User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Two-dimensional quantum transport in highly conductive carbon nanotube fibers

  1. Abrahams E., Anderson P. W., Licciardello D. C., Ramakrishnan T. V., Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions, 10.1103/physrevlett.42.673
  2. Altshuler B.L., Aronov A.G., Zero bias anomaly in tunnel resistance and electron-electron interaction, 10.1016/0038-1098(79)90967-0
  3. Bergmann Gerd, Weak localization in thin films, 10.1016/0370-1573(84)90103-0
  4. B. L. Altshuler, Electron–Electron Interactions in Disordered Systems (1985)
  5. Piraux L., Issi J-P., Michenaud J-P., McRae E., Marêché J.F., Evidence for hole localization in a low stage acceptor graphite intercalation compound, 10.1016/0038-1098(85)90956-1
  6. Piraux L., Bayot V., Gonze X., Michenaud J. -P., Issi J. -P., Effect of a magnetic field on weak localization and Coulomb interactions in acceptor graphite intercalation compounds, 10.1103/physrevb.36.9045
  7. Bayot V., Piraux L., Michenaud J.-P., Issi J.-P., Weak localization in pregraphitic carbon fibers, 10.1103/physrevb.40.3514
  8. Bayot V., Piraux L., Michenaud J.-P., Issi J.-P., Lelaurain M., Moore A., Two-dimensional weak localization in partially graphitic carbons, 10.1103/physrevb.41.11770
  9. Langer L., Bayot V., Grivei E., Issi J.-P., Heremans J. P., Olk C. H., Stockman L., Van Haesendonck C., Bruynseraede Y., Quantum Transport in a Multiwalled Carbon Nanotube, 10.1103/physrevlett.76.479
  10. Song S. N., Wang X. K., Chang R. P. H., Ketterson J. B., Electronic properties of graphite nanotubules from galvanomagnetic effects, 10.1103/physrevlett.72.697
  11. Vigolo B., Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes, 10.1126/science.290.5495.1331
  12. BEHABTU N, GREEN M, PASQUALI M, Carbon nanotube-based neat fibers, 10.1016/s1748-0132(08)70062-8
  13. Lu Weibang, Zu Mei, Byun Joon-Hyung, Kim Byung-Sun, Chou Tsu-Wei, State of the Art of Carbon Nanotube Fibers: Opportunities and Challenges, 10.1002/adma.201104672
  14. Lekawa-Raus Agnieszka, Patmore Jeff, Kurzepa Lukasz, Bulmer John, Koziol Krzysztof, Electrical Properties of Carbon Nanotube Based Fibers and Their Future Use in Electrical Wiring, 10.1002/adfm.201303716
  15. G. Sun, J. Nanomaterials, 2012, 506209 (2012)
  16. Behabtu N., Young C. C., Tsentalovich D. E., Kleinerman O., Wang X., Ma A. W. K., Bengio E. A., ter Waarbeek R. F., de Jong J. J., Hoogerwerf R. E., Fairchild S. B., Ferguson J. B., Maruyama B., Kono J., Talmon Y., Cohen Y., Otto M. J., Pasquali M., Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity, 10.1126/science.1228061
  17. Chieu T. C., Dresselhaus M. S., Endo M., Raman studies of benzene-derived graphite fibers, 10.1103/physrevb.26.5867
  18. Zhao Yao, Wei Jinquan, Vajtai Robert, Ajayan Pulickel M., Barrera Enrique V., Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals, 10.1038/srep00083
  19. Efetov Dmitri K., Kim Philip, Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities, 10.1103/physrevlett.105.256805
  20. Salvato M, Lucci M, Ottaviani I, Cirillo M, Orlanducci S, Tamburri E, Guglielmotti V, Toschi F, Terranova M L, Pasquali M, Low temperature conductivity of carbon nanotube aggregates, 10.1088/0953-8984/23/47/475302
  21. Salvato M., Lucci M., Ottaviani I., Cirillo M., Tamburri E., Cianchetta I., Guglielmotti V., Orlanducci S., Terranova M. L., Pasquali M., Effect of potassium doping on electrical properties of carbon nanotube fibers, 10.1103/physrevb.84.233406
  22. Piraux L., Weak localization and coulomb interaction in graphite intercalation compounds and related materials, 10.1557/jmr.1990.1285
  23. Piraux L., Bayot V., Issi J. P., Dresselhaus M. S., Endo M., Nakajima T., Influence of magnetic fields on the two-dimensional electron transport in weakly disordered fluorine-intercalated graphite fibers, 10.1103/physrevb.45.14315
  24. Hikami S., Larkin A. I., Nagaoka Y., Spin-Orbit Interaction and Magnetoresistance in the Two Dimensional Random System, 10.1143/ptp.63.707
  25. Altshuler B L, Aronov A G, Khmelnitsky D E, Effects of electron-electron collisions with small energy transfers on quantum localisation, 10.1088/0022-3719/15/36/018
  26. Lin J J, Bird J P, Recent experimental studies of electron dephasing in metal and semiconductor mesoscopic structures, 10.1088/0953-8984/14/18/201
  27. Tsuneta T., Lechner L., Hakonen P. J., Gate-Controlled Superconductivity in a Diffusive Multiwalled Carbon Nanotube, 10.1103/physrevlett.98.087002
  28. Abrahams Elihu, Anderson P. W., Lee P. A., Ramakrishnan T. V., Quasiparticle lifetime in disordered two-dimensional metals, 10.1103/physrevb.24.6783
  29. Kim G. T., Choi E. S., Kim D. C., Suh D. S., Park Y. W., Liu K., Duesberg G., Roth S., Magnetoresistance of an entangled single-wall carbon-nanotube network, 10.1103/physrevb.58.16064
  30. Kang N., Lu L., Kong W. J., Hu J. S., Yi W., Wang Y. P., Zhang D. L., Pan Z. W., Xie S. S., Observation of a logarithmic temperature dependence of thermoelectric power in multiwall carbon nanotubes, 10.1103/physrevb.67.033404
Bibliographic reference Piraux, Luc ; Abreu Araujo, Flavio ; BUI, Thi Ngoc Diep ; OTTO, M. J. ; Issi, Jean-Paul. Two-dimensional quantum transport in highly conductive carbon nanotube fibers. In: Physical Review. B, Condensed Matter, Vol. 92, no. 8, p. 085428
Permanent URL http://hdl.handle.net/2078.1/178947