User menu

Bootstrap testing of the rank of a matrix via least- squared constrained estimation

  1. Arcones M.A., Exploring the Limits of Bootstrap (East Lansing, MI, 1990), Wiley Series in Probability and Statistics, 13 (1992)
  2. Barrios M. Pilar, Velilla Santiago, A bootstrap method for assessing the dimension of a general regression problem, 10.1016/j.spl.2006.07.020
  3. Bentler Peter M., Xie Jun, Corrections to test statistics in principal Hessian directions, 10.1016/s0167-7152(99)00182-0
  4. Bhattacharya R.N., Normal Approximation and Asymptotic Expansions (Wiley Series in Probability and Mathematical Statistics) (1976)
  5. Boos D.D., The American Statistician, 46, 327 (1990)
  6. Bura Efstathia, Cook R. Dennis, Extending Sliced Inverse Regression : the Weighted Chi-Squared Test, 10.1198/016214501753208979
  7. Bura E., Yang J., Dimension estimation in sufficient dimension reduction: A unifying approach, 10.1016/j.jmva.2010.08.007
  8. Cook R. Dennis, Ni Liqiang, Sufficient Dimension Reduction via Inverse Regression : A Minimum Discrepancy Approach, 10.1198/016214504000001501
  9. Cook R.D., Journal of the American Statistical Association, 86, 28 (1991)
  10. Cragg John G., Donald Stephen G., On the Asymptotic Properties of LDU-Based Tests of the Rank of a Matrix, 10.1080/01621459.1996.10476999
  11. Cragg John G., Donald Stephen G., Inferring the rank of a matrix, 10.1016/0304-4076(95)01790-9
  12. Eaton M.L., Tyler D., The Asymptotic Distribution of Singular-Values with Applications to Canonical Correlations and Correspondence Analysis, 10.1006/jmva.1994.1041
  13. Feng Xingdong, He Xuming, Inference on low-rank data matrices with applications to microarray data, 10.1214/09-aoas262
  14. Gill Len, Lewbel Arthur, Testing the Rank and Definiteness of Estimated Matrices with Applications to Factor, State-Space and ARMA Models, 10.1080/01621459.1992.10475278
  15. Hall Peter, The Bootstrap and Edgeworth Expansion, ISBN:9780387945088, 10.1007/978-1-4612-4384-7
  16. Hall P., Presnell B., Intentionally biased bootstrap methods, 10.1111/1467-9868.00168
  17. Hall Peter, Wilson Susan R., Two Guidelines for Bootstrap Hypothesis Testing, 10.2307/2532163
  18. Hu Feifang, Kalbfleisch John D., The estimating function bootstrap, 10.2307/3315958
  19. Kalivas John H., Two data sets of near infrared spectra, 10.1016/s0169-7439(97)00038-5
  20. Kleibergen Frank, Paap Richard, Generalized reduced rank tests using the singular value decomposition, 10.1016/j.jeconom.2005.02.011
  21. Lee John M., Introduction to Smooth Manifolds, ISBN:9780387954486, 10.1007/978-0-387-21752-9
  22. Lele S., Estimating functions (Oxford Statistical Science Series) (Vol. 7), 295 (1991)
  23. Li Bing, Wang Shaoli, On Directional Regression for Dimension Reduction, 10.1198/016214507000000536
  24. Li Ker-Chau, Sliced Inverse Regression for Dimension Reduction, 10.1080/01621459.1991.10475035
  25. Li Ker-Chau, On Principal Hessian Directions for Data Visualization and Dimension Reduction: Another Application of Stein's Lemma, 10.1080/01621459.1992.10476258
  26. Portier François, Delyon Bernard, Optimal transformation: A new approach for covering the central subspace, 10.1016/j.jmva.2012.09.001
  27. Robin J.-M., Econometric Theory, 16, 151 (2000)
  28. van der Vaart A.W., Asymptotic Statistics (Cambridge Series in Statistical and Probabilistic Mathematics) (Vol. 3) (1998)
  29. Wood Andrew T. A., An F Approximation to the Distribution of a Linear Combination of Chi-squared Variables., 10.1080/03610918908812833
  30. Ye Zhishen, Weiss Robert E, Using the Bootstrap to Select One of a New Class of Dimension Reduction Methods, 10.1198/016214503000000927
Bibliographic reference Portier, François ; Delyon, Bernard. Bootstrap testing of the rank of a matrix via least- squared constrained estimation. In: Journal of the American Statistical Association, Vol. 109, no. 505, p. 160-172 (2014)
Permanent URL