
Efficient Discovery of Frequent Unordered Trees

Siegfried Nijssen and Joost N. Kok

Leiden Institute of Advanced Computer Science,
Niels Bohrweg 1, 2333 CA, Leiden, The Netherlands

snijssen@liacs.nl

Abstract. Recently, an algorithm called Freqt was introduced which
enumerates all frequent induced subtrees in an ordered data tree. We
propose a new algorithm for mining unordered frequent induced sub-
trees. We show that the complexity of enumerating unordered trees is
not higher than the complexity of enumerating ordered trees; a strategy
for determining the frequency of unordered trees is introduced.

1 Introduction

Recently, several exploratory data mining algorithms for structural databases
have been proposed which search for frequent structures in such databases. These
frequent pattern mining algorithms use the same principles as Apriori [2], the
well-known frequent item set mining algorithm. A structure may be a sequence,
a tree or a graph. In this paper, we focus on frequent tree mining. In general,
the frequent tree discovery task is the task of discovering all trees — referred
to as the pattern trees — that occur frequently in some large tree called a data
tree. Within this general setup, there are several blanks to be filled in:

– What kind of trees are considered? Is the given database an ordered tree, a
node labeled tree or an edge labeled tree?

– What kind of occurrence relation is used? Does a pattern tree occur in a
data tree when the pattern tree is an induced subtree (which means that
parental relations between vertices in the data tree must be the same as in
the pattern tree) or when it is an embedded subtree (where a parent in a
pattern tree may be an ancestor in the data tree)?

– How are tree occurrences counted? Is each occurrence in the data tree counted,
or is the data tree partitioned into several separate trees, and is only the oc-
currence of a tree in a sufficient number of partitions interesting?

Previous publications have dealt with several of these possibilities:

– Wang and Liu [5] developed an algorithm for discovering both ordered and
unordered induced edge-labeled subtrees. A pattern tree is frequent when its
root can be mapped to the root of a sufficient number of partitions in the
data tree. To determine the inclusion relation, for each pair of pattern and
partition, an O(nm1.5) algorithm is used, where n is the size of the pattern
tree and m is the size of the partition. The algorithm features a strategy
for enumerating unordered trees which requires some redundant trees to be
generated.

2

– Asai et al. [1] developed an algorithm called Freqt for discovering induced
subtrees in a node labeled, ordered data tree. The algorithm counts each
occurrence in a data tree, but can easily also be used for partition counting.
It uses an efficient scheme for generating and counting ordered trees.

– Zaki [6] developed an algorithm for discovering embedded subtrees in a node
labeled, ordered data tree. The algorithm counts occurrences in partitions,
but can easily also be used to count occurrences separately. It enumerates
trees in a similar way as Freqt, but uses a different evaluation technique
based on scope lists.

The algorithms of Asai et al. [1] and Zaki [6] share their efficient enumeration
technique for ordered trees; both algorithms define their own evaluation tech-
nique for such trees. As also indicated by Wang et al. [5], in some structured
databases a child order is of minor importance or even unavailable; for such
databases, it is more interesting to search for patterns that do not take the or-
der into account. In this paper, we will propose an algorithm for discovering
unordered frequent induced subtrees.

In section 2 we will extend the enumeration technique of [1] and [6] to ef-
ficiently enumerate unordered trees. We will define one ordered tree to be the
normal form of the unordered trees. As a consequence of the absence of order,
a new evaluation technique is required to compute the frequency of trees. In
section 3 we will therefore define a new bottom-up algorithm for this task. This
algorithm promises to be more efficient than the approach of [5] as it reuses the
matchings of previous trees to compute the frequency of new trees.

2 Unordered Tree Enumeration

For an efficient algorithm, it is of major importance that all possible pattern trees
are enumerated efficiently. An efficient enumeration technique is a technique that
enumerates each unordered tree exactly once. We will first show why techniques
from [1] and [6] cannot straightforwardly be applied to unordered trees.

The algorithms of [1] and [6] use rightmost path expansions. Starting with
pattern trees with only one node, nodes are added only to the rightmost path to
generate new pattern trees. The technique is illustrated in Fig. 1. As can be seen
in this figure, several ordered pattern trees may be constructed by this technique
which represent the same unordered pattern trees. Ordered trees which represent
the same unordered pattern trees are considered to be equivalent. In an efficient
enumeration technique, no two equivalent pattern trees are constructed. We will
propose an efficient technique here; the technique is novel to the best of our
knowledge.

In our technique, we define one of the equivalent ordered trees to be the
normal form of the corresponding unordered tree. We first introduce some no-
tation. Given a node v in an ordered tree T , firstchild(v) denotes the first child
of v, lastchild(v) is the last child, nextsibling(v) is the next node in the ordered
child list of v’s parent and prevsibling(v) is the previous node in that list. With
subtree(v) we denote the subtree in T of which v is the root.

3

A

B

A

A

B

A

B

B

A

A

A

A

A

B

A

A A

A

B

A

A

B

B

A

B B

A

A

B

B

A

B

AA

B

A

B

B

B

B

B

BB

B

A B

A

A

A

A

A

A

A

B

A

A

A

A

A

A

A B

A

A

A

B

A

A A

B

A

A A A

A

A A B

A

A

A

A

A

A A

A

A

A B

A

B A BA

B

AB

B

6
*T T

T

T

*
5T T7

*
8
**T4

T*
1 2

*

3
*

Tree T∗i String l(T∗i)
T∗1 (0, A)(1, A)(2, A)(1, A)
T∗2 (0, A)(1, A)(1, A)(2, A)
T∗3 (0, A)(1, A)(1, A)(1, A)
T∗4 (0, A)(1, A)(1, A)
T∗5 (0, A)(1, A)(1, B)
T∗6 (0, A)(1, B)(1, A)
T∗7 (0, B)(1, A)(1, B)
T∗8 (0, B)(1, B)(1, A)

Fig. 1. Enumeration of pattern trees in the alphabet {A,B} using rightmost path
expansions. Only a selected number of trees is expanded after 2 steps. Dotted lines
indicate an expansion. By conceiving pattern trees as nodes and expansions as edges,
an enumeration tree [1] is obtained which relates pattern trees to each other. Pattern
trees T ∗1 and T ∗2 , trees T ∗5 and T ∗6 and trees T ∗7 and T ∗8 are equivalent. Of a selected
number of trees, the pre-order label is given.

Given an ordered tree T , we define the following pre-order string l(T) for this
tree: in a depth-first tree traversal, add a tuple label l(v) =(depth(v),label(v))
for each node v to an initially empty string when this node v is visited for the
first time. Some examples of this pre-order notation are also given in Fig. 1.

Note that each of these strings corresponds to exactly one tree. In a string,
the order of the tuples exactly matches the order of rightmost path expansions;
a pre-order string of a tree can therefore also be read as a series of subsequent
tree expansions that leads to this tree.

A tree T1 is called a prefix of a tree T2 if l(T1) is a prefix of l(T2). Tree T1 is
an immediate prefix of T2 if T1 is a prefix of T2 and |T1| + 1 = |T2|. A suffix is
defined analogously.

Given an order on the labels, we define the following order on tuples: (d1, l1) <
(d2, l2) iff d1 > d2 (this may sound counterintuitive, but will become clear later)
or l1 < l2 if d1 = d2. Other (in)equalities are derived from this order.

Given two trees T1 and T2, we define that l(T1) < l(T2) iff:

– either, T2 is a prefix of T1,
– or, at the leftmost position i at which l(T1) and l(T2) differ, (d1, l1) < (d2, l2)

for the tuples (d1, l1) ∈ T1 and (d2, l2) ∈ T2 occurring at that position.

In the example, l(T ∗1) < l(T ∗2) < l(T ∗3) < l(T ∗4) < l(T ∗5) < l(T ∗6) < l(T ∗7) < l(T ∗8).
The enumeration tree of Fig. 1 was obtained by expanding the rightmost path
bottom-up; the order of the pattern trees is obtained by performing a post-order
walk in the enumeration tree.

4

BA

v4

v3

v12

v2

B

A
v1

B

v13 v15

A AA
v5 v7 v10

A
v6

B
v8

B
v9

B
v11

AA

A
v14

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

(0, A) (1, A) (1, B) (2, B) (3, A) (4, A) (3, A) (4, B) (4, B) (3, A) (4, B) (2, B) (3, A) (4, A) (3, A)

Fig. 2. A tree in ordered normal form and its pre-order string. The nodes are numbered
in the order of expansion.

We define that a tree T1 is in (ordered) normal form if no equivalent tree T2

exists with l(T2) < l(T1).
We will now illustrate some observations with respect to this normal form.

Lemma 1. Given an ordered tree T , T is in normal form if and only if for each
node v ∈ T , l(subtree(v)) ≤ l(subtree(v′)), for each next sibling v′ of v.

Proof. Omitted here; see [3]. ut

We will illustrate this lemma on the example of Fig. 2. Under the assumption
that this tree is in normal form, we consider two node order changes: an exchange
of nodes v5 and v7 (exchange 1) and an exchange of nodes v7 and v10 (exchange
2). In the pre-order string, these exchanges correspond to exchanges of subtrings:

(0, A)(1, A)(1, B)(2, B)|(3, A)(4, A)|(3, A)(4, B)(4, B)|(3, A)(4, B)(2, B)(3, A)(4, A)(3, A)
⇒ Exchange 1 ⇒

(0, A)(1, A)(1, B)(2, B)|(3, A)(4, B)(4, B)|(3, A)(4, A)|(3, A)(4, B)(2, B)(3, A)(4, A)(3, A)

(0, A)(1, A)(1, B)(2, B)(3, A)(4, A)|(3, A)(4, B)(4, B)|(3, A)(4, B)|(2, B)(3, A)(4, A)(3, A)
⇒ Exchange 2 ⇒

(0, A)(1, A)(1, B)(2, B)(3, A)(4, A)|(3, A)(4, B)|(3, A)(4, B)(4, B)|(2, B)(3, A)(4, A)(3, A)

As the tree was in normal form, both exchanges should yield an equivalent tree
with a higher pre-order string. Indeed, in case of exchange 1, (4, B) > (4, A) due
to l(subtree(v7)) = (3, A)(4, B)(4, B) > (3, A)(4, A) = l(subtree(v5)); in case of
exchange 2, (3, A) > (4, B) as l(subtree(v10)) is a prefix of l(subtree(v7)).

Lemma 2. Let T be a pattern tree in normal form. Then every prefix of T is
also in normal form.

Proof. This follows from the previous lemma. ut

5

According to this lemma it is sufficient to only generate rightmost path expan-
sions that immediately yield trees in normal form; even then one still enumerates
a normal form for each possible tree: the enumeration is complete. We will now
consider such expansion techniques in more detail. How can valid expansions be
characterized?

By a rightmost path expansion only subtrees of some nodes on the rightmost
path are modified. Only for these subtrees one has to check again that they are
higher than their previous sibling subtree. In the example of Fig. 2, expansions
which lead to a tree in normal form, are:

– (4, l), with l ≥ l(v8) = B. If l < B: subtree(v12) < subtree(v4), which is not
allowed; if l = B: subtree(v12) is still a prefix of subtree(v4), and therefore
higher. If l > B: subtree(v12) > subtree(v4). From subtree(v7) > subtree(v5)
follows that subtree(v15) > subtree(v13) if l ≥ B. Finally, before expansion,
already subtree(v3) > subtree(v2), while subtree(v3) was not a prefix. This
shows that all subtrees are still higher than their previous sibling;

– (3, l), with l ≥ l(v15) = A; obviously, in this case the new node is higher than
or equal to subtree(v15), and subtree(v3) > subtree(v2). Also subtree(v12) >
subtree(v4), as the new node in subtree(v12) is at a higher level in the tree
than the ‘next’ node v8 in subtree(v4);

– (2, l) with l ≥ l(v12) = B: the new node is higher than the previous sibling
subtree(v12); subtree(v3) was already higher than subtree(v1);

– (1, l) with l ≥ l(v3) = B: the new node is higher than its previous sibling.

The example shows the importance of knowing the largest suffix subtree (subtree(v12))
which is a prefix of its previous sibling subtree (subtree(v4)). This previous sib-
ling restricts the level and the label of new nodes. One can show the following:

Lemma 3. Given a tree T in normal form, the lowest prefix node v is the node
on the rightmost path for which the size of subtree(v) is maximized and subtree(v)
is a prefix of subtree(prevsibling(v)). A tree may not have a lowest prefix node,
in which case the lowest prefix node is undefined. The next prefix node (d′, l′) is
the node in l(subtree(prevsibling(v))) immediately after l(subtree(v)), if a lowest
prefix node v is defined. An expansion (d, l) yields a tree in normal form iff:
(d, l) ≥ p(d) and (d, l) ≥ (d′, l′) (if the lowest prefix node is defined). Here p(d)
is the label of the node at depth d on the rightmost path of T .

Proof. Omitted here; see [3]. ut

Furthermore, one can also show the following:

Lemma 4. Given is a tree T in normal form which is normally expanded with
a node (d, l). Then the location of the lowest prefix node either:

– does not change if (d, l) equals the next prefix node (d′, l′) (when defined);
– or, otherwise, becomes (d, l) if l equals the label of p(d);
– or, otherwise, becomes undefined.

Proof. Omitted here; see [3]. ut

6

Algorithm Enumerate
Input: a tree T in normal form, its representation as a string l(T), and an
index t which is either undefined or points to a position in l(T).
Output: a print of each tree that can be obtained by expanding this tree to
a new tree in normal form.

1. print(T)
2. if t is defined then
3. Increase t
4. Let (d, l) be the tuple at position t in l(T).
5. Enumerate (T expanded with (d, l), l(T) · (d, l), t).
6. for each rightmost expansion (d′, l′) > (d, l), l′ ≥ l(p(d′)) do
7. if l′ = l(p(d′)) then
8. Enumerate (T expanded with (d′, l′), l(T) · (d′, l′), position of p(d′) in l(T));
9. else

10. Enumerate (T expanded with (d′, l′), l(T) · (d′, l′), undefined);
11. Decrease t
12. else
13. for each rightmost expansion (d′, l′), l′ ≥ l(p(d′)) do
14. if l′ = l(p(d′)) then
15. Enumerate (T expanded with (d′, l′), l(T) · (d′, l′), position of p(d′) in l(T));
16. else
17. Enumerate (T expanded with (d′, l′), l(T) · (d′, l′), undefined);

Fig. 3. An algorithm for enumerating all trees in normal form.

If the example tree is expanded with (4, B), v12 remains the lowest prefix node.
If the example tree is expanded with (4, C), the tree no longer has a lowest prefix
node.

All these observations can be used to construct an efficient enumeration al-
gorithm, as given in Fig. 3. With l(T) · (d, l) we denote the concatenation of
l(T) and (d, l). Index t points to the next prefix node. By increasing t in line
3., we either obtain the next prefix node (which should be added to the tree to
maintain the prefix), or we walk out of the lowest prefix node’s sibling subtree.
In this latter case, the complete previous tree was copied, and we may continue
copying the next tree. In lines 8., 10., 15. and 17., we redefine the value of t as
indicated by our observations.

Theorem 1. Given an alphabet of symbols, Algorithm Enumerate enumerates
exactly one ordered normal form for each unordered node-labeled tree that can be
constructed using this alphabet.

Proof. This follows from the lemmas. ut

The overhead of this procedure is small. A datastructure is needed which
efficiently stores the pre-order string and allows for a quick lookup of the right-
most path in the tree that is represented by the pre-order string. The additional
constraints on rightmost path expansions can be checked in constant time. This
shows that the problem of enumerating unordered trees is not much more com-
plex than the problem of enumerating ordered trees.

7

v w

Mapping between children

w’

v w

v’ D
ata T

ree
Pa

tte
rn

 T
re

e

G(v,w)

children of children of

Fig. 4. To make sure children are mapped injectively, a bipartite matching problem
has to be solved between the sets of children. If G(v, w) is solvable, we store pointers
between the mapping (v, w) and the mappings between the children of v and w.

3 Tree counting

In the previous section we introduced an algorithm which enumerates all un-
ordered pattern trees. In practice, this is impossible as the number of unordered
trees is infinite given an alphabet of labels. A frequency criterion is used to stop
further expansion of a tree. If a tree occurs less frequently than a certain prede-
fined threshold in a large data tree, it is not expanded further, as every tree that
could be constructed subsequently can only be less frequent. As the overhead of
the enumeration technique is minimal, the performance of the algorithm largely
depends on the speed with which the (in)frequency of a tree is determined.

We will first define the frequency of a pattern tree T . A node v in a pattern
tree T can be mapped to a node w in a data tree iff v has the same label as w
and there is an injective mapping from the children of v to the children of w.
The frequency of a tree T is the number of nodes in the data tree to which the
root of T can be mapped. Other frequency criteria built on partitioning can be
determined in similar ways.

An easy — but not very efficient way — of determining the frequency is to
determine for each pattern tree anew how many times it can be mapped to a
data tree. An O(nm1.5) algorithm (with n the number of nodes in the pattern
tree and m the number of nodes in the data tree) exists for this task, as given
in [4]. We take this algorithm as starting point for our counting strategy.

The first step of our algorithm is to determine for each label all locations
in the database at which this label occurs. Those labels which fail to meet the
predefined frequency criterion, are removed from further consideration.

An important task of the tree mapping algorithm is to determine that there
is an injective mapping from ‘pattern children’ to ‘database children’. Assume
that a node v in a pattern tree and a node w with the same label in a data tree
are given, and that each child of v can be mapped to one or more children of
w, then the algorithm still has to make sure that an injective mapping can be
obtained. The situation is clarified in Fig. 4. The mappings between children of
v and children of w constitute a bipartite graph; to determine whether there is
an injective mapping is a problem known as the maximum bipartite matching
problem. The most efficient algorithm for this task has complexity O(|E|

√
|V |),

where E is the set of edges in the bipartite graph and V is the set of vertices.

8

Algorithm Update
Input: a tree T in normal form, its associated mappings, and an expansion (d, l).
Output: an expanded tree T in which the mappings have been updated.

1. Let v be the node at depth d− 1 on the rightmost path of the pattern tree.
2. Add a node v′ at depth d with label l
3. for all m ∈ Map(v) do
4. Let w be the node in the data tree to which m maps
5. k1, k2 := number of children of w (respectively v) with label l
6. if k1 − k2 ≥ 0 then
7. for all children w′ of w with label l do
8. Add to Map(v′) a mapping from v′ to w′

9. else Remove Mappings(m)

Procedure Remove Mappings
Input: a mapping m from a node v in T to a node w in a data tree
Output: a tree in which m is removed and the mappings of all nodes which are

a child of the rightmost path are updated accordingly.

10. Let m′ be parent(m), if v is not the root
11. Remove Mappings Below(m)
12. if v is not the root of T then
13. Let G be the (new) bipartite graph matching problem associated with m′

14. if G has no bipartite matching then Remove Mappings(m′)

Procedure Remove Mappings Below
Input: a mapping m from a node v in T to a node w in a data tree
Output: a tree in which m is removed and the mappings of all nodes which are

below v and are child of the rightmost path are updated accordingly.

15. for all children v′ of v not on the rightmost path of T do
16. for all m′ ∈ Map(v′, m) do Remove m′ from Map(v′)
17. Let v′ be the child of v on the rightmost path of T
18. for all m′ ∈ Map(v′, m) do Remove Mappings Below (m′)
19. Remove m from Map(v)

Fig. 5. An algorithm for updating the datastructure that is associated to a pattern
tree T .

With G(v, w) we denote the bipartite graph that is involved in the determination
of the injective child mapping of v to w. This graph contains all children of v
and w, as well as all the mappings between these children. A node v can be
mapped to a node w in the data tree iff there is an associated G(v, w) for which
a bipartite matching can be computed that maps each child of v to a different
child of w.

The datastructure that is used by our counting algorithm has the following
invariant property. Given a pattern tree, with each node v ′ that is a child of a
node v on the rightmost path, we store exactly those mappings that are included
in some solvable bipartite graph G(v, w) that belongs to a mapping stored in the
parent v; furthermore, we maintain pointers between each mapping of v ′ and the
mapping in the parent to which this mapping is associated. For the root node
we store all possible mappings to the data tree.

9

A

B B

A

A

BB

A

A

BB

A

B

AA

A

B B

A

BB

A

A

BB

A

B

A

Av1

v4v2

v3 4w

3w 5w

6w

2w

w1

8w

9w

7w

10w

v5

v4

v1

v2

v3

w1

2w

3w 5w

4w 6w 9w

8w 10w

7w

Fig. 6. Example of tree mappings, before and after expansion with v5 = (2, A).

The algorithm in Fig. 5 describes how the invariant is maintained when a
tree T is expanded with a node (d, l). From the set of mappings of the parent,
after this update, we can determine the frequency of the expanded tree.

In this algorithm, we use the following notation. With parent(v ′) we denote
the parent of a node v′ in a tree; Map(v) denotes all mappings stored for a given
node v in the pattern tree. Given a node v′ and a mapping m ∈Map(parent(v′)),
with Map(v′,m) we denote those mappings in Map(v′) which have a pointer to
mapping m. If m is a mapping from v′ to w′, with parent(m) we denote the
mapping from the parent of v′ to the parent of w′.

We will briefly discuss some elements of the algorithm and illustrate these
using the example of Fig. 6. In line 5.-6. we use the observation that a new
node v′ (in the example, v5) can be mapped to every node which has the same
label l (in the example, w4, w6 and w9). In general, given a mapping (v → w) ∈
Map(parent(v′)), the siblings of the new node could be mapped injectively to the
children of w in the old situation. If the number of children of w with label l is
larger than the number of children of v with label l, the added node can always be
mapped to one of those additional nodes to solve the bipartite matching G(v, w).
If the number of children in the data tree is insufficient, such as in the example
for v4 → w10, the bipartite matching problem G(v, w) can no longer be solved
and the mapping associated to that matching problem must be removed. This
mapping is in its turn part of some other matching problem of its parent node
(in the example, G(v1, w7)). The parent’s bipartite matching may no longer be
solvable either. Therefore, it is necessary to recursively check that the matching
problem for that ancestor node can still be solved (line 9.).

If some bipartite matching problem can no longer be solved, the correspond-
ing mapping is removed. This mapping may have pointers to some mappings
in the children (v1 → w7 has pointers to v2 → w8, v4 → w8 and v4 → w10);
according to the definition of the invariant, these child mappings should also be
removed, which is done by the Remove Mapping Below procedure.

The advantage of the invariant is that the number of (active) child mappings
is kept very small. Still all those mappings are updated which are later required
to determine the frequency of expanded trees. For this reason the procedure is
also restricted to the rightmost path; the bipartite matching of other subtrees is
not required to recompute all matchings after rightmost path expansion.

We propose to compute the frequent trees by traversing the enumeration tree
in a depth-first fashion. The disadvantage of such a strategy is that it is diffi-
cult to apply some pruning strategies that are frequently used in Apriori-like

10

algorithms. The advantage is that the memory demand is much smaller; it is
sufficient to store the mappings of the current tree only, together with informa-
tion for undoing the removal of mappings when the enumeration backtracks over
an expansion. For the latter purpose, with every expansion, we store a list of
all the mappings that have been removed by that expansion. As every mapping
can only be removed once, one can easily see that once a mapping is added to
the pattern tree in line 8., information about this mapping is not removed from
memory before the enumeration backtracks over the expansion to which this
mapping belongs. The memory requirement of the algorithm is therefore still
quite large: if n is the number of nodes in the largest frequent pattern tree, and
m is the length of longest mapping list, the memory demand is of order O(nm).
In practice, of course, the memory footprint is much lower as large trees are not
very frequent in most databases.

4 Conclusions and future research

In this paper we introduced an algorithm for mining frequent unordered induced
subtrees. It extends the enumeration technique that was introduced in [1] and [6]
for ordered subtrees. We showed that the enumeration of unordered subtrees is
not much more difficult than the enumeration of ordered trees. The evaluation
of unordered trees turns out to be more complex, from space as well as time
complexity point of view. We propose to reduce the memory demand by a depth-
first enumeration strategy, but this turns some pruning strategies difficult.

We envision many directions for future research. First of all, the validity of
our approach should be verified experimentally. One can imagine several small
optimizations to our algorithm which have not been discussed here; for example,
one could also compute all solutions to a bipartite matching problem in stead
of only computing one. Furthermore, we are also interested in ways to efficiently
combine unordered trees with ordered trees to obtain a similar algorithm as the
algorithm of Wang and Liu [5]; we are also interested in an algorithm for mining
frequent unordered embedded subtrees.

References
1. Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., Arikawa, S.: Efficient

Substructure Discovery from Large Semi-structured Data. In: Proceedings of the
2nd Annual SIAM Symposium on Data Mining. (2002).

2. Agrawal, R., Manilla, H., Srikant, R., Toivonen, H., Verkamo, A.: Fast Discovery of
Association Rules. In: U.M. Fayyad et al. (eds). Advances in Knowledge Discovery
and Datamining. AAAI/MIT Press. (1996).

3. Nijssen, S., Kok, J.N.: Efficient Discovery of Frequent Unordered Trees: Proofs.
Technical Report 2003-01, Leiden Institute of Advanced Computer Science. (2003).

4. Reyner, S.W.: An analysis of a good algorithm for the subtree problem. SIAM
Journal of Computing, Vol. 6, No. 4. (1977).

5. Wang, K., Liu, H.: Discovering Structural Association of Semistructured Data.
(1999).

6. Zaki, J.: Efficiently Mining Frequent Trees in a Forest. In: Proceedings of the
SIGKDD’02, Edmonton, Canada (2002).

