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Abstract

Link weight optimization is shown to be a key issue in
engineering of IGPs using shortest path first routing. The
IGP weight optimization problem seeks a weight array re-
sulting an optimal load distribution in the network based on
the topology information and a traffic demand matrix. Sev-
eral solution methods for various kinds of this problem have
been proposed in the literature. However, the interaction of
IGP with BGP is generally neglected in these studies. In
reality, the optimized weights may not perform as well as
expected, since updated link weights can cause shifts in the
traffic demand matrix by hot-potato routing in the decision
process of BGP. Hot-potato routing occurs when BGP de-
cides the egress router for a destination prefix according to
the IGP lengths. This paper mainly investigates the possible
degradation of an IGP weight optimization tool due to hot-
potato routing under a worst-case example and some exper-
iments which are carried out by using an open source traffic
engineering toolbox. Furthermore, it proposes an approach
based on robust optimization to overcome the negative effect
of hot-potato routing and analyzes its performance.

1 Introduction

Autonomous systems (ASes) have a heterogeneous
structure, i.e., they operate with various protocols each of
which serves another purpose. Internet Service Providers
(ISPs) consult on traffic engineering (TE) tools in order
to measure, simulate their network and improve its perfor-
mance under resource constraints. However, most of the
TE tools focus on only one protocol and may neglect its in-
teraction with others. The main purpose of the paper is to
show how neglecting this interaction can decline the per-
formance of a traffic engineering tool by focusing on a par-
ticular case, namely the interaction of the Interior Gateway

Protocol (IGP) weight optimizer with Border Gateway Pro-
tocol (BGP).

Routing decisions in a domain are grounded on two main
protocols, IGP and BGP. IGP inside an AS is responsible
for routing the traffic between any two nodes in the sys-
tem. Most popular IGPs such as OSPF [16] and IS-IS [3]
are based on shortest path first routing where traffic flows
are sent along shortest paths according to administrative
weights assigned to links. Determination of the optimal
IGP weights for a balanced network has been a hot topic
in the current literature and many approaches to the variants
of this problem have been proposed. The studies in [2], [6],
[7], [9], [13] build a sample.

In contrast to IGP, BGP [20] in a domain facilitates the
communication of border routers with other ASes in order
to gather reachability information to outside destinations
and learn AS-level paths. The border routers share this in-
formation with other routers in the AS by BGP. A router
inside the domain forwards the interdomain traffic accord-
ing to the evaluation of BGP learned routes with regard to
some hierarchical rules. One level of the rule-steps is based
on the comparison of the IGP lengths to the egress routers
having the same quality. When the interdomain traffic is
forwarded according to the IGP distances, the case is called
as hot-potato routing.

Hot-potato routing and its effect on the network’s perfor-
mance have been previously investigated in various studies.
In [22], a mechanism to evaluate the hot-potato changes at
the router level is introduced. The mechanism is then imple-
mented in an operational network. It has been shown that
hot-potato routing can cause significant changes in BGP up-
dates. In [23], an analytical model is introduced to capture
network sensitivity to hot-potato routing. As stated in this
study, changes in IGP configuration, due to link/node fail-
ures and updates in the weights, may affect BGP routes by
hot-potato routing and cause shifts in BGP traffic. Contin-
uously, shifts in BGP traffic alters the traffic (demand) ma-



trix of the network representing the amount of traffic flow
between any two routers. In [25], Uhlig implemented the
sensitivity model of [23] for an operational network. In
[18], a publicly available BGP simulator1 is used to mea-
sure the effect of hot-potato routing under link/router fail-
ures which then aids the network administration in locat-
ing the routers/links whose failure change the selected BGP
routes.

The IGP weight optimization (IGP-WO) problem seeks
an optimal weight setting to balance the load over the net-
work for a given traffic matrix. In reality, updating the
weight setting with the optimal one may further alter the
traffic demand matrix due to hot-potato routing. When the
changes in the traffic matrix are large enough to make the
optimal weights undesirable for the new state of the net-
work, the optimizer is needed to re-run.

Hot-potato routing has been neglected in many of the
previous IGP-WO studies. The authors know only one pa-
per which focuses on the interaction of IGP-WO with BGP.
In [1], Agarwal et al. performed some experiments on the
Sprint IP [21] network to measure the impact of hot-potato
routing on the performance of IGP and the impact of IGP-
WO on the performance of BGP. In order to overcome the
negative effect of hot-potato routing they proposed to im-
plement the weight optimizer on a point-to-multipoint traf-
fic matrix. They showed that this approach smoothened
the negative impact of hot-potato routing at the expense of
longer running times. This paper also exploits the interac-
tion of BGP and IGP-WO in the operational GÉANT net-
work [11]. The main contribution of this paper is to show
that when TE is seen as a process, the lack of consideration
of hot-potato routing may cause a convergence failure. This
paper also proposes an approach based on robust optimiza-
tion in order to overcome the convergence problem and test
it in the GÉANT network.

2 Hot-potato Routing

BGP provides reachability information among domains
besides coordination and implementation of the routing
policies of the domain. Routing within BGP is based on a
decision process, evaluation of all known routes according
to some hierarchical rules. The routers on the border of the
domain exchange reachability information with the neigh-
bor ASes via external BGP (eBGP) messages. Then they
evaluate all of the routes learned by eBGP messages and
share the best ones for each destination prefix with other
routers in the domain by internal BGP messages. Thus, a
router inside a domain may be informed of the available
routes to a destination prefix both by eBGP and iBGP mes-
sages.

1The studies here also utilize this simulator which is explained in de-
tails later in the paper.

A router implements the following decision steps in or-
der to select the egress router to forward BGP traffic [5],
[10]:

1. Prefer routes with the highest local preference which
reflects the routing policies of the domain.

2. Prefer routes with the shortest AS-level path.

3. Prefer routes with the lowest origin number, e.g., the
routes originating from IGP are most reliable.

4. Prefer routes with the lowest MED (multiple-exit dis-
criminator) type which is an attribute used to compare
routes with the same next AS-hop.

5. Prefer eBGP learned routes over iBGP learned ones.

6. Prefer the route with the lowest IGP distance to the
egress point.

7. If supported, apply load sharing between paths. Other-
wise, apply a domain-dependent tie-breaking rule, e.g.,
select the one with the lowest egress ID.

Hot-potato routing occurs when the egress router to for-
ward the BGP traffic is selected according to the IGP dis-
tances. Thus, changes in IGP configuration have an impact
on how BGP traffic flows through the network. IGP config-
uration can be altered due to link/node failures and updates
in link weights.

3 IGP Weight Optimizer

Given the topology information and the traffic matrix,
the IGP-WO problem aims at determining the link weights
for an optimal network performance. In this study, the op-
timization algorithm proposed by Fortz and Thorup in [9]
is utilized. Their experiments with real and synthetic net-
works show that the tool can obtain a network congestion
within a few percent of the lower bound. And with opti-
mized2 weights, the network can accept 50%− 110% more
traffic than with Cisco’s default weights proportional to in-
verses of capacities.

One of the key features of the optimizer is its objective
function. A special function is assigned to each link in the
network where it issues a penalty increasing piece-wise lin-
early with the total load on the link. The main target in using
such a function is to avoid congestion in the network. Since
it overcomes bottlenecks, this function is preferred to min-
imizing the maximum utilization3 in the network, which is
the most common way to measure congestion. A bottleneck

2Although the algorithm is a heuristic, we will refer the output weight
settings as ”optimal” during the paper.

3The utilization of a link is determined by the ratio of the load to its
capacity.



can occur when the maximum utilization rate is dominated
by a traffic of high volume between any two nodes with few
possible paths.

Thus, the tool optimizes a cost function in the following
form.

Φ(TM) =
∑

a∈A

φ(la(TM), ca)

where la(TM) and ca represent the total load of the link a
under the given traffic matrix TM and its capacity, respec-
tively. The piece-wise increasing shape to the cost function
is given with the following derivatives. As the load on the
link increases, it becomes more costly to assign any addi-
tional load to it.

φ
′

(la(TM), ca) =































1 for 0 ≤ la/ca < 1/3
3 for 1/3 ≤ la/ca < 2/3
10 for 2/3 ≤ la/ca < 9/10
70 for 9/10 ≤ la/ca < 1
500 for 1 ≤ la/ca < 11/10
5000 for 11/10 ≤ la/ca < inf

Please, note that φ(0, ca) = 0.
In this tool, it is assumed that the traffic flow between

any two nodes is splitted approximately equally among the
outgoing links of the source which belong to at least one of
the shortest paths to the destination. This practice is called
as equal-cost multipath [16] and is applied widely in real
networks.

For the search algorithm, the optimizer utilizes tabu
search [12] which is a well known meta-heuristic technique.
The details are skipped here. Interested readers are pointed
to [9] and [14].

4 Interaction of IGP-WO with BGP

The BGP/IGP-WO interaction is two-sided; both of them
may affect each other’s performance negatively. When the
weights in the network are updated with the optimal ones,
the BGP routing tables, keeping all the paths learned to each
known destination prefix, need to be updated. This pro-
cess brings an overhead to BGP. On the other hand, if the
changes in the routing tables trigger large shifts in the traffic
matrix, the new weight setting may remain so undesirable
that the optimizer is needed to run again. With a small ex-
ample we will show that a standard TE process, whose steps
are given below, can fail to converge in the worst case.

Step1: Given the initial traffic matrix TM0, run the IGP
weight optimizer to obtain the output weights w0. k ←
0.

Step2: Install wk to the network. If the new traffic matrix
TMk+1 is the same as TMk, then stop. Otherwise go
to Step3.

s0

t0 t1�������
�

�������
�

���
�

destination

AS border

Figure 1. An example network.

Step3: k ← k + 1. Run the IGP-WO tool to obtain wk . If
wk is the same as wk−1, stop. Otherwise go to Step2.

In Figure 1, an example network with 1 ingress node
(s0), and 2 egress nodes (t0, t1) is given. There
are 4 uni-directional links with transmission capacities
of 1 unit/sec. We assume that there is a demand of
1 unit/sec from s0 to a given destination prefix and all of
egress nodes have equal quality AS-level paths, i.e., BGP
decides the next egress router according to IGP lengths.
In this example, it is assumed that the IGP applies equal-
cost multipath, in other words, the traffic flow between
any source and destination is split approximately equally
among the outgoing links which are on any shortest path
in-between.

For the simple example, we select an initial traffic de-
mand matrix which is a possible projection of the flow to-
wards the given destination prefix. Let’s assume, the initial
traffic matrix starts with the flow sent over t0:

t0 t1
TM0 = ( 1 0 )

When the effect of hot-potato routing is not taken into
consideration during the optimization process, the IGP-WO
and BGP interaction will follow these iterations:

Iteration 1: Given TM0, the IGP-WO tool optimizes the
network by assigning equal costs to both paths towards t0.
Thus, the flow is shared between the paths (s0 → t0) and
(s0 → t1 → t0). With the following weight setting, the
optimizer assumes a max utilization of 50% in the network.

(s0, t0) (s0, t1) (t1, t0) (t0, t1)

2 1 1 1

With the new weights, the egress with the shortest dis-
tance is t1. Thus, BGP decision process will end up with
the following traffic matrix in the next iteration causing a
max utilization of 100%.

t0 t1
TM1 = ( 0 1 )



Iteration 2: As in Iteration 1, the IGP-WO tool splits the
demand equally between the paths (s0 → t1) and (s0 →
t0 → t1). Thus, the output of the IGP-WO tool is given in
the next table.

(s0, t0) (s0, t1) (t1, t0) (t0, t1)

1 2 1 1

With the given weight settings, BGP responds to the up-
dated weight settings by directing the traffic from s0 to t0.
Thus, the traffic matrix will be in the following form:

t0 t1
TM2 = TM0 = ( 1 0 )

Iteration 3: The TE system returns to the same condi-
tions as in Iteration 1 and fails to converge.

The negative effect of BGP over IGP optimization tool
is not restricted with this convergence problem. With BGP,
the network may obtain a performance much worse than the
one that IGP traffic engineering tools assume they provided.
As in this small example, users of the IGP-WO tool assume
that the network will achieve a nice load balancing with a
maximum utilization of 50%. However the reality may be
far away from that.

5 Robust Optimization of IGP Weights

To overcome the convergence problem in the TE process,
a robust optimization technique is proposed. Robust opti-
mizers provide solutions which are not necessarily optimal
but perform well for different cases of the system. The ro-
bust version of the IGP weight optimizer for multiple traffic
matrices has been previously proposed in [8]. The robust
IGP weight optimizer takes k (k > 1) traffic matrices as
input and minimizes

min Φ(TM1, . . . , TMk) =
k

∑

i=1

φ(TMi).

The robust TE process consists of the following steps:

Step1: Given the initial traffic matrix TM0, run the IGP
weight optimizer to obtain the output weights w0. k ←
0.

Step2: Install wk to the network. If the new traffic ma-
trix TMk+1 is equal to one of {TM0, . . . , TMk}, then
stop. Otherwise go to Step3.

Step3: k ← k + 1. Run the robust IGP-WO tool for
{TM0 . . . TMk} to obtain wk. If wk is the same as
wk−1, stop. Otherwise go to Step2.

Table 1. An example for robust optimization
(s0, t0) (s0, t1) (t1, t0) (t0, t1) Φ(TM0, TM1)

w0 2 1 1 1 13.17
w1 1 1 1 1 21.34
w2 1 2 1 1 13.17

At each iteration the robust TE process optimizes simul-
taneously all of the traffic matrices created so far. The pro-
cess stops when the newly appearing traffic matrix after a
weight update is equal to one of the previous ones. At that
point, the optimizer is not needed to run again, since this
traffic matrix has been already optimized.

The robust TE process theoretically needs a finite num-
ber of steps to come to an end. In the worst case all of
the possible traffic matrices can be issued during the whole
run. When for a given destination prefix t, the number of
egress nodes survived until the 6th step of the BGP deci-
sion process is shown with Nt, then the network can have
∏T

t=1
Nt different traffic matrices where T is the number of

destination prefixes. Please, note that these conclusions are
theoretical. To maintain stability, weight changes should be
avoided unless they provide considerable gains to the net-
work. Thus, in practice, the TE process stops earlier, when
the output weight setting increases slightly the network per-
formance.

We apply the robust TE process to our example. The
process starts with the same initial matrix, TM0.

Iteration 1: This step is similar to the one from the stan-
dard traffic engineering system. After the BGP decision
process, the new traffic flow in the network becomes as in
TM1.

Iteration 2: Three potentially optimal link weight set-
tings (w0, w1 and w2) and the corresponding objective func-
tion values are given in Table 1. There are two alternatively
optimal solutions: w0 which is currently installed in the sys-
tem and w2. If we choose w0, there is no need to update the
weights. If w2 is chosen, the new matrix will be the same
as TM0. According to Step2, in this case the process stops,
too. In both cases, the TE process converges. Since weight
changes are avoided, the network administrator would pre-
fer the former.

6 Experimental Framework

The primary intent of the experimental work is to mea-
sure the effect of the interaction of IGP-WO with BGP on
the TE process in real-networks. For this purpose, we utilize
an open source traffic engineering software, called TOTEM
[24], [15] and carry out some experiments on the GÉANT
European research network.



The GÉANT network [11] is a multi-gigabit network,
representing 30 countries and connecting 26 research and
educational networks. The topology is composed of 23
nodes and 76 uni-directional links. As being a research net-
work with high capacities, the links’ utilizations remained
very low in GÉANT despite the existence of commercial
traffic. In order to strengthen the need for traffic engineer-
ing, in the experiments we divided the capacities of its 68
links by two. In its new form, the optimization within the
network became more challenging.

We have obtained the NetFlow data and BGP dump
traces for a day in August 2005 collected on each router
of GÉANT. Basically, NetFlow data contains information
about flows passing throw the network. NetFlow data is
dumped every 15 minutes. Flows are cut by NetFlow timer
(120 sec). Every flow is recorded by the ingress node, i.e.
the node by which the flow enters GÉANT. The BGP traces
contain daily dumps of all the routes towards the destina-
tion prefixes. These routes are gathered by a monitoring
machine which collects all the exchanged BGP messages.

6.1 The TOTEM Toolbox and C-BGP

TOTEM [24], [15] consists of various tools to measure,
control, simulate and optimize the network. It can be de-
ployed both in on-line and off-line modes. The on-line de-
ployment complements existing Network Management Sys-
tems (NMS) and provisioning tools which also includes an
IGP weight optimizer as explained in Section 3. The pos-
sible off-line deployment of TOTEM is a simulator mode
where the toolbox is simply connected to some monitoring
tools to collect the data. Simulated data can also be pro-
duced internally. In the off-line mode, the user is typically
expected to write some “what-if” scenarios based on the ex-
isting TE methods, execute them and collect the results. In
this study, the TOTEM toolbox is deployed in the simulator
mode.

C-BGP[4], [19] is an open source stand-alone BGP
decision process simulator which is also integrated into
TOTEM. Since it does not simulate the BGP message trans-
missions in packet-level, it is quite fast and efficient. It
has two main inputs: the topology information with IGP
events (also supports IS-IS) to calculate shortest path trees
and BGP MRT dumps [17] to gather the interdomain paths
learned by BGP from the neighbor domains. C-BGP can
be configured with a CISCO-like syntax. According to the
configuration it returns the selected interdomain paths for
each router towards each destination prefix.

Since there are about 150000 prefixes, which is huge to
replay in C-BGP, a clustering technique is used to shorten
the running time. The prefixes announced in the same way
(i.e., on the same GÉANT node, from the same peer, with
the same BGP parameters) are put in the same cluster. Only

Figure 2. The Traffic Engineering Processes.

one prefix from each cluster is announced in C-BGP. This
allows us to advertise about 400 prefixes, called clustered
destination prefixes, into the simulator. In order to project
the egress node of a destination prefix on an ingress node,
we need to find the corresponding advertised prefix of its
cluster. Then, we retrieve the routing table of the ingress
node and determine the egress node for the prefix.

6.2 Traffic Engineering Processes

The implementation of the TE processes from data col-
lection to performance analysis report is described in Fig-
ure 2. The first step is to collect the IGP and BGP in-
formation and aggregate them to produce a topology file.
Based on the NetFlow traces, the toolbox creates an inter-
domain traffic matrix, representing the amount of flow from
the ingress routers to the clustered destination prefixes. The
BGP dump traces, the interdomain traffic matrix and the
topology file build the input to C-BGP. The BGP decision
process simulator outputs the intradomain traffic matrix by
projecting the destination prefixes on the egress routers.
The IGP weight optimizer returns a weight array accord-
ing to the topology information and intradomain traffic ma-
trix. After the network is updated with the output weight
setting, the statistics module returns information about the
network’s performance, e.g., the maximum and average uti-
lization rates, the value of the piece-wise linear objective
function value. These steps repeat themselves, until the
stopping conditions are met. During each specific run, we
assume that the traffic flows do not change with time and
the traffic matrix changes only due to hot-potato routing.

Both the standard and robust TE processes follow the
steps in Figure 2. They differ in terms of the inputs to the
IGP-WO tool and the stopping criteria. The stopping condi-
tions given in the definitions of TE processes are theoretical,
especially the former stopping condition remain too strict in
practice. Since updating the weight changes brings an over-



head to the networks, this stopping condition is modified to
become more realistic. Both TE processes stop when the
optimizer returns weights which do not cause a reasonable
advantage in terms of the objective function (e.g., a decrease
less than 2%) for the running traffic matrix.

7 Results

The standard TE process is implemented for the traffic
matrices obtained from the NetFlow dumps gathered be-
tween 12:00 and 20:00 at 30 minutes intervals. For all of the
runs, the maximum possible weight value and the number of
iterations in the IGP-WO tool are selected as 50 and 5000,
respectively. The optimizer has a preference option for the
initial weight array of the tabu search algorithm: randomly
generated or currently used. In our runs, the first weight
optimization task inside a single TE process starts with a
weight array created randomly, whereas the following ones
start with the weights installed currently in the network.

Initially, we investigate the frequency of the negative ef-
fect of hot-potato routing on the network performance. In
Figure 3 we plot the maximum utilization rates before the
first optimization process with the expected and actual ones
after the implementation of optimal weights. For example,
in Figure 3 it can be seen that before the first optimization
the network has a maximum utilization rate of 74.31% with
the traffic matrix obtained from the NetFlow traces dumped
at 12:00. According to the optimization process, it is ex-
pected that the maximum utilization rate would decrease to
53.01%. However, due to hot-potato routing, the max uti-
lization becomes 71.55% with the new traffic matrix. Thus,
the network performs much worse than expected. This type
of situation occurs 8 times out of 17 runs. The worst effect
of hot-potato routing in terms of maximum utilization rate
occurs at 15:30 where the actual rate is 66% more than the
expected.

During these experiments, we did not observe any ex-
ample where the standard TE process failed to converge.
Except the 8 cases, the standard TE processes stop without
the need for implementing the optimal weights proposed by
the second optimization, i.e., the optimal weights propose
an improvement less than 2% in terms of objective func-
tion. The details regarding both the robust and standard
processes for the 8 cases are given in Table 2 for perfor-
mance comparison. Each row in the table corresponds to
a specific run, for example the first row gives the objective
function values and maximum utilization rates observed in
the network and expected with the optimal weights during
the standard TE process carried out for the NetFlow data
dumped at 12:00. In this table, we skipped the details re-
garding the initial condition of the network and the first op-
timization process, since they are already given in Figure 3.
The cells written in bold give the resulting condition of the
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network for each run. Our first observation is that both types
of TE needs the same number of optimization steps to stop,
except the runs at 14:30, 16:00, 16:30. At 14:30, the robust
TE requires 4 optimization runs, wheres the standard one
requires 2 runs. On the contrary, at 16:00 and 16:30. the
standard TEs require one more optimization run than the
robust ones do. Thus, we can not say, the robust TE beats
the standard one in terms of required number of optimiza-
tion runs. We can also observe that with the standard TE the
final condition of the network is better at all times except at
16:00 and 20:00. This is due to the fact that the standard
TE focuses on a single traffic matrix to optimize where the
robust optimizes multiple matrices simultaneously.

In Figure 4, we compare the robustness of the TE ap-
proaches. The points in the figure give the maximum uti-



Table 2. The standard and robust TE processes in detail

Condition Optimization Condition Optimization Condition Optimization
of the network expected values of the network expected values of the network expected values

Run max util. cost max util. cost max util. cost max util. cost max util. cost max util. cost
12:00, std 71.55% 1.68e7 50.51% 1.54e7 50.51% 1.54e7 53.05% 1.52e7

12:00, rob 71.55% 1.68e7 65.58% 1.57e7 57.89% 1.55e7 57.89% 1.55e7

14:30, std 84.72% 1.86e7 49.85% 1.68e7 49.85% 1.68e7 49.85% 1.68e7

14:30, rob 84.72% 1.86e7 66.58% 1.68e7 75.26% 1.76e7 51.55% 1.67e7 72.61% 1.82e7 51.55% 1.71e7

51.55% 1.68e7 51.55% 1.68e7

15:00, std 83.24% 1.79e7 52.35% 1.61e7 52.35% 1.58e7 52.35% 1.58e7

15:00, rob 83.24% 1.79e7 52.35% 1.61e7 52.35% 1.61e7 52.35% 1.61e7

15:30, std 81.88% 1.75e7 49.27% 1.58e7 49.27% 1.58e7 49.27% 1.58e7

15:30, rob 81.88% 1.75e7 49.27% 1.59e7 51.18% 1.58e7 51.18% 1.58e7

16:00, std 70.27% 1.61e7 49.64% 1.53e7 72.69% 1.67e7 48.05% 1.56e7 48.05% 1.57e7 48.05% 1.57e7

16:00, rob 70.27% 1.61e7 48.05% 1.55e7 48.05% 1.55e7 48.05% 1.55e7

16:30, std 78.40% 1.80e7 52.54% 1.55e7 76.99% 1.72e7 48.96% 1.56e7 48.96% 1.53e7 48.96% 1.53e7

16:30, rob 78.40% 1.80e7 52.54% 1.57e7 52.54% 1.58e7 52.54% 1.57e7

17:00, std 73.96% 1.60e7 49.18% 1.50e7 74.74% 1.63e7 49.18% 1.51e7 49.18% 1.50e7 49.18% 1.48e7

17:00, rob 73.96% 1.60e7 49.18% 1.50e7 70.87% 1.64e7 66.30% 1.56e7 66.30% 1.53e7 49.18% 1.51e7

20:00, std 76.43% 1.50e7 46.62% 1.38e7 46.62% 1.39e7 46.62% 1.38e7

20:00, rob 76.43% 1.50e7 53.50% 1.39e7 53.50% 1.37e7 53.50% 1.37e7

lization rates which are obtained with the resulting weight
setting and traffic matrices having been formed during each
run. For example, during the robust TE process for 12:00,
three different traffic matrices have been formed and the
maximum utilizations with the final weight setting against
these traffic matrices are 57.89%, 65.58% and 50.51%. We
can observe that the worst three performance is obtained
with the standard approach.

In the last part of our experiments, we are interested in
the performances of the TE processes when the network
conditions are more strict. To do that, we have carried out
an additional modification in the topology; the capacities of
32 links are divided further by 5. Both standard and ro-
bust TE processes are run for the NetFlow data dumped
at 15:30. The details of these runs are given in Table 3.
Please note, that the only the maximum utilization rates are
given in order to save place. In these runs, the standard TE
process does not stop by the given conditions. We forced
it to stop after 15th optimization. However, the robust TE
process stops after the third optimization, since the robust
weight setting it provides at the second optimization works
well for the next traffic matrix. The third weight setting can
not provide a dramatic increase in the state of the network.
Thus, the robust TE outperforms the standard one when the
network resources are more strict.

Additionally, we observe that hot-potato routing can
even cause the network to obtain a performance which is
worse than the one before the optimization step. The net-
work starts with a maximum utilization rate of 82.70%, but

after the implementation of the optimal weights the utiliza-
tion rate increases to 91.07%.

8 Conclusion

In this paper, we investigated the negative effects of
hot-potato routing on the IGP link weight optimizer. The
decision process carried out in BGP may cause the opti-
mized weights to perform worse than the expected, since
hot-potato routing may change the traffic matrix of the net-
work with the updated weight setting such that this weight
setting does not work well anymore for the new traffic ma-
trix. In this paper, with a worst-case example we showed
that the interaction of the optimizer with BGP may cause
a convergence failure in the standard TE process. Some
case studies were also carried out in this paper to observe
the possible negative effects of the IGP-WO and BGP inter-
action in a real network. In the case studies, we observed
that due to hot-potato routing the network performs worse
than the starting point with the optimized weights. In this
study, a TE approach based on the robust optimization of
the link weights against multiple traffic matrices was pro-
posed to smoothen the negative effect of hot-potato routing.
In the experiments, we have seen that the robust TE process
is especially more effective when the network resources are
more strict, i.e. it stops much earlier than the standard one.
Additionally, the robust TE provides solutions which are not
necessarily best for the last traffic matrices but good for all
of the previously generated matrices. As a future research,



Table 3. The standard and robust TE processes for 15:30 with modified topology

Run Network Opt. exp. Network Opt. exp. Network Opt. exp. Network Opt. exp. Network Opt. exp.
condition values condition values condition values condition values condition values

std 82.70% 67.31% 91.07% 60.36% 93.12% 51.21% 85.31% 60.08% 87.90% 49.96%

89.69% 61.50% 87.32% 49.46% 90.93% 60.74% 88.00% 52.31% 90.49% 78.96

89.60% 52.31% 90.67% 78.96% 89.23% 49.46% 90.67% 78.96% 89.24% 49.46%

rob 82.70% 67.31% 91.07% 60.36% 50.96% 50.96%

we are interested in alternative approaches to overcome the
negative interaction of BGP with IGP-WO.
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