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Abstract

Given a database of graphs, structure mining algorithms search for all substructures
that satisfy constraints such as minimum frequency, minimum confidence, minimum
interest and maximum frequency. In order to make frequent sub-graph mining more
efficient, we propose to search with steps of increasing complexity. We present
the GrAph/Sequence/Tree extractiON (Gaston) tool that implements this idea by
searching first for frequent paths, then frequent free trees and finally cyclic graphs.
We give results on large molecular databases.
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1 Introduction

In recent years data mining of structures such as graphs, trees, molecules,
XML documents and relational databases has attracted a lot of research. Es-
pecially the idea of discovering all frequent substructures has recently led to
a large number of specialized algorithms for mining paths, trees and graphs.
Frequent substructures give interesting information about the database. This
information can be used in many different ways, for example for classifica-
tion. As an example, Figure 1 shows molecular fragments that are frequent
in an HIV inhibitor database, but not frequent in another database, thus pro-
viding features that distinguish between the two databases; the top leftmost
fragment, for example, is a major constituent of AZT, a nucleoside reverse
transcriptase inhibitor, and is used in many drugs for anti-HIV treatment.
Our tool computes these fragments completely automatically.

Experiments with molecular databases reveal that the largest numbers of
frequent substructures in such databases are actually free trees. Free trees are
much simpler structures than general, cyclic graphs, and efficient algorithms
for them exist. Therefore, we integrate a frequent path, tree and graph miner
into one tool called Gaston in order to gain efficiency. The main challenge in
the development of the Gaston tool is how to split up the discovery process
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Fig. 1.

into several phases. Ideally, the tool should behave like a specialized free tree
miner when faced with free tree databases, but should also be able to deal
with graph databases efficiently.

Further references, overview papers and the source code of our tool can be
obtained from our homepage for frequent structure mining http://hms.liacs.nl/.

2 Foundations

We will only briefly discuss the mathematical preliminaries: the definitions are
similar to those used in other papers concerning frequent structure mining, for
example [2,13,14,15]. A labeled graph G consists of a finite set of nodes V , a
set of edges E ⊆ V × V and a labeling function ` : V ∪ E → L that assigns
labels from L to all edges and nodes. We only consider undirected graphs,
i.e., (v1, v2) is the same edge as (v2, v1).

We assume that a database D consists of a collection of graphs. The
frequency of a graph G in D is defined by freq(G,D) = #{G′ ∈ D|G ⊆ G′},
the support of a graph is given by support(G,D) = freq(G,D)/|D|. The task
is to find all graphs for which support(G,D) ≥ minsup, for some predefined
threshold minsup that is specified by the user. An important property that
holds is that G1 ⊆ G2 implies that freq(G1,D) ≥ freq(G2,D). A consequence
of this property is that any (large) graph which contains a (smaller) graph
which is not frequent, cannot be frequent too. This Apriori property is the
basis on which many frequent structure mining algorithms have been built.
The process of removing graphs from the search space using this property is
called (frequency based) pruning.

If for two connected graphs G1 ⊂ G2 there is no G3 with G1 ⊂ G3 ⊂ G2,
we call G2 a refinement of G1. One can show that G2 is a refinement of G1

only if there is a G3 ≡ G2 with G3 obtained from G1 by one of the following
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Fig. 2. Refinement of graphs

two operations:

• node refinement: to G1 a new node is added, this node is connected to a
node of G1 by a new edge (sometimes also called a forward edge);

• cycle closing refinement: to G1 a new edge is added between nodes that
were already connected by a path (sometimes also called a backward edge).

Extending terminology from [2] to cyclic graphs, we call an operation to refine
a graph a leg. A node refining leg for a graph G = (V,E, `) consists of a node
in V , an edge label and a node label. Examples of node refining legs are l1,
l2, l3 and l4 in Figure 2. A cycle closing refining leg consists of two different
nodes in V and an edge label. An example is leg l5 in Figure 2. The refinement
operator ρ(G, l) refines a graph G by adding leg l. Edges between graphs in
Figure 2 correspond to refinement steps. Note that for legs l1 and l3 of graph
G, l3 is also a leg of ρ(G, l1) and l1 is a leg of ρ(G, l3). Indeed, the only legs
of ρ(G, l1) which are not legs of G are legs that connect to the node that is
introduced in ρ(G, l1) by l1. Furthermore note that two legs, l1 and l2, refine
graph G to isomorph graphs due to automorphisms in G. One can show that
for every graph an isomorphic graph can be constructed using a sequence of
node refinements followed by a sequence of closing refinements.

An overview of a depth-first graph mining algorithm is given in Figure 3.
To represent graphs codes are used. A graph code is a string that unambigu-
ously defines a series of refinement steps that lead to a certain graph. The
k-prefix of a graph code is the code which contains only the first k refinement
steps defined by the code. Different codes have been proposed, among which
DFS codes (in gSpan [15]), adjacency matrices (in FFSM [6]) and tree codes
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DFGraphMiner (A graph code C, a leg l, a set of legs L)

(1) C ′:= ρ(C, l)

(2) if C ′ is not canonical then return

(3) output graph C ′

(4) L′ := {l′|l′ is a necessary leg of C ′, support(ρ(C ′, l′), D) ≥ minsup,
l′ ∈ L, or l′ connects to the node introduced by l,

if l is a node refinement }
(5) for all l′ ∈ L′ do DFGraphMiner ( C ′, l′, L′)

Fig. 3. Depth-first graph mining algorithm

with backtrack symbols (in FreeTreeMiner [2] and TreeMiner [16]). In order
to make sure that no two isomorphic graphs are emitted by the algorithm, in
line (2) it is determined whether the current code C ′, which corresponds to
a graph G, is the lowest (or highest) code among all possible codes for graph
G; thus the graph mining algorithm only outputs graphs in a canonical code.
If its code is not canonical, a graph is not further refined. To guarantee that
the search can still potentially consider all possible graphs, the graph codes
used in graph miners should therefore have the property that every k-prefix
of a canonical code is also canonical.

To limit the number of legs that an algorithm has to consider, most depth
first miners constantly maintain a set of feasible legs. Exploiting the principle
of frequency based pruning, once a leg is found to be infrequent, this leg should
not be considered as a leg in any refined graph. Therefore, in line (4) only
legs are considered which were legs of the previous graph, or which connect to
the node that was last added to the graph. In order to obtain all possible legs
that can be added to a new node, it is necessary to pass the graph C ′ through
the database and to compute all its occurrences. For each occurrence the legs
of the new node should be determined.

A condition which is not needed for the correctness of the algorithm, but
which is of vital importance for its performance, is the first condition of line
(4), which states that only necessary legs should be evaluated and added to
L′. A leg is necessary if among all descendants of the current graph code
C ′, there is at least one canonical graph code which can only be obtained by
applying the refinement defined by that leg. Ideally this condition would be
computable in constant time and the code ρ(C ′, l) obtained by applying each
necessary leg l immediately is also canonical: in that case one could remove
the test in line (2) and the support of every graph would be computed exactly
once.

By dividing the search into three phases, we avoid the check of line (2) in
many cases. More precisely, we model free trees such that one can determine
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Fig. 4. An unordered rooted tree, with some of its depth sequences and legs

the necessary legs in constant time. Moreover, all these legs are canonical
refinements.

3 Enumeration

In order of increasing complexity we will introduce the canonical strings that
we use for each class of structures.

Paths The main problem of path enumeration is that a path can have two
orientations, for example: axaxb and bxaxa. For each of these orientations,
one can obtain a path code which consists of a sequence of node and edge
labels. Each path has two potential predecessors which can be obtained by
removing one of the endpoints; we say that the lexicographically lowest string
among these 2 codes, when starting from the outermost endpoint, is the pre-
decessor of the code. Given a path, we will see that each leg is a necessary leg
for the free tree mining phase. No pre-pruning of legs in line (4) is therefore
possible; some paths will thus be evaluated twice. In line (2) a path is consid-
ered to be canonical if it grows from its predecessor code. If this predecessor
is symmetric, and a similar leg can therefore be added to both endpoints and
there is no structural reason to prefer one endpoint above the other, only the
leg is canonical which connects to the node that was added last.

Free trees The free tree code that we define here is based on a code for
rooted trees that was independently proposed by [1] and [12], and has strong
similarities with a method proposed in [10] for unlabeled free trees. Every
rooted tree can be encoded with a depth sequence, of which examples are
given in Figure 4. A depth sequence for a tree is obtained by performing a
preorder depth first walk; each time that a node is visited for the first time,
first its depth is emitted, then the label of the edge going into that node and
finally the label of that node; we call this combination a depth sequence tuple.
Clearly, the depth sequence depends on the order in which the children of a
node in a tree are visited. For an unordered, rooted tree, the canonical depth
sequence is defined as the depth sequence that is the lexicographically highest
sequence among all possible depth sequences for that tree.

As refinements for an unordered rooted tree it suffices to only consider
legs that connect to the rightmost path of the tree, as illustrated in Figure 4.
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Whether a leg may be connected to the rightmost path can be determined in
constant time using the next prefix node and the left sibling of the new node.
For every leg of the rightmost path there is a corresponding depth tuple that
would be appended after the depth sequence. This new tuple may not be
higher than the tuple of the next prefix node, which is defined by considering
the largest suffix of the depth sequence that is a prefix of a corresponding left
sibling subtree. Furthermore the new node may not have a higher label than
its left sibling. One can show that by only considering legs that immediately
yield a canonical depth sequence, no legs are discarded that are needed as
refinement later. For example, if a leg is added after several other refinement
steps, its node label must still be lower than or equal to that of its left sibling.
One can therefore characterize necessary legs efficiently.

To employ these principles in free tree enumeration, we use the following
setup. First, for each free tree we define one path predecessor, as follows.
A well-known property of free trees is that one can point out a (bi)-centre;
if any longest path in the tree has odd length, the free tree has a bicentre
consisting of the two middle nodes on this path; otherwise the tree has a
centre (see Figure 5). A centred tree can be conceived as a single rooted tree,
a bicentred tree can be seen as two separate rooted trees of which the roots
are interconnected. Now consider all oriented paths of maximal length that
start in the root of (each) tree. From each of these maximal paths a code
can be obtained consisting of the labels on the nodes and edges. In centred
trees, those two path codes which are lexicographically the highest and occur
in paths that only have the root in common, are called the backbone strings
of the free tree. In bicentred trees, the lexicographically highest path codes
in each of the two rooted trees are defined to be the backbone strings of that
rooted tree. By concatenating the reverse of one backbone string with the
other backbone string, a single path is obtained which we call the backbone of
the free tree. We arrange our procedure such that this path is the predecessor
of the free tree.

To refine a given path we use the following idea. First, the path is split into
two parts by removing the edge between the middle two nodes (in case of odd
length paths) or by removing the single middle node (in even length paths).
Each of the resulting paths is a rooted tree. Using the principle of depth
sequences, rooted trees are grown for each of these initial rooted trees; by
finally combining the rooted trees again, a free tree is obtained. To guarantee
that a free tree grows only from its backbone path, no refinement of each
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rooted tree is allowed which would result in a different backbone in the final
free tree.

Cyclic graphs To strictly divide the frequent graph discovery process into
phases, we only consider the cycle closing refinements in the very last phase.
All cycle closing refinements connect two existing nodes in a tree; within our
setup, during the first two phases constantly the set of all frequent closings is
maintained. Once such a closing is applied, the tree becomes a cyclic graph.
We define a code for cyclic graphs by concatenating two separate codes. The
first code consists of the depth-sequence corresponding to a free tree. This free
tree is a spanning tree of the graph. Each tuple in the sequence introduces
a new node in the free tree; the nodes of the tree can be numbered by their
occurrence order in this sequence. The second part of the code consists of a
sequence of tuples of the form (vi, vj, `); each such tuple defines two nodes
vi < vj that are connected with an edge.

The necessary legs for cyclic graphs are now obtained as follows. First, all
node refining legs are discarded, to make sure that cyclic graphs only grow
from spanning trees. Then, all tuples which sort lower than the closing leg
last added, are discarded. The canonical code for a cyclic graph is given by
the concatenated code that sorts the lowest among all possible codes for that
graph.

4 Graph Counting

In the Gaston tool we can use two alternatives for graph counting:

Embedding lists (EL) For graphs with a single node we store an embedding
list of all occurrences of its label in the database. For other graphs a list is
stored of embedding tuples that consist of (1) an index of an embedding tuple
in the embedding list of the predecessor graph and (2) the identifier of a graph
in the database and a node in that graph. If a structure is obtained by a cycle
closing refinement, the embedding list consists solely of pointers to embed-
ding tuples of its parent structure. The complete embedding information for
a structure can be obtained by scanning its embedding list, and by following
the predecessor pointers. The frequency of a structure is determined from the
number of different graphs in its embedding list. An example is provided in
Figure 4. For each leg of a graph an embedding list is constructed. Graph G
in the example has two legs with corresponding graphs and embedding lists.
When a graph is canonically refined, embedding lists for the legs of the new
graph are computed as much as possible using a list join operation that joins
embedding lists of two earlier legs. New embedding lists are constructed for
legs that were not present in the predecessor graph. Clearly, this approach
requires a lot of main memory: not only for the current graph embedding lists
for all legs have to be stored, but due to the backtracking procedure, embed-
ding lists for legs of predecessor structures must also be stored. Embedding
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Fig. 6. Maintenance of embedding lists

Name Contents

L10 100,000 artificial trees [16]

CAN2DA99 32,557 molecules [11]

AID2DA99 42,689 molecules [11]

NCI 250,251 molecules [11]

Fig. 7. Summary of data sets

lists are quick, but they do not scale very well to large databases.

Recomputed embeddings (RE) Our other approach is based on maintain-
ing a set of “active” graphs in which occurrences are repeatedly recomputed.
As subgraph isomorphism is NP complete [4], essentially a backtracking pro-
cedure is required. We found that several techniques can increase the per-
formance. For each graph we first compute a strategy comparable to a query
evaluation plan. In general a breadth-first walk of a graph turns out to perform
better than a depth-first walk. Furthermore, with each node in the database,
we reserve space in which the graph miner can store hints. One such hint is
whether a node is part of some occurrence of a predecessor structure.

5 Experiments

An overview of results of experiments with our tool can be found in Figure 8
and a description of the data sets in Figure 7. Unless noted otherwise, all ex-
periments were performed on an Athlon XP1600+ with 512MB main memory,
running Mandrake Linux 10; the algorithm was implemented in C++ using the
STL and compiled with the –O3 compilation flag. We compare our tool with
a broad range of other mining tools: the graph miners gSpan, FSG and the
FTM free tree miner of Chi [2]. All miners were obtained from their origi-
nal authors. For the free tree mining experiments we have used a modified
version of a data set generator that generates data sets mimicking webserver
access logs as described in [16]. Set L10 is obtained by sampling 100k trees
of maximal depth 10 from a master tree of 10k nodes with 3 node labels and
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Fig. 8. Results of our experiments

fan-out 20. Our other experiments regard large molecular databases. We
transform these data sets into graphs using the procedure given in [15]. These
data sets were obtained from the National Cancer Institute [11]. To test the
scale-up properties of our tool, we have run it on the database of all 250,251
compounds in the NCI’99 release. Here, we subdivided some atom types into
classes according to their position in the molecule to obtain labels. To run the
algorithm based on embedding lists, we used a Sun Enterprise Server with 4
processors of 400Mhz and 4GB main memory; Gaston (EL) required 1.7GB
memory, Gaston (RE) 150MB.

To exploit the activity information that is available for compounds in the
CAN2DA99 and AID2DA99 data sets, in [5,13,14] it was proposed to use ver-
sion spaces. The idea is to only output molecular fragments that are frequent
in the active part of a dataset, and to discard fragments which are also fre-
quent in the inactive part. Using the assumption that the entire NCI database
is representative for a broad range of molecules, we are interested in discover-
ing frequent fragments of active compounds that have a significantly different
support in the total NCI database. We performed this experiment for known
active compounds of AID2DA99. Results are summarized in Figure 9.

6 Conclusions

The Gaston tool finds all frequent substructures in tree and graph databases.
It is an interesting tool with very competitive running times, especially for
large molecular databases. Behind the tool is an innovative algorithm, which
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Minimum Support Run time Frequent graphs with

> 10% difference in support

15% 246.67s 3,637

10% 295.77s 12,283

5% 596.21s 12,751

Fig. 9. Differences between AID2DA99-active and compounds in NCI’99

finds the frequent substructures in a number of phases of increasing complex-
ity. Future work on the tool includes the intelligent pruning of the results.
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