User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Precise effective masses from density functional perturbation theory

  • Open access
  • PDF
  • 560.71 K
  1. C. Kittel, Introduction to Solid State Physics (2004)
  2. N. W. Ashcroft, Solid State Physics (1976)
  3. Marder Michael P., Condensed Matter Physics : Marder/Condensed, ISBN:9780470949955, 10.1002/9780470949955
  4. Yu Peter Y., Cardona Manuel, Fundamentals of Semiconductors, ISBN:9783642007095, 10.1007/978-3-642-00710-1
  5. Filip Marina R., Verdi Carla, Giustino Feliciano, GWBand Structures and Carrier Effective Masses of CH3NH3PbI3and Hypothetical Perovskites of the Type APbI3: A = NH4, PH4, AsH4, and SbH4, 10.1021/acs.jpcc.5b07891
  6. Hautier Geoffroy, Miglio Anna, Waroquiers David, Rignanese Gian-Marco, Gonze Xavier, How Does Chemistry Influence Electron Effective Mass in Oxides? A High-Throughput Computational Analysis, 10.1021/cm404079a
  7. Hautier Geoffroy, Miglio Anna, Ceder Gerbrand, Rignanese Gian-Marco, Gonze Xavier, Identification and design principles of low hole effective mass p-type transparent conducting oxides, 10.1038/ncomms3292
  8. Kim Yoon-Suk, Marsman Martijn, Kresse Georg, Tran Fabien, Blaha Peter, Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors, 10.1103/physrevb.82.205212
  9. Kim Yoon-Suk, Hummer Kerstin, Kresse Georg, Accurate band structures and effective masses for InP, InAs, and InSb using hybrid functionals, 10.1103/physrevb.80.035203
  10. Chantis Athanasios N., van Schilfgaarde Mark, Kotani Takao, Ab InitioPrediction of Conduction Band Spin Splitting in Zinc Blende Semiconductors, 10.1103/physrevlett.96.086405
  11. Geller Clint B., Wolf Walter, Picozzi Silvia, Continenza Alessandra, Asahi Ryoji, Mannstadt Wolfgang, Freeman Arthur J., Wimmer Erich, Computational band-structure engineering of III–V semiconductor alloys, 10.1063/1.1383282
  12. Wang Shidong, Wang Zhao, Setyawan Wahyu, Mingo Natalio, Curtarolo Stefano, Assessing the Thermoelectric Properties of Sintered Compounds via High-ThroughputAb-InitioCalculations, 10.1103/physrevx.1.021012
  13. Hummer Kerstin, Grüneis Andreas, Kresse Georg, Structural and electronic properties of lead chalcogenides from first principles, 10.1103/physrevb.75.195211
  14. Madsen Georg K.H., Singh David J., BoltzTraP. A code for calculating band-structure dependent quantities, 10.1016/j.cpc.2006.03.007
  15. Martin Richard M., Electronic Structure : Basic Theory and Practical Methods, ISBN:9780511805769, 10.1017/cbo9780511805769
  16. Yates Jonathan R., Wang Xinjie, Vanderbilt David, Souza Ivo, Spectral and Fermi surface properties from Wannier interpolation, 10.1103/physrevb.75.195121
  17. Luttinger J. M., Kohn W., Motion of Electrons and Holes in Perturbed Periodic Fields, 10.1103/physrev.97.869
  18. Dresselhaus G., Kip A. F., Kittel C., Cyclotron Resonance of Electrons and Holes in Silicon and Germanium Crystals, 10.1103/physrev.98.368
  19. Kane E.O., Energy band structure in p-type germanium and silicon, 10.1016/0022-3697(56)90014-2
  20. Kane Evan O., Band structure of indium antimonide, 10.1016/0022-3697(57)90013-6
  21. Mecholsky Nicholas A., Resca Lorenzo, Pegg Ian L., Fornari Marco, Theory of band warping and its effects on thermoelectronic transport properties, 10.1103/physrevb.89.155131
  22. Baroni Stefano, Giannozzi Paolo, Testa Andrea, Green’s-function approach to linear response in solids, 10.1103/physrevlett.58.1861
  23. Gonze Xavier, Adiabatic density-functional perturbation theory, 10.1103/physreva.52.1096
  24. Gonze Xavier, First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm, 10.1103/physrevb.55.10337
  25. Gonze Xavier, Lee Changyol, Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory, 10.1103/physrevb.55.10355
  26. Ghosez Philippe, Gonze Xavier, Band-by-band decompositions of the Born effective charges, 10.1088/0953-8984/12/43/308
  27. Umari P., Gonze Xavier, Pasquarello Alfredo, Density-functional perturbational theory for dielectric tensors in the ultrasoft pseudopotential scheme, 10.1103/physrevb.69.235102
  28. Bernasconi M., Chiarotti G.L., Focher P., Scandolo S., Tosatti E., Parrinello M., First-principle-constant pressure molecular dynamics, 10.1016/0022-3697(94)00228-2
  29. Gonze X., Amadon B., Anglade P.-M., Beuken J.-M., Bottin F., Boulanger P., Bruneval F., Caliste D., Caracas R., Côté M., Deutsch T., Genovese L., Ghosez Ph., Giantomassi M., Goedecker S., Hamann D.R., Hermet P., Jollet F., Jomard G., Leroux S., Mancini M., Mazevet S., Oliveira M.J.T., Onida G., Pouillon Y., Rangel T., Rignanese G.-M., Sangalli D., Shaltaf R., Torrent M., Verstraete M.J., Zerah G., Zwanziger J.W., ABINIT: First-principles approach to material and nanosystem properties, 10.1016/j.cpc.2009.07.007
  30. Hamann D. R., Schlüter M., Chiang C., Norm-Conserving Pseudopotentials, 10.1103/physrevlett.43.1494
  31. Blöchl P. E., Projector augmented-wave method, 10.1103/physrevb.50.17953
  32. Vanderbilt David, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, 10.1103/physrevb.41.7892
  33. Feynman R. P., Forces in Molecules, 10.1103/physrev.56.340
  34. Hestenes M.R., Stiefel E., Methods of conjugate gradients for solving linear systems, 10.6028/jres.049.044
  35. G. H. Golub, Matrix Computations (2012)
  36. Gonze X., Boulanger P., Côté M., Theoretical approaches to the temperature and zero-point motion effects on the electronic band structure, 10.1002/andp.201000100
  37. Audouze Christophe, Jollet François, Torrent Marc, Gonze Xavier, Comparison between projector augmented-wave and ultrasoft pseudopotential formalisms at the density-functional perturbation theory level, 10.1103/physrevb.78.035105
  38. Miwa Kazutoshi, Prediction of Raman spectra with ultrasoft pseudopotentials, 10.1103/physrevb.84.094304
  39. Dal Corso Andrea, Density-functional perturbation theory with ultrasoft pseudopotentials, 10.1103/physrevb.64.235118
  40. Dal Corso Andrea, Projector augmented wave method with spin-orbit coupling: Applications to simple solids and zincblende-type semiconductors, 10.1103/physrevb.86.085135
  41. Verstraete Matthieu J., Torrent Marc, Jollet François, Zérah Gilles, Gonze Xavier, Density functional perturbation theory with spin-orbit coupling: Phonon band structure of lead, 10.1103/physrevb.78.045119
  42. Audouze Christophe, Jollet François, Torrent Marc, Gonze Xavier, Projector augmented-wave approach to density-functional perturbation theory, 10.1103/physrevb.73.235101
  43. Fornberg Bengt, Generation of finite difference formulas on arbitrarily spaced grids, 10.1090/s0025-5718-1988-0935077-0
  44. Perdew John P., Wang Yue, Accurate and simple analytic representation of the electron-gas correlation energy, 10.1103/physrevb.45.13244
  45. Ramos L. E., Teles L. K., Scolfaro L. M. R., Castineira J. L. P., Rosa A. L., Leite J. R., Structural, electronic, and effective-mass properties of silicon and zinc-blende group-III nitride semiconductor compounds, 10.1103/physrevb.63.165210
  46. Dexter R. N., Lax Benjamin, Effective Masses of Holes in Silicon, 10.1103/physrev.96.223
  47. Hensel J. C., Hasegawa H., Nakayama M., Cyclotron Resonance in Uniaxially Stressed Silicon. II. Nature of the Covalent Bond, 10.1103/physrev.138.a225
  48. Willatzen Morten, Lew Yan Voon Lok C., The k p Method, ISBN:9783540928713, 10.1007/978-3-540-92872-0
  49. Vishnyakova Elena, Brinson Bruce E., Alemany Lawrence B., Verma Manjusha, Billups W. Edward, Structural Characteristics and Properties of a New Graphitic-Based Material, 10.1002/chem.201504235
  50. Inagaki Michio, Kang Feiyu, Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne, 10.1039/c4ta01183j
  51. Zhou Chao, Chen Sihao, Lou Jianzhong, Wang Jihu, Yang Qiujie, Liu Chuanrong, Huang Dapeng, Zhu Tonghe, Graphene’s cousin: the present and future of graphane, 10.1186/1556-276x-9-26
  52. Restrepo Oscar D, Krymowski Kevin E, Goldberger Joshua, Windl Wolfgang, A first principles method to simulate electron mobilities in 2D materials, 10.1088/1367-2630/16/10/105009
  53. He Chaoyu, Zhang C. X., Sun L. Z., Jiao N., Zhang K. W., Zhong Jianxin, Structure, stability and electronic properties of tricycle type graphane, 10.1002/pssr.201206358
  54. R. W. G. Wyckoff, Crystal Structures (1960)
  55. Falicov L. M., Golin Stuart, Electronic Band Structure of Arsenic. I. Pseudopotential Approach, 10.1103/physrev.137.a871
  56. Lin P. J., Falicov L. M., Fermi Surface of Arsenic, 10.1103/physrev.142.441
  57. Silas Patricia K., Haynes Peter D., Yates Jonathan R., Evolution of the Fermi surface of arsenic through the rhombohedral to simple-cubic phase transition: A Wannier interpolation study, 10.1103/physrevb.88.134103
  58. Priestley M. G., Windmiller L. R., Ketterson J. B., Eckstein Y., De Haas—Van Alphen Effect and Fermi Surface in Arsenic, 10.1103/physrev.154.671
  59. Ih C. S., Langenberg D. N., Azbel'-Kaner Cyclotron Resonance in Arsenic, 10.1103/physrevb.1.1425
  60. Cooper George S., Lawson A. W., Azbel' - Kaner Cyclotron Resonance in Arsenic, 10.1103/physrevb.4.3261
  61. Gonze X., Michenaud J.-P., Vigneron J.-P., First-principles study of As, Sb, and Bi electronic properties, 10.1103/physrevb.41.11827
  62. Poncé S., Gillet Y., Laflamme Janssen J., Marini A., Verstraete M., Gonze X., Temperature dependence of the electronic structure of semiconductors and insulators, 10.1063/1.4927081
  63. Antonius G., Poncé S., Lantagne-Hurtubise E., Auclair G., Gonze X., Côté M., Dynamical and anharmonic effects on the electron-phonon coupling and the zero-point renormalization of the electronic structure, 10.1103/physrevb.92.085137
  64. Poncé S., Antonius G., Gillet Y., Boulanger P., Laflamme Janssen J., Marini A., Côté M., Gonze X., Temperature dependence of electronic eigenenergies in the adiabatic harmonic approximation, 10.1103/physrevb.90.214304
  65. Antonius G., Poncé S., Boulanger P., Côté M., Gonze X., Many-Body Effects on the Zero-Point Renormalization of the Band Structure, 10.1103/physrevlett.112.215501
  66. Poncé S., Antonius G., Boulanger P., Cannuccia E., Marini A., Côté M., Gonze X., Verification of first-principles codes: Comparison of total energies, phonon frequencies, electron–phonon coupling and zero-point motion correction to the gap between ABINIT and QE/Yambo, 10.1016/j.commatsci.2013.11.031
  67. Allen P B, Heine V, Theory of the temperature dependence of electronic band structures, 10.1088/0022-3719/9/12/013
  68. Allen P. B., Cardona M., Theory of the temperature dependence of the direct gap of germanium, 10.1103/physrevb.23.1495
  69. Dacosta P Gomes, Nielsen O H, Kunc K, Stress theorem in the determination of static equilibrium by the density functional method, 10.1088/0022-3719/19/17/012
Bibliographic reference Laflamme Janssen, Jonathan ; Gillet, Yannick ; Poncé, Samuel ; Martin, Alexandre ; Torrent, Marc ; et. al. Precise effective masses from density functional perturbation theory. In: Physical review. B, Condensed matter and materials physics, Vol. 93, no. 20, p. 205147 (2016)
Permanent URL http://hdl.handle.net/2078.1/174483