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Abstract

A recently designed hyperspectral imaging device enables multiplexed acquisition of an
entire data volume in a single snapshot thanks to monolithically-integrated spectral filters.
Such an agile imaging technique comes at the cost of a reduced spatial resolution and the
need for a demosaicing procedure on its interleaved data. In this work, we address both issues
and propose an approach inspired by recent developments in compressed sensing and analysis
sparse models. We formulate our superresolution and demosaicing task as a 3-D generalized
inpainting problem. Interestingly, the target spatial resolution can be adjusted for mitigating
the compression level of our sensing. The reconstruction procedure uses a fast greedy method
called Pseudo-inverse IHT. We also show on simulations that a random arrangement of the
spectral filters on the sensor is preferable to regular mosaic layout as it improves the quality
of the reconstruction. The efficiency of our technique is demonstrated through numerical
experiments on both synthetic and real data as acquired by the snapshot imager.

Keywords: Hyperspectral, inpainting, iterative hard thresholding, sparse models, CMOS,
Fabry-Pérot.

1 Introduction

Hyperspectral Imaging (HSI) refers to the acquisition and processing of multichannel digital images
of the spectrometry of every pixel of a scene, i.e., the intensity of light as a function of its
wavelength. The knowledge of the spectrum can serve to identify the materials that are present in
a particular pixel [1]. Many scientific applications of this technique exist in, e.g., remote sensing [2]
and food science [3] with an increasing number of industrial and general purpose applications
emerging due to the rapid simplification undergone by recent HSI systems [4].

Hyperspectral images, i.e., data volumes (or cubes) ordered in two spatial dimensions and one
spectral, may contain several millions of voxels, partitioned in anywhere from a dozen up to hun-
dreds of wavelengths. Traditional HSI systems require either line scanning, e.g., with a motorized
translation stage, or spectral scanning with tunable filters [5]. Most often, this means a slow
acquisition and a cumbersome device only suitable for imaging in controlled environments. More
recently, snapshot HSI was introduced as a trade-off between spatial resolution and acquisition
time; this imaging mode is obtained by multiplexing optically the 3-D spatial-spectral informa-
tion on a 2-D CMOS photosensor array, over which a layer of Faby-Pérot (FP) spectral filters is
deposited [4, 6]. The main limitation of this approach is that the spatial resolution of the sensor
array actually becomes limited by the number of acquired wavelengths.

Compressed Sensing (CS) counts among the means used to cope with this resolution limit.
When the acquisition process is appropriately designed, this mathematical framework leverages

1

ar
X

iv
:1

50
2.

01
85

3v
1 

 [
cs

.C
V

] 
 6

 F
eb

 2
01

5



the natural structure of a signal (e.g., its sparsity) to robustly reconstruct it from only a few non-
adaptive measurements [9]. Compared to standard 2-D compressive imaging, HSI also offers an
extra spectral dimension to exploit. CS is thus clearly an appealing objective for HSI, as noted by
some compressive HSI designs [10, 11], some of which tackled explicitly an imaging architecture
with a FP-filtered sensor array [13]. Nevertheless, these designs often require complex optical
elements (e.g., spatial light modulation, beam splitter) that increases the global system complexity.

The contributions of this work are multiple. First, our study is based on the snapshot imager
from [6] and processes the resulting low-resolution data volume with an inpainting method to fill
the missing information. The aim is to find a compromise between an instantaneous acquisition
without scanning and a reasonably high target resolution with the aid of a recovery algorithm.
Second, on the hardware side, we propose to slightly modify a simple snapshot imager design by
randomly intermixing the FP filters on the sensor; this avoids aliasing effects due to subsampling
on a regular grid. Simulations confirm that a random spatial arrangement of those spectral filters
on the sensor is preferable to a regular mosaic layout as it improves HSI quality. Third, on
the algorithmic and theoretical side, we generalize the classical inpainting problem by adding a
linear interpolation step (upscaling) in the forward model enabled by an optical spatial lowpass
filtering [7] common in demosaicing methods. Given a fixed number of observations, this linear
operation allows to choose the target resolution and in particular, to reduce the subsampling factor
by any desired value, making it easier for the inpainting method to fill the missing information. Our
method is akin to CS in the sense that the formulations and goals are identical. The difference
resides in the acquisition operation: where CS entails random linear mixtures as compressive
measurements, our HSI device simply applies a direct subsampling. This work is also related to
super-resolution as it allows to increase the number of pixels from the low multiplexed resolution
of the focal plane. The proposed inpainting task relies on a greedy algorithm, the Pseudo-inverse
IHT [20], slightly adapted to our needs for optimizing its convergence. Finally, we demonstrate
through numerical simulations the potential of our design concept and reconstruction method for
practical applications.

The paper is structured as follows. The second section presents the acquisition device architec-
ture and formulates the generalized inpainting problem. The third section presents the redundant
dictionary used to promote a low-dimensional signal model, followed by a brief analysis of the PIHT
algorithm. The fourth section presents the results of numerical simulations on both synthetic and
real data.

2 Hyperspectral Image Inpainting
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Figure 1: Left: Illustration representing a 4×4 CMOS macropixel integrated with 16 Fabry-Pérot filters (not all
displayed). Right: True wavelength index selection in one such macropixel of the HSI mosaic imager [6].

This work proposes a HSI sensor design on what could be called “direct domain-compressed
sensing”, i.e., random subsampling. This architecture is associated to a snapshot spectral sensor
that monolithically integrates a set of Fabry-Pérot interferometers (FPI) [13] organized as pixel-
level filter mosaics on top of a standard, off-the-shelf CMOS sensor, the focal plane array (FPA).
Each FPI is actually made of a transparent layer sandwiched between two mirrors, the layer width
determining the selected wavelength (See Fig. 1).
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Let X̂ ∈ RNI×NJ×L be a hyperspectral (HS) volume of a target scene (L is the number of bands)
and Y ∈ RmI×mJ represent the recording at the focal plane array (FPA) with the same spatial

resolution as X̂ (NI = mI , NJ = mJ). The pixels of Y are a selection (e.g., random) of a group

of voxels of the whole volume X̂ ; more precisely, each pixel yi,j of Y corresponds to a voxel x̂i,j,λ
of X̂ with the same spatial indices (i, j) and a specific wavelength index λ ∈ [L] := {1, · · · , L},
e.g., selected by a FP filter.

One emphasis of this paper is to assume the existence of an optical filtering of the spatial
frequencies of the volume X̂ that ensures that each spectral band is spatially band-limited (e.g.,
with birefringent filtering [7]). As will become clearer hereafter, this ensures that each spectral
band is spatially smooth or band-limited. This practice is common for stabilizing RGB demosaic-
ing [14]. This can be done for instance by slightly defocusing the objective lens of the imager under
the assumption that the observed scene is well contained in the optical depth-of-field (DOF). In
this context, we can target the reconstruction of a smaller spatial resolution and aim to recon-
struct an undersampled volume X ∈ RnI×nJ×L while imposing nI ≤ mI and nJ ≤ mJ . In other
words, the compressive acquisition of the HS volume can be mitigated by varying N = nInJL.
Typically, if L = 16, taking nI = mI/2 and nJ = mJ/2 the number of observations reads
M := mImJ = 4N/L = N/4.

Mathematically, this means that there exists an operator Up ∈ RnInJ×M so that, in matrix
form,

x̂λ = Up xλ (1)

where xλ = vec(Xλ) ∈ RnInJ (resp. x̂λ = vec(X̂λ) ∈ RM ) is the vectorized form of the spectral

band Xλ (resp. X̂λ) of X (resp. X̂ ).
To understand the structure of this operator, let us consider it in a simplified situation, i.e.,

in the sampling model of a one dimensional “monochromatic image” f(t) ∈ L2(R) on a spatial
domain parametrized by t. At a low resolution with spatial discretization period T > 0, the
continuous light intensity is acquired as

f [n] =
∫∞
−∞ f(t)δ(t− nT )dt = f(nT ),

with n ∈ Z the indices of each pixel. At a finer resolution with sampling period 0 < T ′ < T (e.g.,
T ′ = T/4), we would have samples

g[k] =
∫∞
−∞ f(t)δ(t− kT ′)dt = f(kT ′), (2)

with k ∈ Z. Let us assume the existence of a generative (interpolative) model of f

f(t) ≈ f̂(t) =
∑∞
n=−∞ f [n]ϕn(t). (3)

To ensure that the model error f − f̂ is minimal, the signal f has to be sufficiently smooth: a
condition that can be enforced by an optical filtering, as assumed in this paper. In particular, in
the case of the Shannon-Whittaker formula with ϕn(t) = sinc

(
t−nT
T

)
, f = f̂ if f has no frequencies

higher than 1/2T (band-limited), otherwise aliasing occurs. Depending on the properties of f ,
other basis functions ϕn, possibly with finite support, are also possible for minimizing the model
error [25].

Since (3) allows us to estimate a continuous signal from the samples f [n] at low resolution,
assuming a vanishing model error and combining this equation with (2) provides

g[k] =
∑∞
n=−∞ f [n]u[k, n], (4)

with u[k, n] = ϕn(kT ′) defining the entries of our up-sampling operator Up in this simplified
exposition. Rather than the IIR and impractical filters of the Shannon-Whittaker generative
model, we use here the 2-D FIR Lanczos filter [8].

We are now ready to express the general sensing model of our HS sensing. Since there is ideally
no spectral dispersion in the device and each FPA cell is sensitive to exactly one wavelength, we
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can separate the FPA pixels in subsets, according to their wavelength, and consider that each
band of the hyperspectral volume X is acquired independently with a different subset of pixels.
Let us denote by Mλ ∈ {0, 1}M×M the diagonal mask operator selecting the FPA pixels of the
band λ. By construction of the FPA, we have

∑
λMλ = IM×M and MλMλ′ = 0 for λ 6= λ′.

Writing y = vec(Y ) and x = (xT1 , · · · ,xTL)T , and defining the general sensing matrix Φ :=(
Φ1, · · · ,ΦL

)
with Φλ := MλUp, our generalized inpainting problem corresponds now to recover

the target HS volume x from the possibly noisy observations y in

y = Φx+ n, (5)

with n an additive noise of bounded energy.

3 Signal Prior and Reconstruction

Two main families of CS reconstruction methods exist for estimating x from (5). Convex relax-
ations of the associated sparsely-regularized (therefore combinatorial) inverse problem, such as the
Basis Pursuit DeNoising (BPDN) program, were among the first methods to be used in CS [9].
The second family contains greedy algorithms, e.g., Iterative Hard Thresholding (IHT) [15], that
aim at solving approximately the combinatorial problem. Originally, CS theory was only adapted
to exploit sparsity of the signal in an orthonormal basis but alternatives have emerged since then.
In compressive HSI, [16, 17, 18] used structured sparsity, total variation and low rank. In [19],
the authors proposed to use an adapted dictionary containing the known spectra of each ma-
terial potentially present in the scene. Experience from other data restoration problems (e.g.,
denoising, deconvolution) have shown that using redundant dictionaries instead of orthonormal
bases often lead to dramatic improvement. On the website associated with the book [20], Gabriel
Peyré proposed a modified version of IHT using the Pseudo-Inverse of a redundant analysis dic-
tionary after the thresholding step. In this section, we present this algorithm called here PIHT
for Pseudo-Inverse IHT. It is related to AIHT [21] and SSIHT [22], two extensions of IHT for
signals respectively in the cosparse analysis [23] and in the sparse synthesis [24] models. How-
ever, compared to these two algorithms, each iteration of PIHT is faster to compute as efficient
algorithms exist for the computing the pseudo-inverse of several redundant transforms. This is
explained below after the definition of our signal prior.

Sparse analysis model: Since the inverse problem introduced in Sec. 2 is underdetermined
(M ≤ N), prior information about X must be assumed to enforce the solution unicity. In this
work, we adopt an analysis sparse model for the HS volume. The bandsXλ of X are first expected
to lead to sparse coefficients when analyzed through an Undecimated Discrete Wavelets Transform
(UDWT), i.e., a shift-invariant, redundant version of the Discrete Wavelet Transform [25, 27].
Second, the targeted individual pixel spectra are assumed smooth and we select therefore a Discrete
Cosine Transform (DCT) basis for “sparsifying” these spectra. These two analysis priors are then
combined by tensorial product, i.e., we form

A = AUDWT ⊗ADCT

with ⊗ the Kronecker product, such that the transformed volume Ax ∈ RP is sparse. The UDWT
uses the biorthogonal Daubechies wavelets of length 8 on 3 levels (such that P = 10N). Moreover,
the UDWT scaling coefficients are further transformed with a 2-D DCT, as those low-frequency
UDWT bands should be sparser after such a transform. This solution led to better results than
avoiding this additional DCT transform or simply discarding these unsparse bands from the prior.
Finally, all reconstruction methods described below are constrained to provide solutions within a
realistic intensity range, i.e., x ∈ R = [0, xmax]N for some known xmax > 0, or PRx = x with PR
the orthogonal projector on R.

Pseudo-Inverse IHT: We have selected in this work the Pseudo-Inverse IHT (PIHT) [20], i.e.,
a greedy algorithm that aims at approaching the following non-convex problem:

x? = argminu∈R ‖Φu− y‖ s.t. HK(Au) = Au, (6)
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Figure 2: Both reference HSI volumes (false RGB color). Left: Groundtruth for synthetic experiments (“Fresh Fruits”).
Right: Naive demosaicing of data from real sensor (“Leaves”).

where the hard thresholding operator HK(u), sets to 0 all but the K largest entries of u.

Algorithm 1 Pseudo-Inverse Iterative Hard Thresholding

1: input:
2: x0; niter; K

s, ∀s ∈ [S];
3: initialization:
4: x1 := x0;
5: for s = 1 to S do
6: τs := ‖Φ∗(y −Φxs)‖2 / ‖ΦΦ∗(y −Φxs)‖2

7: as := xs + τsΦ∗ (y −Φxs)
8: xs+1 := PR

[
A†HKs (Aas)

]
9: end for

PIHT is described in Alg. 1. In order to maximize efficiency and speed, PIHT is initialized
with a point that is not “too far” from x? in (6), i.e., x0 is obtained by a standard 3-D linear

interpolation of the unknown samples of X̂ from those sampled by Y and resizing the result to
the dimensions of X . Inspired by [28, 29], the number of non-zero components K is progressively
increased for the hard thresholding during the S iterations. The initial K0 and final KS values are
set following a heuristic, depending on the statistical distribution of α0 = Ax0 as a proxy for the
one of the unknownAx. This distribution being heavy tailed, we tookKS andK0 as the number of
coefficients bigger than the “mean plus σ” and the “mean plus 2.5σ” of the distribution of log |α0|,
respectively. Notice that the value τs in Alg. 1 is the τ minimizing ‖y−Φ

(
xs+τΦ∗ (y −Φxs)

)
‖.

Let us conclude this section by mentioning that, compared to AIHT [21] and SSIHT [22],
PIHT is faster to compute at each iteration as fast algorithms exist to estimate the vector-matrix
product involving the pseudo-inverse A† at line 8 in Alg. 1. Those methods rely on the knowledge
of the dual transform of our UDWT system [25]. However, convergence guarantees for PIHT are
still unknown. We can just state that, if x ∈ R is such that y = Φx (noiseless sensing), then, x
is a fixed point of the PIHT iterations if and only if Ax is K-sparse. For space reason, we omit
here the proof of this fact.

4 Numerical Results

This section demonstrates the capability of the proposed method. In the first part, we use a
simulated model of the proposed architecture. The synthetic measurements are produced from an
existing real high resolution HSI dataset (Fig. 2, left [26]). This allows a quantitative comparison
of the quality in several experimental conditions reproduced in a controlled numerical environ-
ment. The second part uses compressed data acquired with the existing mosaic version of the
sensor described below and in [6] (Fig. 2, right). For this imager, a naive demosaicing method is
implemented in [6]. Notice that in all experiments, the number of iterations for PIHT was set to
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Figure 3: From top to bottom: Groundtruth; Naive demosaic 19.1 dB ; PIHT (mosaic) 27.03 dB; 3DLinterp (random)
23.5 dB; PIHT (random) 30.8 dB. Displayed bands are 530nm (green, λ = 4), 733nm (deep red, λ = 10) and 935nm (infra
red, λ = 16).

S = 200.

Synthetic Data and Methods Comparison: In this setup, the simulated sensor has a resolu-
tion M of 512×512 pixels. The pixel grid is partitioned in L=16 different subsets corresponding
to 16 FPI at wavelengths ranging between visible and near infra-red light. This paper proposes
to test two different pixel subsets organizations: a mosaic of 128×128 identical 4×4 macro-pixels
as for the existing sensor [6], or a fully scrambled arrangement simply obtained by permuting
randomly the pixel indices over the whole FPA, hence preserving the conditions on masks {Mλ}
(Sec. 2). In Table 1 we compare, for the random case, the 3-D linear interpolation (3DLinterp,
also used as initialization of other methods), with a convex reconstruction method (ABPDN [30]
solved with the algorithm from [31, 32, 33]) and PIHT. Three target resolutions are tested: the
Nyquist rate 128×128×16; an intermediate case (available thanks to our generalized inpainting
formulation) 256×256×16; and a fully compressive (plain inpainting) 512×512×16 setup. The
convex method was stopped after 2000 iterations, possibly before full convergence. This probably
explains its low reconstruction SNR levels. Speed was the main motivation for using a greedy
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N = M N = 4M N = 16M
SNR (dB) time SNR (dB) time SNR (dB) time

3DLinterp 28.3 34′′ 25.3 33′′ 23.5 33′′

ABPDN 30.4 59′29′′ 17.4 2h59′ 15.6 12h52′

PIHT 32.9 4′26′′ 33.6 15′6′′ 30.9 55′3′′

Table 1: Comparison of the initialization x0 (3DLinterp) a convex method (ABPDN) and PIHT in terms of SNR
(dB) and running time for different target sizes, given an acquisition size, on a synthetic example (generated from
the “Fresh Fruit” data set).
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Figure 4: From top to bottom: Naive demosaic; 3DLinterp; PIHT. Displayed bands are 506nm (bluish green, λ = 4),
567nm (green-yellow, λ = 10) and 628nm (red, λ = 16).

method in this work but PIHT SNRs also appeared to clearly outperform those of APBDN in
this setup. Note that when the super-resolution factor N/M increases, while the reconstruction
SNR degrades rapidly for 3DLinterp and ABPDN, it remains almost constant for PIHT. However,
horizontal comparison in the table has to be interpreted with care since the SNR may depend on
N .

On Fig. 3, we fix N = 16M and compare the existing mosaic sensor (rows 2 and 3) with the
random layout (4 and 5). We also compare PIHT (3 and 5) with a naive demosaicing (nearest
neighbor interpolation on each band individually, row 2) and 3DLinterp method (row 4). Observe
first that PIHT gives almost perfect visual quality even if the super-resolution factor N/M is as
high as 16. The advantage of the random pattern over the mosaic is best seen by looking at band
16 and at the spectrum (c) from the edge of the wicker basket. Both naive and 3DLinterp methods
clearly show bad performances compared to PIHT. Finally, for the sake of completeness, we have
added noise to the simulated compressive data and studied the average reconstruction SNR that
was obtained with PIHT in the case N = 4M . For an input SNR of 10 dB, 20 dB and 30 dB, we
observed a reconstruction SNR of 18.9 dB, 27.0 dB and 32.3 dB, respectively, demonstrating the
robustness of the method.

Real Data Reconstruction: Here, the real sensor [6] was used. This imager has a resolution
M of 1024×1024 pixels organized in a mosaic of 256×256 identical 4×4 macro-pixels; each with
L = 16 different FPI at wavelengths of visible light (as in Fig. 1). This time, the results on Fig. 4
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can only be compared qualitatively since no groundtruth is available. The super-resolution factor
N/M here is 4, i.e., we recover a volume with 512×512×16 voxels. The naive method that was
used prior to our work (top row) is clearly the worst. Notice that the performances of 3DLinterp
seems much better than in Fig. 3. However, in the electronic version of this article, you can zoom
on the middle row of Fig. 4 and see a “grid artifact” that is almost completely removed with PIHT
(bottom row).

5 Conclusion

In this paper, a novel hyperspectral imaging technique based on the snapshot imager from [6]
was presented. We proposed a flexible generalized inpainting formulation inspired by compressed
sensing and aiming at demosaicing and increasing the resolution of the acquired data volume.
The formulation permits to choose arbitrarily the targeted resolution, allowing a tradeoff between
quality and size. Randomly scrambling the distribution layout of the Fabry-Pérot interferometers
helped to stabilize further the reconstruction method. We regularized the inpainting problem with
a redundant dictionary analysis sparsity prior and solved it using PIHT, a fast greedy iterative
algorithm. We finally demonstrated the performances of our method, both qualitatively and quan-
titatively, through numerical simulations on synthetic and real data. As in [6], our method allows
fast snapshot acquisition but with respect to the original imager, it dramatically increases the
resulting resolution. The main shortcoming is that spectral resolution is limited to a few wave-
lengths. While it can suffice in many applications, others may require a finer spectral resolution.
This is also a big difference with respect to other research in compressive HSI [10]. Future works
will include filter layout optimization or integration of true spectral filter responses for increased
spectral resolution. Combining PIHT reconstruction with coded aperture compressive FP filtered
HSI architectures [13] is also envisioned.
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[20] G. Peyré, “Advanced signal, image and surface processing,” Ceremade, University Paris-Dauphine,
2010.

[21] R. Giryes, S. Nam, M. Elad, R. Gribonval, and M. E. Davies, “Greedy-like algorithms for the cosparse
analysis model,” Lin. Alg. Appl., 441:22-60, 2014.

[22] R. Giryes and M. Elad, “Iterative Hard Thresholding with Near Optimal Projection for Signal
Recovery,” SampTA ’13, pp. 212–215, 2013.

[23] S. Nam, M.E. Davies, M. Elad, and R. Gribonval, “The cosparse analysis model and algorithms,”
Appl. Comp. Harm. Anal., 34(1)30–56, Jan. 2013.

[24] H. Rauhut, K. Schnass, and P. Vandergheynst, “Compressed Sensing and Redundant Dictionaries,”
IEEE Tran. Inf. Th., 54(5):2210-2219, May 2008.

[25] S. Mallat, “A Wavelet Tour of Signal Processing: The Sparse Way,” Ed. Academic Press, 3rd edition,
2008.

[26] T. Skauli, J. Farrell “A collection of hyperspectral images for imaging systems research,” in Proc.
SPIE, 2013, 8660:86600C.

[27] J. L. Starck, J. Fadili, and F. Murtagh, “The undecimated wavelet decomposition and its reconstruc-
tion,” IEEE Tran. Im. Proc., 16(2):297-309, 2007.

[28] J. Bobin, J.-L. Starck, J. M. Fadili, Y. Moudden, and D. L. Donoho, “Morphological Component
Analysis: An Adaptive Thresholding Strategy,” IEEE Tran. Im. Proc., 16(11):2675-2681, Nov. 2007.

[29] J.-L. Starck, M. Elad, and D. L. Donoho, “Redundant multiscale transforms and their application
for morphological component separation,” Adv. Im. Elec. Ph., 132(82):287-348, 2004.

[30] E. J. Candès, Y. C. Eldar, D. Needell, and P. Randall, “Compressed sensing with coherent and
redundant dictionaries,” Appl. Comp. Harm. Anal., 31(1):59-73, 2011.
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