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ABSTRACT
We present DL8, an exact algorithm for finding a decision
tree that optimizes a ranking function under size, depth,
accuracy and leaf constraints. Because the discovery of op-
timal trees has high theoretical complexity, until now no
efforts have been made to compute such trees for real-world
datasets. An exact algorithm is of both scientific and prac-
tical interest. From a scientific point of view, it can be used
as a gold standard to evaluate the performance of heuristic
decision tree learners and to gain new insight in these tra-
ditional learners. From the application point of view, it can
be used to discover trees that cannot be found by heuristic
decision tree learners. The key idea behind our algorithm is
the relation between constraints on decision trees and con-
straints on itemsets. We propose to exploit lattices of item-
sets, from which we can extract optimal decision trees in lin-
ear time. We give several strategies to efficiently build these
lattices. Experiments show that under the same constraints,
DL8 has better test results than C4.5 which confirm that
exhaustive search does not always imply overfitting. The
results also show that DL8 is a useful and interesting tool
to learn decision trees under constraints.

Keywords
Decision tree learning, Frequent itemset mining, Itemset lat-
tices, Formal Concept Analysis, Constraint based mining

1. INTRODUCTION
Decision trees are among the most popular prediction

models in machine learning and data mining, because there
are efficient, relatively easily understandable learning algo-
rithms and the models are easy to interpret. From this per-
spective, it is surprising that mining decision trees under
constraints has not been given much attention. For the prob-
lems listed below, currently no broadly applicable algorithm
exists even though steps in this direction were made in [8]
for the last problem:
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• given a dataset D, find the most accurate tree on train-
ing data in which each leaf covers at least n examples;

• given a dataset D, find the k most accurate trees on
training data in which the majority class in each leaf
covers at least n examples more than any of the mi-
nority classes;

• given a dataset D, find the most accurate tree on train-
ing data in which each leaf has a high statistical cor-
relation with the target class according to a χ2 test;

• given a dataset D, find the smallest decision tree in
which each leaf contains at least n examples, and the
expected accuracy is maximized on unseen examples;

• given a dataset D, find the smallest/shallowest deci-
sion tree which has an accuracy higher than minacc;

In the interactive process that knowledge discovery in databases
is, the ability to pose queries that answer these questions can
be very valuable.

Most known algorithms for building decision trees, for in-
stance C4.5, use a top-down induction paradigm, in which a
good split is chosen heuristically. If such algorithms do not
find a tree that satisfies the specified constraints, this does
not mean that such a tree does not exist—it only means that
the chosen heuristic is not good enough to find it. An ex-
act algorithm could be desirable to answer queries without
uncertainty. Furthermore, to assess the quality of heuris-
tic learners, it is of interest to know for a sufficiently large
number of datasets what their true optimum under given
constraints is. This would allow us to gain deeper insight
in the predictive behavior of decision trees. For instance,
[19] reported that for small, mostly artificial datasets, small
decision trees are not always preferable in terms of general-
ization ability, while [29] showed that when learning rules,
exhaustive searching and overfitting are orthogonal. An effi-
cient algorithm for learning decision trees under constraints
allows us to investigate these observations for larger datasets
and more complex models.

To the best of our knowledge, few attempts have been
made to compute exact optimal trees in a setting which
optimizes decision trees under a wide range of constraints;
most people have not seriously considered the problem as
it is known to be NP hard [12], and therefore, an efficient
algorithm can most likely not exist. The data mining com-
munity, however, has an interesting track record of deal-
ing with exponential problems with reasonable computation
times. In particular, for many years, the problem of frequent



itemset mining, which is exponential in its nature, has at-
tracted a lot of research [1, 34, 11] and although this problem
is not always efficiently solvable in theory, in practice many
algorithms have been applied successfully.

In this paper, we propose DL8, an exact algorithm for
building decision trees that does not rely on the traditional
approach of heuristic top-down induction, and addresses the
problem of finding exact optimal decision trees under con-
straints. Its key feature is that it exploits a relation between
constraints on itemsets and decision trees. Even though our
algorithm is not expected to work on all possible datasets,
we will provide evidence that for a reasonable number of
datasets, our approach is feasible and therefore a useful ad-
dition to the data mining toolbox.

This paper is organized as follows. In Section 2, we in-
troduce the concepts of decision trees and itemsets. In Sec-
tion 3, we describe precisely which optimal trees we consider.
In Section 4, we motivate the use of such optimal trees. In
section 5, we present our algorithm and its connection to
frequent itemset mining. In Section 6, we evaluate the effi-
ciency of our algorithm; we compare the accuracy and size
of the trees computed by our system with the trees learned
by C4.5. Section 7 gives related work. We conclude in Sec-
tion 8.

2. ITEMSET LATTICES FOR DECISION
TREE MINING

Let us first introduce some background information about
frequent itemsets and decision trees.

Let I = {i1, i2, . . . , im} be a set of items and let D =
{T1, T2, . . . , Tn} be a bag of transactions, where each trans-
action Tk is an itemset such that Tk ⊆ I. A transaction
Tk contains a set of items I ⊆ I iff I ⊆ Tk. The transac-
tion identifier set (TID-set) t(I) ⊆ {1, 2, . . . n} of an itemset
I ⊆ I is the set of identifiers of all transactions that contain
itemset I.

The frequency of an itemset I ⊆ I is defined to be the
number of transactions that contain the itemset, i.e. freq(I) =
|t(I)|; the support of an itemset is support(I) = freq/|D|. An
itemset I is said to be frequent if its support is higher than
a given threshold minsup; this is written as support(I) ≥
minsup (or, equivalently, freq(I) ≥ minfreq).

In this work, we are interested in finding frequent itemsets
for databases that contain examples labeled with classes c ∈
C. If we compute the frequency freqc(I) of an itemset I for
each class c separately, we can associate to each itemset the
class label for which its frequency is highest. The resulting
rule I → c(I), where c(I) = argmaxc′∈C freqc′(I) is called a
class association rule.

A decision tree aims at classifying examples by sorting
them down a tree. The leaves of a tree provide the classifi-
cations of examples [17]. Each node of a tree specifies a test
on one attribute of an example, and each branch of a node
corresponds to one of the possible values of the attribute.
We assume that all tests are boolean; nominal attributes are
transformed into boolean attributes by mapping each pos-
sible value to a separate attribute. The input of a decision
tree learner is then a binary matrix B, where Bij contains
the value of attribute i of example j.

Our results are based on the following observation.

Observation 1. Let us transform a binary table B into
transactional form D such that Tj = {i|Bij = 1}∪{¬i|Bij =

0}. Then the examples that are sorted down every node of a
decision tree for B are characterized by an itemset of items
occurring in D.

For example, consider the decision tree in Figure 1. We can
determine the leaf to which an example belongs by checking
which of the itemsets {B}, {¬B, C} and {¬B,¬C} it in-
cludes. We denote the set of these itemsets with leaves(T ).
Similarly, the itemsets that correspond to paths in the tree
are denoted with paths(T ). In this case, paths(T ) = {∅, {B},
{¬B}, {¬B, C}, {¬B,¬C}}.

B

C1

1 0

1 0

1 0

Figure 1: An example tree

The leaves of a decision tree correspond to class associa-
tion rules, as leaves have associated classes. In decision tree
learning, it is common to specify a minimum number of ex-
amples that should be covered by each leaf. For association
rules, this would correspond to giving a support threshold.

The accuracy of a decision tree is derived from the num-
ber of misclassified examples in the leaves: accuracy(T ) =
|D|−e(T )

|D|
, where

e(T ) =
X

I∈leaves(T )

e(I) and e(I) = freq(I)−freqc(I)(I).

A further illustration of the relation between itemsets and
decision trees is given in Figure 2. In this figure, every node
represents an itemset; an edge denotes a subset relation.
Highlighted is one possible decision tree, which is nothing
else than a set of itemsets. The branches of the decision
tree correspond to subset relations.

From the theory of frequent itemset mining, it is known
that itemsets form a lattice (these are typically depicted as
in Figure 2). In this paper we present DL8, an algorithm
for mining Decision trees from Lattices.

3. QUERIES FOR DECISION TREES
The problems that we address in this paper, can be seen as

queries to a database. These queries consist of three parts.
The first part specifies the constraints on the nodes of the
decision trees.

1. T1 := {T |T ∈ DecisionTrees, ∀I ∈ paths(T ), p(I)}

The set T1 is called the set of locally constrained decision
trees and DecisionTrees is the set of all possible decision
trees. The predicate p(I) expresses a constraint on paths.
In our simplest setting, p(I) := (freq(I) ≥ minfreq). The
predicate p(I) must fulfill these properties:

• the evaluation of p(I) must be independent of the tree
T of which I is part.

• p must be anti-monotonic. A predicate p(I) on item-
sets I ⊆ I is called anti-monotonic iff p(I) ∧ (I ′ ⊆
I)⇒ p(I ′).
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Figure 2: An itemset lattice for items {A,¬A, B,¬B, C,¬C}; binary decision tree A(B(C(l,l),l),C(l,l)) is hidden
in this lattice

We can distinguish two types of local constraints: coverage-
based constraints, such as frequency, of which the fulfillment
is entirely dependent on t(I) and pattern-based constraints,
such as the size of itemsets, of which the fulfillment depends
on the properties of the (items in the) itemset itself. In
the following, we consider only coverage-based constraints;
extensions to pattern-based constraints are possible, but be-
yond the scope of this paper.

The second (optional) part expresses constraints that refer
to the tree as a whole.

2. T2 := {T |T ∈ T1, q(T )}

Set T2 is called the set of globally constrained decision trees.
Formula q(T ) is a conjunction of constraints of the form
f(T ) ≤ θ, where f(T ) can be

• e(T ), to constrain the error of a tree on a training
dataset;

• ex(T ), to constrain the expected error on unseen exam-
ples, according to some predefined estimate;

• size(T ), to constrain the number of nodes in a tree;

• depth(T ), to constrain the length of the longest root-
leaf path in a tree.

In the mandatory third step, we express a preference for
a tree in the set T2.

3. output argminT∈T2
[r1(T ), r2(T ), . . . , rn(T )]

The tuples r(T ) = [r1(T ), r2(T ), . . . , rn(T )] are compared
lexicographically and define a ranked set of globally con-
strained decision trees; ri ∈ {e, ex, size, depth}. Our current
algorithm requires that at least e and size or ex and size
be used in the ranking; If depth (respectively size) is used
in the ranking before e or ex, then q must contain an atom
depth(T ) ≤ maxdepth (respectively size(T ) ≤ maxsize).

We do not constrain the order of size(T ), e(T ) and depth(T )
in r. We are minimizing the ranking function r(T ), thus, our
algorithm is an optimization algorithm. The trees that we
search for are optimal in terms of the problem setting that
is defined in the query.

To illustrate our querying mechanism we will now give
several examples.

Query 1. Small Accurate Trees with Frequent leaves.

T := {T | T ∈ DecisionTrees,
∀I ∈ paths(T ), freq(I) ≥ minfreq}

output argminT∈T [e(T ), size(T )].

In other words, we have p(T ) := (freq(I) ≥ minfreq), q(T ) :=
true and r(T ) := [e(T ), size(T )]. This query investigates all
decision trees in which each leaf covers at least minfreq ex-
amples of the training data. Among these trees, we find
the smallest most accurate one. To retrieve Accurate Trees
of Bounded Size, Query 1 can be transformed such that
q(T ) := size(T ) ≤ maxsize.

One possible scenario in which DL8 can be used, is the
following. Assume that we have already applied a heuris-
tic decision tree learner, such as C4.5, and we have some
idea about decision tree error (maxerror) and size (maxsize).
Then we can run the following query:

Query 2. Accurate Trees of Bounded Size and Accuracy.

T1 := {T | T ∈ DecisionTrees,
∀I ∈ paths(T ), freq(I) ≥ minfreq}

T2 := {T | T ∈ T1, size(T ) ≤ maxsize,
e(T ) ≤ maxerror}

output argminT∈T2
[size(T ), e(T )].

This query finds the smallest tree that achieves at least the
same accuracy as the tree learned by C4.5.

The previous queries aim at finding compact models that
maximize training set accuracy. Such trees might however
overfit training data. Another application of DL8 is to ob-
tain trees with high expected accuracy. Several algorithms
for estimating test set accuracy have been presented in the
literature. One such estimate is at the basis of the reduced
error pruning algorithm of C4.5. Essentially, C4.5 com-
putes an additional penalty term x(freq1(I), . . . freqn(I)) for
each leaf I of the decision tree, from which we can derive a
new estimated number of errors

ex(T ) =
X

I∈leaves(T )

e(I) + x(freq1(I), . . . freqn(I)).

We can now also be interested in answering the following
query.



Query 3. Small Accurate Pruned Trees.

T := {T | T ∈ DecisionTrees,
∀I ∈ paths(T ), freq(I) ≥ minfreq}

output argminT∈T [ex(T ), size(T )].

This query would find the most accurate tree after pruning
such as done by C4.5. Effectively, the penalty terms make
sure that trees with less leaves are sometimes preferable even
if they are less accurate.

4. MOTIVATING EXAMPLES
To motivate our work, it is useful to briefly consider two

examples that illustrate what kind of trees cannot be found
if the well-known information gain (ratio) heuristic of C4.5
is used to answer Query 1 of Section 3.

A B C Class #

1 1 0 1 40×
1 1 1 1 40×
1 0 1 1 5×
0 0 0 0 10×
0 0 1 1 5×

Figure 3:
Database 1

A B C Class #

1 1 1 1 30×
1 1 0 0 20×
0 1 0 0 8×
0 1 1 0 12×
0 0 0 1 12×
0 0 1 0 18×

Figure 4:
Database 2

As a first example, consider the database in Figure 3, in
which we have 2 target classes. Assume that we are inter-
ested in answering Query 1 with minfreq = 10. An optimal
tree exists (see Figure 1), but a heuristic learner will not find
it, as it prefers attribute A in the root: A has information
gain 0.33 (resp. ratio 0.54), while B only has information
gain 0.26 (resp. ratio 0.37).

As a second example, consider the database in Figure 4,
which is a variation of the XOR problem. Then the correct
answer to Query 1 with minfreq = 1 is given in Figure 5(a),
but the use of information gain (ratio) would yield the tree
in Figure 5(b), as the information gain (resp. ratio) of A is
0.098 (resp. 0.098), while the information gain of C is 0.029
(resp. 0.030).

We learn from these examples that the proportions of ex-
amples can ‘fool’ heuristic decision trees into an suboptimal
shape as already noticed by [24]. Optimal learners are less
sensitive to such behavior.

5. THE DL8 ALGORITHM
We will now present the DL8 algorithm for answering

decision tree queries. Pseudo-code of the algorithm is given
in Algorithm 1.

Parameters of DL8 are the local constraint p, the rank-
ing function r, and the global constraints; each global con-
straint is passed in a separate parameter; global constraints
that are not specified, are assumed to be set to ∞. The
most important part of DL8 is its recursive search proce-
dure. Given an input itemset I, DL8-Recursive computes
one or more decision trees for the transactions t(I) that
contain the itemset I. More than one decision tree is re-
turned only if a depth or size constraint is specified. Let
r(T ) = [r1(T ), . . . , rn(T )] be the ranking function, and let k
be the index of the obligatory error function in this ranking.
If r1, . . . , rk−1 ∈ {depth, size} then, for every allowed value
of depth d and size s, DL8-Recursive outputs the best tree

C

BA

0 101

1 0

0101

A

CC

001 B

10

1 0

0101

1 0

(a) Smallest (b) Learned using heuristics

Figure 5: Two accurate trees for database 2

T that can be constructed for the transactions t(I) accord-
ing to the ranking [rk(T ), . . . , rn(T )], such that size(T ) ≤ s
and depth(T ) ≤ d.

In DL8-Recursive, we use several functions: l(c), which
returns a tree consisting of a single leaf with class label
c; n(i, T1, T2), which returns a tree that contains test i in
the root, and has T1 and T2 as left-hand and right-hand
branches; et(T ), which computes the error of tree T when
only the transactions in TID-set t are considered; and fi-
nally, we use a predicate pure(I); predicate pure blocks the
recursion if all examples t(I) belong to the same class.

The algorithm is most easily understood if maxdepth =∞,
maxsize =∞, maxerror =∞ and r(T ) = [e(T )]; in this case,
DL8-Recursive combines only two trees for each i ∈ I, and
returns the single most accurate tree in line 35.

The correctness of the DL8 algorithm is essentially based
on the fact that the left-hand branch and the right-hand
branch of a node in a decision tree can be optimized inde-
pendently. In more detail, the correctness follows from the
following observations.

(line 2-9) the valid ranges of sizes and depths are computed
here if a size or depth constraint was specified;

(line 12) for each depth and size satisfying the constraints
DL8-Recursive finds the most accurate tree possible.
Some of the accuracies might be too low for the given
constraint, and are removed from consideration.

(line 20) a candidate decision tree for classifying the exam-
ples t(I) consists of a single leaf.

(line 21) if all examples in a set of transactions belong to the
same class, continuing the recursion is not necessary;
after all, any larger tree will not be more accurate than
a leaf, and we require that size is used in the ranking.
More sophisticated pruning is possible in some special
cases. In the Appendix, an improved predicate pure is
given, which allows us to stop even if not all examples
belong to the same class.

(line 24) in this line the anti-monotonic property of the pred-
icate p(I) is used: an itemset that does not satisfy the
predicate p(I) cannot be part of a tree, nor can any of
its supersets; therefore the search is not continued if
p(I ∪ {i}) = false or p(I ∪ {¬i}) = false.

(line 23–34) these lines make sure that each tree that should
be part of the output T , is indeed returned. We can
prove this by induction. Assume that for the set of



transactions t(I), tree T should be part of T as it
is the most accurate tree that is smaller than s and
shallower than d for some s ∈ S and d ∈ D; as-
sume T is not a leaf, and contains test i in the root.
Then T must have a left-hand branch T1 and a right-
hand branch T2. Tree T1 must be the most accurate
tree that can be constructed for t(I ∪ {i}) with size
at most size(T1) and depth at most depth(T1); simi-
larly, T2 must be the most accurate tree that can be
constructed for t(I ∪ {¬i}) under depth and size con-
straints. We can inductively assume that trees with
these constraints are found by DL8-Recursive(I ∪
{i}) and DL8-Recursive(I∪{¬i}) as size(T1), size(T2) ≤
maxsize and depth(T1), depth(T2) ≤ maxdepth. Conse-
quently T (or a tree with equal statistics) must be
among the trees found by combining results from the
two recursive procedure calls in line 28.

A key feature of DL8-Recursive is that in line 35 it stores
every result that it computes. Consequently, DL8 avoids
that optimal decision trees for any itemset are computed
more than once; furthermore, we do not need to store the
resulting decision trees entirely; it is sufficient to store their
root and statistics (error, possibly size and depth), as left-
hand and right-hand subtrees can be recovered from the
stored results for the left-hand and right-hand itemsets if
necessary.

Note that in our algorithm, we output the best tree ac-
cording to the ranking. The k − best trees could also be
straightforwardly output.

To efficiently index the itemsets I, a trie [7] data structure
can be used. As with most data mining algorithms, the most
time consuming operations are those that access the data.
In the following, we will provide four related strategies to
obtain the frequency counts that are necessary to check the
constraints and compute accuracies: the simple single-step
approach, the frequent itemset mining (FIM) approach, the
constrained FIM approach, and the closure based single-step
approach.

The Simple Single-Step Approach
The most straightforward approach, referred to as DL8-
Simple, computes the itemset frequencies while DL8 is ex-
ecuting. In this case, once DL8-Recursive is called for an
itemset I, we obtain the frequencies of I in a scan over the
data, and store the result to avoid later recomputations.

The FIM Approach
An alternative approach is based on the observation that
every itemset that occurs in a tree, must satisfy the local
constraint p. If p is a minimum frequency constraint, we can
use a frequent itemset miner to obtain the frequencies in a
preprocessing step. DL8 then operates on the resulting set
of itemsets, annotating every itemset with optimal decision
trees.

Many frequent itemset miners have been studied in the
literature; all of these can be used with small modifications
to output the frequent itemsets in a convenient form and
determine frequencies in multiple classes [1, 34, 11, 31].

We implemented an extension of Apriori that first com-
putes and stores in a trie all frequent itemsets, and then runs
DL8 on the trie. This approach is referred to as Apriori-
Freq+DL8. Compared to other itemset miners, we expect
that the additional runtime to store all itemsets in Apriori

Algorithm 1 DL8(p, pb, maxsize,maxdepth,maxerror, r)

1:
2: if maxsize 6=∞ then
3: S ← {1, 2, . . . ,maxsize}
4: else
5: S ← {∞}
6: if maxdepth 6=∞ then
7: D ← {1, 2, . . . ,maxdepth}
8: else
9: D ← {∞}

10: T ←DL8-Recursive(∅)
11: if maxerror 6=∞ then
12: T ← {T |T ∈ T , e(T ) ≤ maxerror}
13: if T = ∅ then
14: return undefined
15: return argminT∈T r(T )
16:
17: procedure DL8-Recursive(I)
18: if DL8-Recursive(I) was computed before then
19: return stored result
20: C ← {l(c(I))}
21: if pure(I) then
22: store C as the result for I and return C
23: for all i ∈ I do
24: if p(I ∪{i}) = true and p(I ∪{¬i}) = true then
25: T1 ← DL8-Recursive(I ∪ {i})
26: T2 ← DL8-Recursive(I ∪ {¬i})
27: for all T1 ∈ T1, T2 ∈ T2 do
28: C ← C ∪ {n(i, T1, T2)}
29: end if
30: T ← ∅
31: for all d ∈ D, s ∈ S do
32: L ← {T ∈ C|depth(T ) ≤ d ∧ size(T ) ≤ s}
33: T ← T ∪ {argminT∈L[rk = et(I)(T ), . . . , rn(T )]}
34: end for
35: store T as the result for I and return T
36: end procedure

is the lowest, as Apriori already builds a trie of candidate
itemsets itself.

If we assume that the output of the frequent itemset miner
consists of a graph structure such as Figure 2, then DL8
operates in time linear in the number of edges of this graph.

The Constrained FIM Approach
Unfortunately, the frequent itemset mining approach may
compute frequencies of itemsets that can never be part of a
decision tree. For instance, assume that {A} is a frequent
itemset, but {¬A} is not; then no tree answering example
Query 1 will contain a test for attribute A; itemset {A}
is redundant. In this section, we show that an additional
local, anti-monotonic constraint can be used in the frequent
itemset mining process to make sure that no such redundant
itemsets are enumerated. Proofs of the theorems given in
this section can be found in [22].

If we consider the DL8-Simple algorithm, an itemset I =
{i1, . . . , in} is stored only if there is an order [ik1

, ik2
, . . . , ikn

]
of the items in I (which corresponds to an order of recursive
calls to DL8-Recursive) such that for none of the proper
prefixes I ′ = [ik1

, ik2
, . . . , ikm

] (m < n) of this order

• the ¬pure(I ′) predicate is false in line (21);



• the conjunction pb(I
′ ∪{ik

m+1
})∧pb(I

′ ∪{¬ik
m+1
}) is

false in line (24).

It is helpful to negate the pure predicate, as one can easily
see that ¬pure is an anti-monotonic predicate (every super-
set of a pure itemset, must also be pure). From now on,
we will refer to ¬pure as a leaf constraint, as it defines a
property that is only allowed to hold in the leaves of a tree.

We can now formalize the principle of itemset relevancy.

Definition 1. Let p1 be a local anti-monotonic tree con-
straint and p2 be an anti-monotonic leaf constraint. Then
the relevancy of I, denoted by rel(I), is defined by

rel(I) =

8

>

>

>

<

>

>

>

:

p1(I) ∧ p2(I) if I = ∅ (Case 1)
true if ∃i ∈ I s.t.

rel(I − i) ∧ p2(I − i)∧
p1(I) ∧ p1(I − i ∪ ¬i) (Case 2)

false otherwise (Case 3)

Theorem 1. Let L1 be the set of itemsets stored by DL8-
Simple, and let L2 be the set of itemsets {I ⊆ I|rel(I) =
true}. Then L1 = L2.

Relevancy is a property that can be pushed in a frequent
itemset mining process.

Theorem 2. Itemset relevancy is an anti-monotonic prop-
erty.

It is relatively easy to integrate the computation of rele-
vancy in frequent itemset mining algorithms, as long as the
order of itemset generation is such that all subsets of an
itemset I are enumerated before I is enumerated itself. As-
sume that we have already computed all relevant itemsets
that are a subset of an itemset I. Then we can determine
for each i ∈ I if the itemset I − i is part of this set, and if
so, we can derive the class frequencies of I− i∪¬i using the
formula freqk(I− i∪¬i) = freqk(I− i)− freqk(I). If for each
i either I − i is not relevant, or the predicate p(I − i ∪ ¬i)
fails, we can prune I.

Pruning of this kind can be integrated in both depth-first
and breadth-first frequent itemset miners. Note that the
pureness property can be refined to allow a more efficient
pruning (see [22] for the definition of the Loose-Pureness
property). In case depth is the first ranking function, level-
wise algorithms such as Apriori have an important benefit:
after each level of itemsets is generated, we could run DL8 to
obtain the most accurate tree up to that depth. Apriori can
stop at the lowest level at which a tree is found that fulfils the
constraints. We implemented two versions of DL8 in which
the relevancy constraints are pushed in the frequent itemset
mining process: DL8-Apriori, which is based on Apriori
[1], and DL8-Eclat, which is based on Eclat [34].

The Closure-Based Single-Step Approach
In the simple single-step approach, we stored the optimal
decision trees for every itemset separately. However, if the
local constraint is only coverage based, it is easy to see that
for two itemsets I1 and I2, if t(I1) = t(I2), the result of
DL8-Recursive(I1) and DL8-Recursive(I2) must be the
same. To reduce the number of results that we have to store,
we should avoid storing such duplicate sets of results.

The solution that we propose is to compute for every item-
set its closure. Let i(t) be the function which computes

i(t) = ∩k∈tTk

Datasets #Ex #Test Datasets #Ex #Test
anneal 812 36 tumor 336 18
a-credit 653 56 segment 2310 55
balance 625 13 soybean 630 45
breast 683 28 splice 3190 3466
chess 3196 41 thyroid 3247 36

diabetes 768 25 vehicle 846 55
g-credit 1000 77 vote 435 49
heart 296 35 vowel 990 48

ionosphere 351 99 yeast 1484 23
mushroom 8124 116 zoo 101 15
pendigits 7494 49

Figure 6: Datasets description

for a TID-set t, then the closure of itemset I is the itemset
i(t(I)). An itemset I is closed iff I = i(t(I)). If t(I1) =
t(I2) it is easy to see that also i(t(I1)) = i(t(I2)). Thus, in
the trie data structure that is used in the simple single-step
approach, we could index the results on i(t(I)) instead of I
itself.

We incorporate this observation as follows in Algorithm 1.
In line 24, we do not only compute the frequency of an
itemset, but also its closure I ′ in the data. In line 18 we
check if DL8-Recursive(I) was already computed earlier
by searching for I ′ in a trie data structure. In line 35, we
associate the result to I ′ instead of I itself.

Our single-step approach which relies on closed itemset
indexing is called DL8-Closed. Obviously, DL8-Closed
will never consider more itemsets than DL8-Simple, DL8-
Apriori or DL8-Eclat; itemsets stored by DL8-Closed
may however be longer as they contain all items in their
closure.

Our implementation of DL8-Closed is based on opti-
mization strategies that are common in depth-first frequent
itemset miners, such as the use of projected databases, with
modifications that make sure that the space complexity of
our algorithm is θ(n + m), where n is the size of the trie
that stores all closed itemsets, and m is the size of the bi-
nary matrix that contains the data. For more details see
[22].

6. EXPERIMENTS
In this section we compare the different versions of DL8

in terms of efficiency; furthermore, we compare the quality
of the constructed trees with those found by J48, the Java
implementation of C4.5 [28] in Weka [32]. All experiments
were performed on Intel Pentium 4 machines with in be-
tween 1GB and 2GB of main memory, running Linux. DL8
and the frequent itemset miners were implemented in C++.

The experiments were performed on UCI datasets [21].
Numerical data were discretized before applying the learn-
ing algorithms using Weka’s unsupervised discretization
method with a number of bins equal to 4. We limited the
number of bins in order to limit the number of created at-
tributes. Figure 6 gives a brief description of the datasets
that we used in terms of the number of examples and the
number of attributes after binarization.

6.1 Efficiency
The applicability of DL8 is limited by two factors: the

amount of itemsets that need to be stored, and the time
that it takes to compute these itemsets. We first evalu-
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Figure 7: Comparison of the different miners on 4 UCI datasets

Algorithm Uses relevancy Closed Builds tree

DL8-Closed X X X
DL8-Apriori X X
DL8-Eclat X X
Apriori-Freq
Apriori-Freq+DL8 X
Eclat-Freq
LCM-Freq
LCM-Closed X

Figure 8: Properties of the algorithms used in the
experiments

ate experimentally how these factors are influenced by con-
straints and properties of the data. Furthermore, we deter-
mine how the different approaches for computing the item-
set lattices compare. A summary of the algorithms can be
found in Figure 8. Besides DL8-Apriori, DL8-Eclat and
DL8-Closed, we also include unmodified implementations
of the frequent itemset miners Apriori [1], Eclat [34] and
LCM [31] in the comparison. These implementations were
obtained from the FIMI website [3]. The inclusion of unmod-
ified algorithms allows us to determine how well relevancy
pruning works, and allows us to determine the trade-off be-
tween relevancy pruning and trie construction.

Results for four datasets are listed in Figure 7. We aborted
runs of algorithms that lasted for longer than 1500s. More
results can be found in [22]. We only show datasets here in
which frequent itemset miners manage to run within 1500s.

The results clearly show that in all cases the number of
closed relevant itemsets is the smallest. The difference be-
tween the number of relevant itemsets and the number of
frequent itemsets becomes smaller for lower minimum fre-
quency values. The number of frequent itemsets is so large
in most cases, that it is impossible to compute or store
them within a reasonable amount of time or space. In those
datasets where we can use low minimum frequencies (15
or smaller), the closed itemset miner LCM is usually the
fastest; for low frequency values the number of closed item-
sets is almost the same as the number of relevant closed
itemsets. Bear in mind, however, that LCM does not out-
put the itemsets in a form that can be used efficiently by
DL8.

In all cases, DL8-Closed is faster than DL8-Apriori or
DL8-Eclat. In those cases where we can store the entire
output of Apriori in memory, we see that the additional
runtime for storing these results is significant. On the other
hand, if we perform relevancy pruning, the resulting algo-
rithm is usually faster than the original itemset miner.

In the datasets shown here, the number of attributes is
relatively small. For the datasets with larger number of
attributes, such as ionosphere and splice, we found that only
DL8-Closed managed to run for support thresholds lower
than 25%, but still was unable to run for support thresholds
lower than 10%.

6.2 Accuracy
In the experiments shown in Figure 9, we used a strat-

ified 10-fold cross-validation to compute the training and
test accuracies of DL8-Closed and J48. We used the min-
imum frequency as the local constraint. For each dataset,
we lowered this frequency to the lowest value that still al-
lowed the computation to be performed within the memory
of our computers. For J48, results are provided for pruned
trees and unpruned trees; for DL8 results are provided in
which the e (unpruned) and ex (pruned) error functions are
optimized (cf.Queries 1 and 3 of Section 3). First, both
algorithms were applied with the same minimum frequency
setting constraint. We used a corrected two-tailed t-test [20]
with a significance threshold of 5% to compare the test accu-
racies of both systems. A test set accuracy result is in bold
when it is significantly better than its counterpart result on
the other system.

The experiments show that both with and without prun-
ing the optimal trees computed by DL8 have a better train-
ing accuracy than the trees computed by J48 with the same
frequency values. Furthermore, on the test data, in both
cases DL8 is significantly better than J48 on 9 of the 20
datasets and only significantly worse on one dataset. When
pruned trees are compared to unpruned ones, the sizes of
the trees are on average 1.75 times smaller for J48 and 1.5
time smaller for DL8. After pruning, DL8’s trees are still
1.5 times larger than J48’s ones. A closer inspection of these
trees reveils a similar phenomenon as in the data of Figure 3:
C4.5’s trees are smaller as it creates trees with small num-
bers of incorrectly classified examples in the leaves, which
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anneal
10 1.2 .85 .87 .82 .81 43 57 .83 .85 .81 .82 22 31

.82 .88
0 +

44 54
2 .2 .89 .89 .82 .82 107 88 .86 .87 .82 .82 44 46 0 +

a-credit 45 6.8 .87 .88 .86 .87 6 11 .86 .88 .86 .88 4 11 .84 .86 - 0 36 40

balance
15 2.4 .81 .85 .76 .79 24 41 .81 .85 .79 .80 17 31

.80 .79
0 0

72 84
2 .3 .90 .90 .82 .81 99 114 .89 .89 .80 .80 72 65 0 0

breast-w
40 5.8 .93 .97 .93 .95 3 10 .93 .97 .93 .95 3 8

.96 .95
0 0

16 20
30 4.3 .96 .96 .95 .95 7 7 .96 .97 .95 .95 7 9 0 0

chess 200 6.2 .91 .91 .91 .90 9 13 .91 .95 .90 .95 9 13 .99 1 + + 54 54

diabetes
15 1.9 .79 .83 .75 .72 26 55 .79 .82 .74 .74 20 32

.74 .73
0 0

69 41
2 .2 .90 .99 .68 .66 20 288 .84 .92 .74 .71 69 135 0 0

g-credit 100 10 .73 .75 .70 .70 6 12 .73 .75 .70 .71 6 10 .71 .70 0 0 163 171

heart-c
30 1.1 .77 .84 .74 .77 4 12 .77 .84 .73 .78 4 12

.78 .80
0 0

32 375 1.6 .88 .94 .77 .75 4 70 .87 .94 .76 .80 17 35 0 0
2 .6 .94 1 .76 .74 68 74 .90 .97 .78 .77 32 50 0 0

ionosph
50 14.2 .83 .86 .79 .84 4 7 .83 .86 .79 .84 4 7

.86 .91
0 +

35 27
40 11.3 .89 .89 .88 .88 5 7 .89 .89 .88 .88 5 6 0 0

mushro 800 9.8 .92 .97 .92 .97 5 11 .92 .97 .92 .97 5 11 1 1 + + 17 17

pendigits 600 8.0 .58 .72 .58 .72 14 17 .58 .72 .58 .72 13 15 .95 .96 + + 340 278

p-tumor
15 4.4 .44 .49 .38 .37 23 27 .44 .49 .39 .37 19 22

.40 .40
0 0

81 81
2 .5 .63 .71 .40 .36 116 152 .60 .67 .40 .40 81 105 0 0

segment 200 8.6 .72 .83 .73 .83 13 15 .73 .83 .73 .83 13 15 .95 .97 + + 80 113

soybean
60 9.5 .51 .55 .50 .55 13 15 .51 .55 .50 .55 11 15

.82 .82
+ +

88 88
50 7.9 .55 .59 .52 .59 15 17 .55 .59 .51 .58 14 17 + +

splice 700 21.9 .74 .74 .74 .73 5 5 .74 .74 .74 .73 5 5 .94 .94 + + 127 127

thyroid 80 2.4 .91 .92 .91 .91 1 13 .91 .91 .91 .91 1 3 .91 .99 0 + 34 21

vehicle 50 5.9 .63 .71 .59 .67 17 22 .63 .71 .59 .67 15 22 .70 .72 0 + 139 135

vote
20 4.5 .96 .97 .96 .94 3 15 .96 .96 .96 .94 3 8

.96 .96
0 0

13 13
15 3.4 .96 .97 .95 .94 3 18 .96 .97 .96 .95 3 9 0 0

vowel
100 1.1 .36 .39 .34 .33 11 14 .36 .39 .34 .33 11 14

.78 .82
+ +

290 191
70 7.0 .39 .46 .35 .40 17 21 .39 .45 .35 .40 17 20 + +

yeast
100 6.7 .53 .55 .50 .53 14 15 .53 .55 .51 .53 11 14

.53 .56
0 0

186 318
2 .1 .74 .82 .49 .48 501 724 .68 .75 .53 .50 186 307 + +

Figure 9: Comparison of J48 and DL8, with and without pruning

cannot be split off without violating the constraints. In cases
where DL8’s accuracy is significantly better, the pruned
trees of DL8 are only 3 to 9 nodes larger those of J48. These
results confirm earlier findings which show that smaller trees
are not always desirable.

Second, in the last six columns of Figure 9, we give re-
sults for J48 with its default minfreq = 2 setting, both
when using the discretized data, and when using the orig-
inal, non-discretized data. The test accuracies of J48 with
minfreq = 2 are compared with the test accuracies of DL8
for the various minfreq values, when using pruning. The
results of the significance test are given in the “S” column:
“+” means that J48 is significantly better, “-” that it is sig-
nificantly worse and “0” that there is no significantly differ-
ence. This comparison shows that J48’s test accuracy is sig-
nificantly higher on 7 of the 20 datasets when using before-
hand discretized data. J48 is better on 3 additional datasets
if discretization is not performed beforehand, reveiling that
a good discretization is sometimes beneficial. However, for
almost all datasets the sizes of the trees are a lot smaller for
DL8. This means that DL8 can be used to compute trees
with better size-accuracy trade-offs.

Furthermore, one of the strengths of DL8 is that it allows
to explicitly restrict the size or accuracy. We therefore stud-
ied the relation between decision tree accuracies and sizes in
more detail. In Figure 10, we show results in which the aver-
age size of trees constructed by J48, is taken as a constraint
on the size of trees mined by DL8. None of the results given
by DL8 are significantly better nor significantly worse than
those given by J48.

Datasets Sup Max size Test acc Size
DL8 J48 DL8 J48 DL8

balance 2 100 0.82 0.81 99.0 96.6

diabetes 15 27 0.75 0.74 26.4 27.0

g-credit 100 7 0.70 0.72 6.7 7.0

heart-c 10 14 0.80 0.80 14.0 13.0

vote 15 4 0.95 0.96 3.4 3.0

yeast 10 108 0.52 0.52 107.2 107.0

Figure 10: Influence of the size constraint on the
test accuracy of DL8 (unpruned)

DL8 can also compute, for every possible size of a decision
tree, the smallest error on training data that can possibly
be achieved. For two datasets, the results of such a query
are given in Figure 11. In general, if we increase the size of
a decision tree, its accuracy improves quickly at first. Only
small improvements can be obtained by further increasing
the size of the tree. If we lower the frequency threshold,
we can obtain more accurate trees, but only if we allow a
sufficient amount of nodes in the tree.

Figures such as Figure 11 are of practical interest, as they
allow a user to trade-off the interpretability and the accuracy
of a model.

The most surprising conclusion that may however be drawn
from all our experiments, is that optimal trees perform re-
markably well on most datasets. Our algorithm investigates
a vast search space, and its results are still competitive in all
cases. The experiments indicate that the constraints that
we employed, either on size, or on minimum support, are
sufficient to reduce model complexities and achieve good
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predictive accuracies.

7. RELATED WORK
The search for optimal decision trees dates back to the 70s,

when several dynamic programming algorithms for building
such trees were proposed [9, 16, 26, 30, 15]. This early
work concentrated on finding small summarizations of input
data, and did not study the prediction of unseen examples.
Optimization criteria were based on the cost of attributes,
and the size or the depth of a tree. Afterwards, attention
mostly shifted to heuristic decision tree learners, which were
found to obtain satisfactory results for many datasets in a
fraction of the runtime; theoretical results were obtained
that show to what extent heuristic decision trees can be
considered optimal [14, 6, 23]. Still, the idea of exhaustively
finding optimal decision trees under certain constraints was
also studied [2, 19], but only for much smaller datasets and
smaller types of trees than studied in this paper. Recently [4]
presented a dynamic programming algorithm that is quite
similar to DL8 and its early ancestors. A new optimization
criterion was introduced for finding optimal dyadic decision
trees, which use a fixed mechanism for discretization of data.
This algorithm was only applied on smaller datasets than
our algorithm, and did not investigate the link with data
mining algorithms.

More recently, pruning strategies of decision trees have
been studied [10]. DL8 can be conceived as the general-
ization of these pruning strategies to a larger type of data
structure.

Related is also the work of Moore and Lee on the ADtree
data structure [18]. An ADtree can be seen as an index
that allows for a quick frequency computation. A key fea-
ture of an ADtree is that it does not store specializations
of itemsets that are relatively infrequent; for these itemsets,
subsets of the data itself are stored. In DL8 we need to store
all itemsets that fulfill the given constraints, and associated
information. This is not straightforwardly achieved using
ADtrees.

Algorithmically, the tree-relevancy constraint is closely
related to the condensed representation of δ-free itemsets [5].
Indeed, for δ = minsup×|D| and p(I) := (freq(I) ≥ minfreq),
it can be shown that if an itemset is δ-free, it is also tree-
relevant. DL8-Closed employs ideas that have also been
exploited in the formal concept analysis (FCA) community
and in closed itemset miners [25].

A popular topic in data mining is currently the selection
of itemsets from a large set of itemsets found by a frequent
itemset mining algorithm (see for instance, [33]). DL8 can
be seen as one such algorithm for selecting itemsets. It is
however the first algorithm that outputs a well-known type
of model, and provides accuracy guarantees for this model.

8. CONCLUSIONS
We presented DL8, an algorithm for finding decision trees

that maximize an optimization criterion under constraints,
and successfully applied this algorithm on a large number of
datasets.

We showed that there is a clear link between DL8 and
frequent itemset miners, which means that it is possible to
apply many of the optimizations that have been proposed
for itemset miners also when mining decision trees under
constraints. The investigation that we presented here is
only a starting point in this direction; it is an open ques-
tion how fast decision tree miners could become if they were
thoroughly integrated with algorithms such as LCM or FP-
Growth. Our investigations showed that high runtimes are
however not as much a problem as the amount of memory
required for storing huge amounts of itemsets. A challenging
question for future research is what kind of condensed repre-
sentations could be developed to represent the information
that is used by DL8 more compactly.

In experiments we compared the test set accuracies of
trees mined by DL8 and C4.5. Under the same frequency
thresholds, we found that the trees learned by DL8 are of-
ten significantly more accurate than trees learned by C4.5.
When we compare the best settings of both algorithms, J48
performs significantly better in 45% of the datasets. Effi-
ciency considerations prevented us from applying DL8 on
the thresholds where C4.5 performs best, but preliminary
results indicate that the best accuracies are not always ob-
tained for the lowest possible frequency thresholds.

Still, our conclusion that trees mined under declarative
constraints perform well both on training and test data,
means that constraint-based tree miners deserve further study.
Many open questions regarding the instability of decision
trees, the influence of size constraints, heuristics, pruning
strategies, and so on, may be answered by further studies
of the results of DL8. Future challenges include extensions
of DL8 to other types of data, constraints and optimization
criteria. DL8’s results could be compared to many other
types of decision tree learners [24, 27].

Given that DL8 can be seen as a relatively cheap type of
post-processing on a set of itemsets, DL8 suits itself per-
fectly for interactive data mining on stored sets of patterns.
This means that DL8 might be a key component of induc-
tive databases [13] that contain both patterns and data.
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