User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Proteomic investigation of aphid honeydew reveals an unexpected diversity of proteins

  • Open access
  • PDF
  • 377.27 K
  1. Wäckers Felix L., Suitability of (extra-)floral nectar, pollen, and honeydew as insect food sources, Plant-Provided Food for Carnivorous Insects ISBN:9780511542220 p.17-74, 10.1017/cbo9780511542220.003
  2. Casas Jerome, Driessen Gerard, Mandon Nicole, Wielaard Sebastiaan, Desouhant Emmanuel, Van Alphen Jacques, Lapchin Laurent, Rivero Ana, Christides Jean Philippe, Bernstein Carlos, Energy dynamics in a parasitoid foraging in the wild, 10.1046/j.1365-2656.2003.00740.x
  3. England Staci, Evans Edward W., Effects of Pea Aphid (Homoptera: Aphididae) Honeydew on Longevity and Fecundity of the Alfalfa Weevil (Coleoptera: Curculionidae) Parasitoid Bathyplectes curculionis (Hymenoptera: Ichneumonidae) , 10.1093/ee/26.6.1437
  4. Evans Edward W., Egg production in response to combined alternative foods by the predator Coccinella transversalis, 10.1046/j.1570-7458.2000.00614.x
  5. Idoine Karen, Ferro David N., Aphid Honeydew as a Carbohydrate Source for Edovum puttleri (Hymenoptera: Eulophidae) , 10.1093/ee/17.6.941
  6. Lee Jana C., Heimpel George E., Leibee Gary L., Comparing floral nectar and aphid honeydew diets on the longevity and nutrient levels of a parasitoid wasp, 10.1111/j.0013-8703.2004.00165.x
  7. Nomikou Maria, Janssen Arne, Sabelis Maurice W., Phytoseiid predators of whiteflies feed and reproduce on non-prey food sources, 10.1023/b:appa.0000005142.31959.e8
  8. Singh R, Singh K, Upadhyay B (2000) Honeydew as a food source for an aphid parasitoid Lipolexis scutellaris Mackauer (Hymenoptera: Braconidae). J Adv Zool 21.
  9. F Wäckers, IOBC WPRS Bull, 26, 203 (2003)
  10. Kloft W, Maurizio A, Kaeser W (1985) Waldtracht und waldhonig in der imkerei: Ehrenwirth Verlag, München.
  11. Gilbert Francis, Jervis Mark, Functional, evolutionary and ecological aspects of feeding-related mouthpart specializations in parasitoid flies, 10.1111/j.1095-8312.1998.tb00327.x
  12. T Markwell, New Zeal J Ecol, 17, 85 (1993)
  13. H Moller, Forest&Bird, 18, 14 (1987)
  14. N Elliott, J Kans Entomol Soc, 60, 25 (1987)
  15. G Zoebelein, 38, 369 (1955)
  16. Wackers F. L., Do oligosaccharides reduce the suitability of honeydew for predators and parasitoids? A further facet to the function of insect-synthesized honeydew sugars, 10.1034/j.1600-0706.2000.900124.x
  17. Saheed Sefiu Adekilekun, Botha Christiaan Edward Johannes, Liu Lin, Jonsson Lisbeth, Comparison of structural damage caused by Russian wheat aphid (Diuraphis noxia) and Bird cherry-oat aphid (Rhopalosiphum padi) in a susceptible barley cultivar, Hordeum vulgare cv. Clipper, 10.1111/j.1399-3054.2006.00821.x
  18. SMITH KENNETH M., A COMPARATIVE STUDY OF THE FEEDING METHODS OF CERTAIN HEMIPTERA AND OF THE RESULTING EFFECTS UPON THE PLANT TISSUE, WITH SPECIAL REFERENCE TO THE POTATO PLANT, 10.1111/j.1744-7348.1926.tb04254.x
  19. Spiller N.J., Koenders L., Tjallingii W.F., Xylem ingestion by aphids - a strategy for maintaining water balance, 10.1111/j.1570-7458.1990.tb01352.x
  20. Auclair Jacques L., Aphid Feeding and Nutrition, 10.1146/annurev.en.08.010163.002255
  21. Fischer M. K., Shingleton A. W., Host plant and ants influence the honeydew sugar composition of aphids, 10.1046/j.0269-8463.2001.00550.x
  22. D Hendrix, Comp Biochem Physiol, 101B, 23 (1992)
  23. A Karley, J Exp Biol, 205, 3009 (2002)
  24. DOUGLAS A. E., The nutritional quality of phloem sap utilized by natural aphid populations, 10.1111/j.1365-2311.1993.tb01076.x
  25. Mittler T (1958) Studies on the feeding and nutrition of Tuberolachnus salignus II. The nitrogen and sugar composition of ingested phloem sap and excreted honeydew. J Exp Biol 35.
  26. N Arakaki, Appl Entomol Zool, 33, 357 (1998)
  27. Fischer Melanie K., Völkl Wolfgang, Schopf Reinhard, Hoffmann Klaus H., Age-specific patterns in honeydew production and honeydew composition in the aphid Metopeurum fuscoviride: implications for ant-attendance, 10.1016/s0022-1910(01)00179-2
  28. Leroy P, Wathelet B, Sabri A, Francis F, Verheggen F, et al.. (2011) Aphid-host plant interactions: does aphid honeydew exactly reflect the host plant amino acid composition? Arthropod Plant Interact: 1–7.
  29. Sandström J, Telang A, Moran N.A, Nutritional enhancement of host plants by aphids — a comparison of three aphid species on grasses, 10.1016/s0022-1910(99)00098-0
  30. Faria Cristina A., Wäckers Felix L., Turlings Ted C.J., The nutritional value of aphid honeydew for non-aphid parasitoids, 10.1016/j.baae.2007.02.001
  31. Way M. J., Mutualism Between Ants and Honeydew-Producing Homoptera, 10.1146/annurev.en.08.010163.001515
  32. Yao Izumi, Akimoto Shin-ichi, Ant attendance changes the sugar composition of the honeydew of the drepanosiphid aphid Tuberculatus quercicola , 10.1007/s004420100633
  33. Yao Izumi, Akimoto Shin-Ichi, Flexibility in the composition and concentration of amino acids in honeydew of the drepanosiphid aphid Tuberculatus quercicola, 10.1046/j.1365-2311.2002.00455.x
  34. T Wilkinson, J Exp Biol, 200, 2137 (1997)
  35. Cloutier Conrad, Amino acid utilization in the aphid Acyrthosiphon pisum infected by the parasitoid Aphidius smithi, 10.1016/0022-1910(86)90037-5
  36. Malcolm Stephen B., Chemical defence in chewing and sucking insect herbivores: Plant-derived cardenolides in the monarch butterfly and oleander aphid, 10.1007/bf01240581
  37. Hogervorst P, Wäckers F, Romeis J (2007) Effects of honeydew sugar composition on the longevity of Aphidius ervi. Entomol Exp Appl 122.
  38. Woodring J., Wiedemann R., Fischer M. K., Hoffmann K. H., Volkl W., Honeydew amino acids in relation to sugars and their role in the establishment of ant-attendance hierarchy in eight species of aphids feeding on tansy (Tanacetum vulgare), 10.1111/j.0307-6962.2004.00386.x
  39. Sasaki Tetsuhiko, Aoki Toshio, Hayashi Hiroaki, Ishikawa Hajime, Amino acid composition of the honeydew of symbiotic and aposymbiotic pea aphids Acyrthosiphon pisum, 10.1016/0022-1910(90)90148-9
  40. Shigenobu Shuji, Wilson Alex C. C., Genomic revelations of a mutualism: the pea aphid and its obligate bacterial symbiont, 10.1007/s00018-011-0645-2
  41. Wilson A. C. C., Ashton P. D., Calevro F., Charles H., Colella S., Febvay G., Jander G., Kushlan P. F., Macdonald S. J., Schwartz J. F., Thomas G. H., Douglas A. E., Genomic insight into the amino acid relations of the pea aphid, Acyrthosiphon pisum, with its symbiotic bacterium Buchnera aphidicola : Amino acid metabolism genes in the pea aphid symbiosis, 10.1111/j.1365-2583.2009.00942.x
  42. Hansen A. K., Moran N. A., Aphid genome expression reveals host-symbiont cooperation in the production of amino acids, 10.1073/pnas.1013465108
  43. Felix Georg, Duran Juliana D., Volko Sigrid, Boller Thomas, Plants have a sensitive perception system for the most conserved domain of bacterial flagellin : Plants perceive a conserved domain of bacterial flagellin, 10.1046/j.1365-313x.1999.00265.x
  44. Taguchi Fumiko, Shimizu Rena, Inagaki Yoshishige, Toyoda Kazuhiro, Shiraishi Tomonori, Ichinose Yuki, Post-Translational Modification of Flagellin Determines the Specificity of HR Induction, 10.1093/pcp/pcg042
  45. Zipfel Cyril, Kunze Gernot, Chinchilla Delphine, Caniard Anne, Jones Jonathan D.G., Boller Thomas, Felix Georg, Perception of the Bacterial PAMP EF-Tu by the Receptor EFR Restricts Agrobacterium-Mediated Transformation, 10.1016/j.cell.2006.03.037
  46. Kunze G., The N Terminus of Bacterial Elongation Factor Tu Elicits Innate Immunity in Arabidopsis Plants, 10.1105/tpc.104.026765
  47. Chinchilla D., The Arabidopsis Receptor Kinase FLS2 Binds flg22 and Determines the Specificity of Flagellin Perception, 10.1105/tpc.105.036574
  48. Zipfel Cyril, Early molecular events in PAMP-triggered immunity, 10.1016/j.pbi.2009.06.003
  49. Lund PA (2001) Microbial molecular chaperones. Advances in Microbial Physiology: Academic Press. pp. 93–140.
  50. Kanzaki H., Saitoh H., Ito A., Fujisawa S., Kamoun S., Katou S., Yoshioka H., Terauchi R., Cytosolic HSP90 and HSP70 are essential components of INF1-mediated hypersensitive response and non-host resistance to Pseudomonas cichorii in Nicotiana benthamiana, 10.1046/j.1364-3703.2003.00186.x
  51. Baumann Paul, Baumann Linda, Clark Marta A., Levels of Buchnera aphidicola Chaperonin GroEL During Growth of the Aphid Schizaphis graminum, 10.1007/s002849900050
  52. Sabri Ahmed, Hance Thierry, Leroy Pascal D., Frère Isabelle, Haubruge Eric, Destain Jacqueline, Compère Philippe, Thonart Philippe, Placenta-Like Structure of the Aphid Endoparasitic Wasp Aphidius ervi: A Strategy of Optimal Resources Acquisition, 10.1371/journal.pone.0018847
  53. Kay Adam, APPLYING OPTIMAL FORAGING THEORY TO ASSESS NUTRIENT AVAILABILITY RATIOS FOR ANTS, 10.1890/0012-9658(2002)083[1935:aoftta]2.0.co;2
  54. Kay A., The relative availabilities of complementary resources affect the feeding preferences of ant colonies, 10.1093/beheco/arg106
  55. Tsuchida Tsutomu, Koga Ryuichi, Shibao Harunobu, Matsumoto Tadao, Fukatsu Takema, Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum, 10.1046/j.1365-294x.2002.01606.x
  56. Perkins David N., Pappin Darryl J. C., Creasy David M., Cottrell John S., Probability-based protein identification by searching sequence databases using mass spectrometry data, 10.1002/(sici)1522-2683(19991201)20:18<3551::aid-elps3551>3.0.co;2-2
Bibliographic reference Sabri, Ahmed ; Vandermoten, Sophie ; Leroy, Pascal D. ; Haubruge, Eric ; Hance, Thierry ; et. al. Proteomic investigation of aphid honeydew reveals an unexpected diversity of proteins. In: PLoS One, Vol. 8, no.9, p. e74656 (2013)
Permanent URL http://hdl.handle.net/2078.1/134289