m57s 46m14s 110m49s

Edges in overlap-graph 9332671 - 47804219 - - - - - - -

Table 1. Details of the computations needed to determine the MIS support measures.
MIS could not be computed for pattern 11 and above.

3 Experiments

To compare with the overlap-based support measures from [7, 5] we obtained
the datasets Aviation and Credit described in [7] from the SUBDUE website2.
We used the same thresholds as used in [7] and obtained for all three measures
the same sets of frequent patterns as reported in [7]. A closer look revealed that
both datasets are rather transactional than single graphs, consisting only of sets
of trees of depth one. In the Credit dataset all trees have 21 nodes. A traditional
transactional graph miner [10] yields identical results; no additional information
on this data can be discovered using single graph mining.

The WebKB dataset3 does not have this drawback and consists of four large
graphs that correspond to the hyperlink structure of web pages from a computer
science department. Nodes are labeled according to the seven types of web-page
that they represent. Edges are unlabeled. Figure 4 summarizes the character-
istics of the datasets. Table 1 lists details of the computation of the MIS for
all patterns found on the Cornell dataset using our measure with a minimum
support threshold of 61. QUALEX-MS [3]4, a state of the art (approximative)
MIS solver [8] was used to calculate the MIS. The table shows that for larger

2 http://cygnus.uta.edu/subdue/databases/index.html
3 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
4 http://www.stasbusygin.org/
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Fig. 4. Characteristics of
the real world datasets
used for the experiments.

patterns, the number of occurrences is prohibitive; we were not able to compute
the overlap graph, and consequently could not solve the MIS problem. As usually
bigger patterns are of interest, this is a problem for the overlap-based measures.

The results of the experiments on the WebKB datasets are summarized in
Figure 3. They suggest a relationship between the size of the database and the
computational costs of the frequent pattern extraction. Expressing the support
relative to the number of nodes in the data graphs, most datasets show the same
behavior, except for Washington, where lower relative supports were feasible.

Moreover, we applied our algorithm to a life science database with up to
18.000 nodes and 24.000 edges [9]. However, these results require more research.

4 Conclusions and future work

We introduced a new support measure for mining frequent subgraphs in large
single graphs and compared it experimentally and theoretically with existing
measures. Existing measures are based on constructing overlap graphs, which
soon grow impractically large; this makes solving the subsequent NP complete
problem impossible. Since the proposed new measure does not suffer from this
problem, it can be evaluated in cases where the old measures cannot be evaluated.
Furthermore we showed that the new measure is an upper bound for the other
measures, allowing us to guarantee a superset of patterns. We believe there are
no clear advantages or disadvantages with respect to the interpretability of any
of the measures.

We only compared with complete frequent (single)subgraph miners. Further
applications may be found in heuristic single graph miners, of which SubDue [6]
is an example, and graph miners dealing with additional constraints [4].
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The proposed support measure is extendible in multiple ways. We present
one example here. Our measure was introduced as a node-based support measure
and is easily turned into an edge-based measure. More interestingly, it is possible
to generalize our measure to more general substructures than nodes or edges.

Given a parameter k, we can define a support measure based on determining
where each connected subgraph with k nodes of the pattern can be matched to.

Definition 4. For a pattern p, a graph g, and a parameter k, the minimum

k-image based support is defined as:

σ∧(p, g) = min
V ⊆Vp,|V |=k,V connected

|{{ϕi(V )} : ϕi is an occurrence of p in g}|

Intuitively, we obtain a measure which achieves counts that are closer to the total
number of occurrences of a pattern, while the counts are still anti-monotonic.
Especially in larger patterns, it is sometimes more intuitive to allow for more
overlap between occurrences than when only single nodes or edges are used.
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