User menu

Accès à distance en utilisant le proxy de l'UCL :

In vitro lipolysis and intestinal transport of β-arteether-loaded lipid-based drug delivery systems

  1. WHO. Guidelines of the treatement of malaria; 2010.
  2. Li Q, Lugt CB, Looareesuwan S, Krudsood S, Wilairatana P, Vannaphan S, et al. Pharmacokinetic investigation on the therapeutic potential of artemotil (beta-arteether) in Thai patients with severe Plasmodium falciparum malaria. Am J Trop Med Hyg. 2004;71(6):723–31.
  3. Memvanga Patrick B., Préat Véronique, Formulation design and in vivo antimalarial evaluation of lipid-based drug delivery systems for oral delivery of β-arteether, 10.1016/j.ejpb.2012.05.004
  4. O'Driscoll C.M., Griffin B.T., Biopharmaceutical challenges associated with drugs with low aqueous solubility—The potential impact of lipid-based formulations, 10.1016/j.addr.2007.10.012
  5. Cuiné Jean F., McEvoy Claire L., Charman William N., Pouton Colin W., Edwards Glenn A., Benameur Hassan, Porter Christopher J.H., Evaluation of the Impact of Surfactant Digestion on the Bioavailability of Danazol after Oral Administration of Lipidic Self-Emulsifying Formulations to Dogs, 10.1002/jps.21246
  6. Larsen Anne T., Sassene Philip, Müllertz Anette, In vitro lipolysis models as a tool for the characterization of oral lipid and surfactant based drug delivery systems, 10.1016/j.ijpharm.2011.03.002
  7. Dahan Arik, Hoffman Amnon, Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs, 10.1016/j.jconrel.2008.03.021
  8. Sassene Philip J., Knopp Matthias M., Hesselkilde Janne Z., Koradia Vishal, Larsen Anne, Rades Thomas, Müllertz Anette, Precipitation of a Poorly Soluble Model Drug during In Vitro Lipolysis: Characterization and Dissolution of the Precipitate, 10.1002/jps.22226
  9. Thomas Nicky, Müllertz Anette, Graf Anja, Rades Thomas, Influence of Lipid Composition and Drug Load on the In Vitro Performance of Self-Nanoemulsifying Drug Delivery Systems, 10.1002/jps.23054
  10. Porter C, Intestinal lymphatic drug transport: an update, 10.1016/s0169-409x(01)00151-x
  11. Jantratid Ekarat, Janssen Niels, Reppas Christos, Dressman Jennifer B., Dissolution Media Simulating Conditions in the Proximal Human Gastrointestinal Tract: An Update, 10.1007/s11095-008-9569-4
  12. SABARINATH S, Simultaneous quantification of α-/β-diastereomers of arteether, sulphadoxine and pyrimethamine: A promising anti-relapse antimalarial therapeutic combination, by liquid chromatography tandem mass spectrometry☆, 10.1016/j.jchromb.2006.05.003
  13. Rieux Anne des, Ragnarsson Eva G.E., Gullberg Elisabet, Préat Véronique, Schneider Yves-Jacques, Artursson Per, Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium, 10.1016/j.ejps.2005.04.015
  14. Lesuffleur T, Porchet N, Aubert JP, Swallow D, Gum JR, Kim YS, et al. Differential expression of the human mucin genes MUC1 to MUC5 in relation to growth and differentiation of different mucus-secreting HT-29 cell subpopulations. J Cell Sci. 1993;106(Pt 3):771–83.
  15. Hilgendorf Constanze, Spahn‐Langguth Hildegard, Regårdh Carl G., Lipka Elke, Amidon Gordon L., Langguth Peter, Caco‐2 versus Caco‐2/HT29‐MTX Co‐cultured Cell Lines: Permeabilities Via Diffusion, Inside‐ and Outside‐Directed Carrier‐Mediated Transport, 10.1002/(sici)1520-6017(200001)89:1<63::aid-jps7>;2-6
  16. des Rieux Anne, Fievez Virginie, Théate Ivan, Mast Jan, Préat Véronique, Schneider Yves-Jacques, An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells, 10.1016/j.ejps.2006.12.006
  17. des Rieux Anne, Fievez Virginie, Garinot Marie, Schneider Yves-Jacques, Préat Véronique, Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach, 10.1016/j.jconrel.2006.08.013
  18. Nollevaux Géraldine, Devillé Christelle, El Moualij Benaïssa, Zorzi Willy, Deloyer Patricia, Schneider Yves-Jacques, Peulen Olivier, Dandrifosse Guy, 10.1186/1471-2121-7-20
  19. Cuiné Jean F., Charman William N., Pouton Colin W., Edwards Glenn A., Porter Christopher J. H., Increasing the Proportional Content of Surfactant (Cremophor EL) Relative to Lipid in Self-emulsifying Lipid-based Formulations of Danazol Reduces Oral Bioavailability in Beagle Dogs, 10.1007/s11095-006-9194-z
  20. Fatouros Dimitrios G., Deen G. Roshan, Arleth Lise, Bergenstahl Bjorn, Nielsen Flemming Seier, Pedersen Jan Skov, Mullertz Anette, Structural Development of Self Nano Emulsifying Drug Delivery Systems (SNEDDS) During In Vitro Lipid Digestion Monitored by Small-angle X-ray Scattering, 10.1007/s11095-007-9304-6
  21. Chakraborty Subhashis, Shukla Dali, Mishra Brahmeshwar, Singh Sanjay, Lipid – An emerging platform for oral delivery of drugs with poor bioavailability, 10.1016/j.ejpb.2009.06.001
  22. Porter Christopher J. H., Trevaskis Natalie L., Charman William N., Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs, 10.1038/nrd2197
  23. Trevaskis Natalie L., Charman William N., Porter Christopher J.H., Lipid-based delivery systems and intestinal lymphatic drug transport: A mechanistic update, 10.1016/j.addr.2007.09.007
  24. Anton Nicolas, Vandamme Thierry F., Nano-emulsions and Micro-emulsions: Clarifications of the Critical Differences, 10.1007/s11095-010-0309-1
  25. Mohsin Kazi, Long Michelle A., Pouton Colin W., Design of Lipid-Based Formulations for Oral Administration of Poorly Water-Soluble Drugs: Precipitation of Drug after Dispersion of Formulations in Aqueous Solution, 10.1002/jps.21659
  26. Dahan Arik, Hoffman Amnon, Use of a Dynamic in Vitro Lipolysis Model to Rationalize Oral Formulation Development for Poor Water Soluble Drugs: Correlation with in Vivo Data and the Relationship to Intra-Enterocyte Processes in Rats, 10.1007/s11095-006-9054-x
  27. Kossena Greg A., Charman William N., Boyd Ben J., Dunstan Dave E., Porter Christopher J.H., Probing drug solubilization patterns in the gastrointestinal tract after administration of lipid‐based delivery systems: A phase diagram approach, 10.1002/jps.10554
  28. Porter Christopher J. H., Kaukonen Ann Marie, Boyd Ben J., Edwards Glenn A., Charman William N., Susceptibility to Lipase-Mediated Digestion Reduces the Oral Bioavailability of Danazol After Administration as a Medium-Chain Lipid-Based Microemulsion Formulation, 10.1023/
  29. Christiansen Anne, Backensfeld Thomas, Weitschies Werner, Effects of non-ionic surfactants on in vitro triglyceride digestion and their susceptibility to digestion by pancreatic enzymes, 10.1016/j.ejps.2010.07.005
  30. Gargouri Y, Julien R, Bois AG, Verger R, Sarda L. Studies on the detergent inhibition of pancreatic lipase activity. J Lipid Res. 1983;24(10):1336–42.
  31. Kaukonen Ann Marie, Boyd Ben J., Porter Christopher J. H., Charman William N., Drug Solubilization Behavior During in Vitro Digestion of Simple Triglyceride Lipid Solution Formulations, 10.1023/b:pham.0000016282.77887.1f
  32. Augustijns P., D'Hulst A., Van Daele J., Kinget R., Transport of Artemisinin and Sodium Artesunate in Caco-2 Intestinal Epithelial Cells, 10.1021/js960001i
  33. Artursson Per, Palm Katrin, Luthman Kristina, Caco-2 monolayers in experimental and theoretical predictions of drug transport1PII of original article: S0169-409X(96)00415-2. The article was originally published in Advanced Drug Delivery Reviews 22 (1996) 67–84.1, 10.1016/s0169-409x(00)00128-9
  34. O’Driscoll Caitriona M., Lipid-based formulations for intestinal lymphatic delivery, 10.1016/s0928-0987(02)00051-9
  35. Trotter PJ, Ho SY, Storch J. Fatty acid uptake by Caco-2 human intestinal cells. J Lipid Res. 1996;37(2):336–46.
  36. Frenkel Yulia Volovik, Clark, Arthur D., Das Kalyan, Wang Yuh-Hwa, Lewi Paul J., Janssen Paul A. J., Arnold Eddy, Concentration and pH Dependent Aggregation of Hydrophobic Drug Molecules and Relevance to Oral Bioavailability, 10.1021/jm049439i
  37. Singh Chandan, Chaudhary Sandeep, Puri Sunil K., New Orally Active Derivatives of Artemisinin with High Efficacy against Multidrug-Resistant Malaria in Mice1, 10.1021/jm060826x
  38. Nielsen Lise Sylvest, Schubert Lene, Hansen Jens, Bioadhesive drug delivery systems, 10.1016/s0928-0987(97)10004-5
  39. Gershanik Tatyana, Benzeno Sharon, Benita Simon, 10.1023/a:1011968313933
  40. Lai Samuel K., Wang Ying-Ying, Hanes Justin, Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues, 10.1016/j.addr.2008.11.002
  41. Gangloff Mary Beth, Glahn Raymond P., Miller Dennis D., Van Campen Darrell R., Assessment of iron availability using combined in vitro digestion and Caco-2 cell culture, 10.1016/0271-5317(96)00029-2
  42. Garrett Dean A., Failla Mark L., Sarama Robert J., Development of an in Vitro Digestion Method To Assess Carotenoid Bioavailability from Meals, 10.1021/jf9903298
  43. Beloqui Ana, Solins Mara ngeles, Gascn Alicia R., del Pozo-Rodrguez Ana, des Rieux Anne, Prat Vronique, Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal barrier, 10.1016/j.jconrel.2012.12.021
  44. Ingels F, Beck B, Oth M, Augustijns P, Effect of simulated intestinal fluid on drug permeability estimation across Caco-2 monolayers, 10.1016/j.ijpharm.2004.01.014
  45. Seeballuck Fergal, Lawless Emma, Ashford Marianne B., O’Driscoll Caitriona M., Stimulation of Triglyceride-Rich Lipoprotein Secretion by Polysorbate 80: In Vitro and in Vivo Correlation Using Caco-2 Cells and a Cannulated Rat Intestinal Lymphatic Model, 10.1007/s11095-004-7684-4
Bibliographic reference Memvanga Bondo, Patrick ; Eloy, Pierre ; Gaigneaux, Eric M. ; Préat, Véronique. In vitro lipolysis and intestinal transport of β-arteether-loaded lipid-based drug delivery systems. In: Pharmaceutical Research, Vol. 30, no. 10, p. 2694-2705 (2013)
Permanent URL