User menu

Micromechanics-Based Damage Analysis of Fracture in Ti5553 Alloy with Application to Bolted Sectors

  • Open access
  • PDF
  • 6.66 M
  1. Boyer R.R., Briggs R.D., The Use of β Titanium Alloys in the Aerospace Industry, 10.1361/105994905x75448
  2. Arrazola P.-J., Garay A., Iriarte L.-M., Armendia M., Marya S., Le Maître F., Machinability of titanium alloys (Ti6Al4V and Ti555.3), 10.1016/j.jmatprotec.2008.06.020
  3. Lemaitre Jean, A Continuous Damage Mechanics Model for Ductile Fracture, 10.1115/1.3225775
  4. J. Lemaître and J.L. Chaboche, Mécanique des Matériaux Solides, Dunod, Paris, 1985 [in French]
  5. Gurson A. L., Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media, 10.1115/1.3443401
  6. Tvergaard V., Needleman A., Analysis of the cup-cone fracture in a round tensile bar, 10.1016/0001-6160(84)90213-x
  7. Benzerga A.A., Besson J., Pineau A., Anisotropic ductile fracture, 10.1016/j.actamat.2004.06.019
  8. Scheyvaerts F., Onck P.R., Tekogˇlu C., Pardoen T., The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension, 10.1016/j.jmps.2010.10.003
  9. Pardoen Thomas, Scheyvaerts Florence, Simar Aude, Tekoğlu Cihan, Onck Patrick R., Multiscale modeling of ductile failure in metallic alloys, 10.1016/j.crhy.2010.07.012
  10. Le Roy G., Embury J.D., Edwards G., Ashby M.F., A model of ductile fracture based on the nucleation and growth of voids, 10.1016/0001-6160(81)90185-1
  11. Johnson Gordon R., Cook William H., Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, 10.1016/0013-7944(85)90052-9
  12. F.A. McClintock, S.M. Kaplan, and C.A. Berg, Ductile Fracture by Hole Growth in Shear Bands, Int. J. Fract. Mech., 1966, 2, p 614–627
  13. Rice J.R., Tracey D.M., On the ductile enlargement of voids in triaxial stress fields∗, 10.1016/0022-5096(69)90033-7
  14. Pardoen T., Doghri I., Delannay F., Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars, 10.1016/s1359-6454(97)00247-4
  15. Pardoen T., Delannay F., Assessment of void growth models from porosity measurements in cold-drawn copper bars, 10.1007/s11661-998-0014-4
  16. Marino B., Mudry F., Pineau A., Experimental study of cavity growth in ductile rupture, 10.1016/0013-7944(85)90038-4
  17. Becker R., Needleman A., Richmond O., Tvergaard V., Void growth and failure in notched bars, 10.1016/0022-5096(88)90014-2
  18. Huber G., Brechet Y., Pardoen T., Predictive model for void nucleation and void growth controlled ductility in quasi-eutectic cast aluminium alloys, 10.1016/j.actamat.2005.02.037
  19. LASSANCE D, FABREGUE D, DELANNAY F, PARDOEN T, Micromechanics of room and high temperature fracture in 6xxx Al alloys, 10.1016/j.pmatsci.2006.06.001
  20. M. Ben Bettaieb, Th. Van Hoof, Th. Pardoen, Ph. Dufour, A. Lenain, P.J. Jacques, A.M. Habraken, On the Mechanical Behavior of Ti5553 Alloy: Elasticity and Viscoplasticity, Mater. Sci. Eng. A (accepted)
  21. R. Boyer, G. Welsch, and E.W. Collings, Materials Properties Handbook, Titanium Alloys, ASM International, Materials Park, 1994, p 483
  22. Lütjering Gerd, Williams James C., Titanium, ISBN:9783662132227, 10.1007/978-3-540-71398-2
  23. Semiatin S.L., Seetharaman V., Weiss I., Hot workability of titanium and titanium aluminide alloys—an overview, 10.1016/s0921-5093(97)00776-4
  24. Ding R., Guo Z.X., Wilson A., Microstructural evolution of a Ti–6Al–4V alloy during thermomechanical processing, 10.1016/s0921-5093(01)01531-3
  25. Y. Millet, Journées Technologiques titane, The French Titanium Association, Nantes, 2007 [in French]
  26. F.H. Norton, Creep of Steel at High Temperatures, Mc Grow-Hill, New-York, 1929, p 219
  27. N.J. Hoff, Approximate Analysis of Structures in the Presence of Moderately Large Creep Deformations, Q. Appl. Mech., 1954, 12, p 49–55
  28. J.J. Brioist, Un modèle thermomécanique du refroidissement des pièces de fonderie, PhD Thesis, Ecole Nat. Sup. des Mines de Paris, 1995 [in French]
  29. Vanderhasten M., Rabet L., Verlinden B., Ti–6Al–4V: Deformation map and modelisation of tensile behaviour, 10.1016/j.matdes.2007.06.005
  30. Simar A., Nielsen K.L., de Meester B., Tvergaard V., Pardoen T., Micro-mechanical modelling of ductile failure in 6005A aluminium using a physics based strain hardening law including stage IV, 10.1016/j.engfracmech.2010.06.008
  31. N.N. Popov, A.G. Ivanov, and S.A. Morozov, Effect of Strain Rate on the Resistance of Titanium Alloy VT16 to Plastic Deformation, Probl. Prochnosti., 1986, 8, p 1045–1048
  32. G.V. Stepanov and B.A. Kovalev, Effect of Strain Rate on Strength and Ductility of Titanium Alloys, Probl. Prochnosti., 1980, 5, p 47–49
  33. Lee W.-S., Chen T.-H., Lin C.-F., Lee N.-W., High strain rate shear deformation and fracture behaviour of biomedical titanium alloy, 10.1179/026708309x12526620338232
  34. Lee Woei-Shyan, Lin Chi-Feng, Chen Tao-Hsing, Hwang Hsin-Hwa, Effects of strain rate and temperature on mechanical behaviour of Ti–15Mo–5Zr–3Al alloy, 10.1016/j.jmbbm.2008.01.002
  35. Bryant J.D., Makel D.D., Wilsdorf H.G.F., Observations on the effect of temperature rise at fracture in two titanium alloys, 10.1016/0025-5416(86)90356-3
  36. Singh Nidhi, Singh Vakil, Effect of temperature on tensile properties of near-α alloy Timetal 834, 10.1016/j.msea.2007.07.064
  37. Hancock J.W., Mackenzie A.C., On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states, 10.1016/0022-5096(76)90024-7
  38. Mackenzie A.C., Hancock J.W., Brown D.K., On the influence of state of stress on ductile failure initiation in high strength steels, 10.1016/0013-7944(77)90062-5
  39. Hancock J.W., Brown D.K., On the role of strain and stress state in ductile failure, 10.1016/0022-5096(83)90017-0
  40. D. Holland, A. Halim, and W. Dahl, Influence of Stress Triaxiality Upon Ductile Crack Propagation, Steel Res., 1990, 61, p 504–506
  41. Mirza M. S., Barton D. C., Church P., The effect of stress triaxiality and strain-rate on the fracture characteristics of ductile metals, 10.1007/bf01139164
  42. P.W. Bridgman, The Stress Distribution at the Neck of a Tension Specimen, Trans. ASME, 1944, 32, p 553–574
  43. Zhu Y.Y., Cescotto S., Habraken A-M., A fully coupled elastoplastic damage modeling and fracture criteria in metalforming processes, 10.1016/0924-0136(92)90177-t
  44. Y. Yulan, W. Weiqi, L. Fengli, L. Weiqing, and Z. Yongqiang, The Effect of Aluminum Equivalent and Molybdenum Equivalent on the Mechanical Properties of High Strength and High Toughness Titanium Alloys, Mater. Sci. Forum, 2009, 618–619, p 169–172
  45. Niu H.J., Chang I.T.H., Modeling the effect of porosity on ductile fracture of powder processed titanium alloy, 10.1016/s1359-6462(99)00178-5
  46. Srivatsan T.S, Al-Hajri Meslet, Petraroli M, Derreberry B, Lam P.C, The fracture behavior of a Ti-6242 alloy deformed in bending fatigue, 10.1016/s0921-5093(01)01779-8
  47. Mythili R., Saroja S., Vijayalakshmi M., Study of mechanical behavior and deformation mechanism in an α–β Ti–4.4Ta–1.9Nb alloy, 10.1016/j.msea.2006.11.028
  48. T. Pardoen and A. Pineau, In Comprehensive Structural Integrity Encyclopedia, Chap. 2, Vol 2, Elsevier, Amsterdam, 2007
  49. Beremin F. M., Cavity formation from inclusions in ductile fracture of A508 steel, 10.1007/bf02648336
  50. P.F. Thomason, Ductile Fracture of Metals, Pergamon Press, Oxford, 1990
  51. Lassance D., Scheyvaerts F., Pardoen T., Growth and coalescence of penny-shaped voids in metallic alloys, 10.1016/j.engfracmech.2005.12.004
  52. Worswick M, Void growth and constitutive softening in a periodically voided solid, 10.1016/0022-5096(90)90025-y
  53. Huang Y., Accurate Dilatation Rates for Spherical Voids in Triaxial Stress Fields, 10.1115/1.2897686
  54. Lecarme L., Maire E., Kumar K.C. A., De Vleeschouwer C., Jacques L., Simar A., Pardoen T., Heterogenous void growth revealed by in situ 3-D X-ray microtomography using automatic cavity tracking, 10.1016/j.actamat.2013.10.014
  55. Pardoen T, Hutchinson J.W, An extended model for void growth and coalescence, 10.1016/s0022-5096(00)00019-3
  56. Lecarme L., Tekog˜lu C., Pardoen T., Void growth and coalescence in ductile solids with stage III and stage IV strain hardening, 10.1016/j.ijplas.2011.01.004
  57. Nielsen Kim Lau, Tvergaard Viggo, Ductile shear failure or plug failure of spot welds modelled by modified Gurson model, 10.1016/j.engfracmech.2010.02.031
  58. Yuan Gonglin, Lu Xiwen, An active set limited memory BFGS algorithm for bound constrained optimization, 10.1016/j.apm.2011.01.036
  59. Xiao Yunhai, Zhang Hongchuan, Modified subspace limited memory BFGS algorithm for large-scale bound constrained optimization, 10.1016/
  60. Andrei Neculai, A scaled BFGS preconditioned conjugate gradient algorithm for unconstrained optimization, 10.1016/j.aml.2006.06.015
  61. Morales J.L., A numerical study of limited memory BFGS methods, 10.1016/s0893-9659(01)00162-8
  62. L. Lecarme, Viscoplastic Effects on Damage and Fracture of Titanium Alloy Ti-6A1-4V, PhD Thesis, UCL 2013, Belgium
  63. ABAQUS 6.9, Simulia, Inc., Providence, RI, USA, 2009
Bibliographic reference Ben Bettaieb, Mohamed ; Van Hoof, Thibaut ; Minnebo, Hans ; Pardoen, Thomas ; Dufour, Philippe ; et. al. Micromechanics-Based Damage Analysis of Fracture in Ti5553 Alloy with Application to Bolted Sectors. In: Journal of Materials Engineering and Performance, Vol. 24, no. 3, p. 1262-1278 (March 2015)
Permanent URL