User menu

Modelling thermal cycles and intermetallic growth during friction melt bonding of ULC steel to aluminium alloy 2024-T3

  1. Dilthey U., Stein L., Multimaterial car body design: challenge for welding and joining, 10.1179/174329306x85967
  2. van der Rest Camille, Jacques Pascal J., Simar Aude, On the joining of steel and aluminium by means of a new friction melt bonding process, 10.1016/j.scriptamat.2014.01.008
  3. DebRoy T., Bhadeshia H. K. D. H., Friction stir welding of dissimilar alloys – a perspective, 10.1179/174329310x12726496072400
  4. Das H., Jana S. S., Pal T. K., De A., Numerical and experimental investigation on friction stir lap welding of aluminium to steel, 10.1179/1362171813y.0000000166
  5. He Xiaocong, Gu Fengshou, Ball Andrew, A review of numerical analysis of friction stir welding, 10.1016/j.pmatsci.2014.03.003
  6. Simar A., Lecomte-Beckers J., Pardoen T., de Meester B., Effect of boundary conditions and heat source distribution on temperature distribution in friction stir welding, 10.1179/174329306x84409
  7. Simar A., Bréchet Y., de Meester B., Denquin A., Gallais C., Pardoen T., Integrated modeling of friction stir welding of 6xxx series Al alloys: Process, microstructure and properties, 10.1016/j.pmatsci.2011.05.003
  8. De A., Finite element modelling of resistance spot welding of aluminium with spherical tip electrodes, 10.1179/136217102225002998
  9. Deng Dean, FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects, 10.1016/j.matdes.2008.04.052
  10. Kamp N., Sullivan A., Robson J.D., Modelling of friction stir welding of 7xxx aluminium alloys, 10.1016/j.msea.2007.02.070
  11. Bejan A. ‘Heat transfer’; 1993, New York, Wiley and Sons.
  12. Simar A., Pardoen T., de Meester B., Effect of rotational material flow on temperature distribution in friction stir welds, 10.1179/174329307x197584
  13. Bonifaz E.A., Richards N.L., Modeling cast IN-738 superalloy gas tungsten arc welds, 10.1016/j.actamat.2008.12.022
  14. Tesfaye Firdu F. and Taskinen P. ‘Densities of molten and solid alloys of (Fe, Cu, Ni, Co)–S at elevated temperatures, TKK-MT-215’; 2010, Espoo, Aalto University School of Science and Technology.
  15. Carton M. and Geelen S. ‘Caracterisation thermique de l'alliage 2024-T3’; 2004, Liège, University of Liège.
  16. ASM International Handbook Committee: ‘ASM Handbook, Volume 02 – Properties and selection: nonferrous alloys and special-purpose materials’, 10th edn, 1990, Materials Park, OH, ASM International.
  17. Powell R W, Ho C Y, Liley P E, Thermal conductivity of selected materials, 10.6028/nbs.nsrds.8
  18. Juvinall R. C. and K. M. Marshek: ‘Fundamentals of machine component design’, 4th edn; 2006, Hoboken, NJ, Wiley.
  19. Yan Junhui, Sutton M. A., Reynolds A. P., Process–structure–property relationships for nugget and heat affected zone regions of AA2524–T351 friction stir welds, 10.1179/174329305x68778
  20. Moraitis G. A., Labeas G. N., Investigation of friction stir welding process with emphasis on calculation of heat generated due to material stirring, 10.1179/136217109x12537145658779
  21. Khandkar M. Z. H., Khan J. A., Reynolds A. P., Prediction of temperature distribution and thermal history during friction stir welding: input torque based model, 10.1179/136217103225010943
  22. Schmidt H., Hattel J., Modelling heat flow around tool probe in friction stir welding, 10.1179/174329305x36070
  23. Arora A., Acta Mater, 59 (2020)
  24. Terada Yoshihiro, Ohkubo Kenji, Mohri Tetsuo, Suzuki Tomoo, Thermal Conductivity of Intermetallic Compounds with Metallic Bonding, 10.2320/matertrans.43.3167
  25. Kajihara Masanori, Quantitative Evaluation of Interdiffusion in Fe2Al5 during Reactive Diffusion in the Binary Fe–Al System, 10.2320/matertrans.47.1480
  26. GENEVOIS C, DESCHAMPS A, DENQUIN A, DOISNEAUCOTTIGNIES B, Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds, 10.1016/j.actamat.2005.02.007
  27. Tanaka Yasuhiko, Kajihara Masanori, Morphology of Compounds Formed by Isothermal Reactive Diffusion between Solid Fe and Liquid Al, 10.2320/matertrans.m2009128
  28. YIN Fu-cheng, ZHAO Man-xiu, LIU Yong-xiong, HAN Wei, LI Zhi, Effect of Si on growth kinetics of intermetallic compounds during reaction between solid iron and molten aluminum, 10.1016/s1003-6326(13)62499-1
Bibliographic reference Crucifix, S. ; van der Rest, Camille ; Jimenez Mena, Norberto ; Jacques, Pascal ; Simar, Aude. Modelling thermal cycles and intermetallic growth during friction melt bonding of ULC steel to aluminium alloy 2024-T3. In: Science and Technology of Welding and Joining, Vol. 20, no. 4, p. 319-324 (2015)
Permanent URL