
Correlation attacks on the Tor network

Dissertation presented by
Henri CROMBÉ , Mallory DECLERCQ

for obtaining the Master’s degree in
Computer Science

Supervisor
Olivier PEREIRA

Readers
Marco CANINI, Florentin ROCHET

Academic year 2015-2016

Abstract

Internet privacy has become one of the most important concepts of our time. People are
worried about the surveillance of their digital communications and are in need of reliable
tools to preserve their anonymity as well as the privacy and the integrity of their com-
munications. Researches have been made to design and set up such reliable systems and
The Onion Router (Tor) is one of them. Like many other systems, Tor is far from being
perfect and may be subject to traffic correlation attacks. Such attacks can be carried out
using a variety of methods and approaches.

In this context, we develop the threat-model of an adversary supervising Tor relays
and carrying correlation attacks using Tor log files. Three different correlation meth-
ods are implemented and their performances are evaluated on reduced-size Tor networks
simulated with the Shadow simulation tool. The performances are evaluated consider-
ing different client models and reveal what method is more suitable for the adversary.
Furthermore, the document develops the procedure an adversary could follow in order to
carry out the attacks in a realistic environment.

The results we obtained through simulations suggest that an adversary could conve-
niently use the Tor log files generated by Tor controller to perform successful end-to-end
correlation attacks against the different client models. Furthermore, the results also sug-
gest that among the three correlation methods that were implemented, one was surely
more reliable than the other. The results eventually illustrate that the most reliable
correlation method performs well against every client models that were simulated. This
suggests that Tor users can either do some instant-messaging, web-surfing or even down-
load some large files, they are almost under the same level of threat.

Acknowledgements

First of all, we would like to express our gratitude to our supervisors, Prof. Olivier Pereira
and Florentin Rochet, for their availability and their valuable feedback throughout this
thesis year. They put their faith in us and always urged us to do better in order to
accomplish a meaningful work.

We also would like to thank Prof. Marco Canini, who agreed to take part to this thesis
by spending his precious time reading and evaluating our work.

In addition, we are thoroughly grateful to Rob Jansen for his inestimable help and in-
sights regarding the comprehension, the utilization and the customization of the Shadow
simulation tool. We can’t tell how many times he assisted us when we were struggling
setting up proper simulations.

Last but not least, we would like to thank all our friends and families for their encour-
agement and their support through this year. Particularly Sylviane de Wilde who spent
her time reading our work pointing out our English mistakes.

Contents

1 Introduction 4
1.1 Contributions . 5

2 Background 6
2.1 Tor nodes . 7
2.2 Path selection . 8
2.3 Entry guard . 9
2.4 Tor cells . 10
2.5 Circuit construction . 11
2.6 Attacks on the Tor network . 13

2.6.1 State of the Art . 13
2.6.2 Traffic correlation techniques . 17
2.6.3 Developed end-to-end correlation attack 20

3 Simulating the Tor network 26
3.1 Tor experimentation tools . 26
3.2 The Shadow simulator . 27
3.3 Developed plugin . 28
3.4 Simulations set-up . 28
3.5 Circuit mapping . 30
3.6 Simulation analysis . 31

4 Threat analysis 34
4.1 Experimental set-up . 34

4.1.1 Basic approach . 35
4.1.2 Packet counting . 36
4.1.3 Cross-correlation . 37

4.2 Evaluation methodology . 37
4.3 Global adversary . 38

4.3.1 Basic approach . 39
4.3.2 Packet counting . 41
4.3.3 Cross-correlation . 42
4.3.4 Comparison of the correlation techniques 42

4.4 Blind adversary . 46
4.5 Discussion and Further work . 48

5 Conclusion 50

1

List of Figures

2.1 Control cell structure. 10
2.2 Relay cell structure. 11
2.3 Three-hop circuit construction in the Tor network. 12
2.4 Examples of cross-correlation coefficient . 19
2.5 Internal architecture of cell processing inside a Tor relay. 21
2.6 Example of HTTP GET request sent over Tor using the Onion Proxy. . . . 22
2.7 Example of TCP connections observable by a relay adversary who controls

entry and exit relays in the Tor network. 23
2.8 Example of cell traffic patterns observable by an adversary who controls

entry and exit relays in the Tor network. The colored lines represent Tor
circuits and the doted lines represent the TCP connections that carry the
circuits. Black lines represent connections to a remote peer, a web server
in this case. 24

3.1 Modified Tor circuit construction protocol. The red square represents the
IPv4 address of the Onion Proxy and the unique circuit ID that will be
used by the OP to identify this circuit. 30

3.2 Performance comparison between the live Tor network and the Shadow
simulations when downloading 50 KiB files. 32

3.3 Performance comparison between the live Tor network and the Shadow
simulations when downloading 1 MiB files. 32

3.4 Performance comparison between the live Tor network and the Shadow
simulations when downloading 5 MiB files. 32

4.1 Graphs of the false positive and negative rates obtained with the basic
approach for every type of client when varying the threshold between 0
and 1. The equal error rate is shown where the FPR and FNR curves
intersect. 39

4.2 Graphs of the false positive and negative rates obtained with packet count-
ing technique for every type of client when varying the threshold between
0 and 1. The equal error rate is shown where the FPR and FNR curves
intersect. 41

4.3 Graphs of the false positive and negative rates obtained with cross-correlation
technique for every type of client when varying the threshold between -1
and 1. The equal error rate is shown where the FPR and FNR curves
intersect. 42

2

List of Tables

2.1 Categories of cross-correlation coefficient 19

4.1 Summary of EERs obtained for each type of correlation technique and traffic. 43
4.2 Summary of FPR, FNR and P (I = J |I ∼ J) for every correlation tech-

niques when fixing the threshold such that it maximize the probability
P (I = J |I ∼ J) for a given type of client. 44

4.3 Summary of FPR, FNR and P (I = J |I ∼ J) for each type of traffics and
correlation techniques when fixing the threshold that maximizes the chance
of correlating Web clients. 47

4.4 Probability of correctly matching related circuits when the client distri-
bution respects the following ratios : 93%, 5%, 1% and 1% of chance to
respectively encounter a web, a bulk, a ssh or a irc client 48

3

Chapter 1

Introduction

Nowadays, many people agree to say that online anonymity is a fundamental notion
to protect privacy and freedom of speech. This concept allows people to express their
points of view on sensitive topics without fearing repercussions. Moreover, it prevents
ill-intended individuals and unscrupulous marketers from intruding into people’s private
lives for commercial, political or any other purposes. Therefore, to benefit from on-
line anonymity, more and more people start using sophisticated tools to protect their
anonymity on the Internet [45]. The Onion Router, Tor, is one example of such a tool
and refers to a low-latency network designed to anonymize the traffic of interactive appli-
cations such as web browsing and instant messaging [15]. At this time, it is used every
day for a wide variety of purposes by military, journalists, activists, and many others.
Obviously, it is also totally suitable for common people that want to protect their privacy
from unscrupulous marketers, identity thieves or national and international surveillance.

Basically, Tor provides anonymity to its users by encrypting their communications
multiple times and by bouncing them around a vast network of more than 7000 relays ran
by volunteers all around the world. Those layers of encryption coupled with the fact that
Tor’s traffic passes through at least three different relays (each of them only knows the
identity of the previous and the next relay in the network) before reaching the final desti-
nation are supposed to prevent anyone watching your Internet connection from learning
what sites you visit, as well as preventing the sites you visit from learning your physical
location.

Nonetheless, as stated by its designers, Tor like any other low-latency anonymity net-
works fails to provide 100% anonymity in all situations [2]. This is particularly true when
an adversary manages to simultaneously control or observe both the entry and the exit
side of a communication passing through the anonymity network. Since, in such a case,
the adversary, by relying on some correlation techniques and some statistics on the ob-
servable traffics, is able to discover with whom a given user interacts. Those kinds of
attacks are usually called end-to-end correlation attacks or end-to-end confirmation at-
tacks in the literature. They suggest that Tor users privacy and anonymity are at risk
since they permit to link the source and the destination of anonymous communications.

In the context of this thesis, we investigate the feasibility and evaluate the threat of
end-to-end correlation attacks performed by a relay adversary. To achieve this objective,
we start in chapter 2 by laying the foundation of the Tor anonymity scheme and by

4

providing the reader with a few technical information about Tor’s design. We also present
in chapter 2 some related works regarding end-to-end correlation attacks. The overall goal
of this chapter is to familiarize the reader with Tor and the correlation attacks so that it
will be easier for him to understand the implementation of the developed attacks described
in section 2.6.3. In Chapter 3, we explain why we have chosen Shadow as simulation tool
and we describe how we have generated our topologies to evaluate the efficiency of the
developed attack against four distinct user models : web surfing, bulk download, irc and
ssh session. Afterwards, in chapter 4, we present three distinct correlation techniques
supported by our attack. We compare the efficiency and the accuracy of each of those
techniques over two adversary models. Firstly, a model in which the adversary controls
all relays of the network and has some prior knowledge about the type of traffics flowing
in the network. Then, we consider a more realistic model in which the adversary still
controls all relays of the network but doesn’t know in advance the type of the transiting
traffics. Finally, based on the results obtained for the second adversary model, we identify
which correlation technique is best suited to deanonymize users in the live Tor network
and we infer how vulnerable is the anonymity of Tor users against end-to-end correlation
attacks.

1.1 Contributions
This thesis presents the implementation of three versions of an end-to-end correlation
attack performed by a relay adversary. Initially, the efficiency of each version is evaluated
over four user models : web surfing, bulk download, ssh and IRc. And an unrealistic
adversary model is considered. The purpose of this step is to determine which version of
the attack is the best when an adversary controls each relay of the network and knows in
advance the type of the transiting traffics. Somehow, this step gives a first insight about
how vulnerable each type of traffic is and which version of the attack seems the best
suited to break user’s anonymity. Then, as this last adversary model is far from the one
achievable in the live Tor network, a more realistic one is taken into account to determine
which version of the attack should be implemented in the live Tor network in order to
increase the chances of an attacker to unveil Tor users anonymity. The results obtained
with this last step give an order of idea of the level threat of end-to-end correlation attacks
against users anonymity as well as the most efficient correlation technique among the three
that were implemented and tested.

5

Chapter 2

Background

This chapter aims to give an overview of the Tor network to the reader. It briefly de-
scribes the set of devices presents in the network, as well as, all technical parts that we
find relevant to understand the implementation of our end-to-end correlation attack. In
addition to that, a state of the art is depicted to introduce some related works about
end-to-end correlation attacks. Finally, the last section of the chapter presents the threat
model of the developed attack.

When the Internet Protocol (IP) was first designed, the protocol’s designers didn’t
have privacy and anonymity of the communications in mind. This has resulted in a global
network where every communication could be traced down from their source to their
destination. Any observers placed on the network could learn who was communicating
with whom, and if the communication was not encrypted, he could even understand what
the content was about. The observer could be an Internet Service Provider (ISP) that
wants to make money on their clients web history or a government that wants to filter
or analyse its internal or international communications. The observer could also be an
adversary eavesdropping a limited amount of communications. To address these issues of
peers anonymity and communication confidentiality, a wide range of protection schemes
have been proposed.

The first common way for an Internet user to hide his identity is to use a public
proxy. The proxy is used as an intermediary between the communicating peers to prevent
malicious observers to know who is really behind a given traffic stream. However, this
solution is not completely safe considering that the proxy’s provider could leak or reveal
the proxy’s logs, exposing the user’s identity and communications. Furthermore, the logs
could be retrieved by hacking or worse, the proxy could be managed by the people the
user wants to hide from. Therefore, an Internet user must choose another approach to
ensure his privacy. A safer solution would be to encrypt the traffic multiple times, then
bounce it through different network nodes, before sending it to the legitimate receiver. By
this way, it would be more complicated for an adversary to find the communicating peers.
This kind of anonymity schemes can be split into two distinct categories : high-latency
and low-latency systems.

With high-latency anonymous networks, communications are forwarded through dif-
ferent nodes and are purposely delayed for a pseudo-random period of time. Considering
that the latency in these kind of networks is very high, they are not used for typical

6

web-browsing but rather to send messages that don’t suffer from the delay. The goal
of adding such delays is to ensure the anonymity against traffic analysis attacks led by
large observers. Alternatively, low-latency systems, like the Tor network, aim to reduce
the communication delays while still providing peers anonymity. Therefore, low-latency
protocols are preferred when the communication needs fast or real-time responses (web
authentication, web-browsing, . . .) whereas high-latency protocols are preferred for com-
munications tolerating some delay.

The Tor network is one implementation of a low-latency anonymous network. Its
objective is to provide anonymity and privacy over Internet for applications running over
TCP while preserving a relative good user-experience. To achieve this, it relies on the
implementation of the Onion Routing protocol. With Onion Routing, users can choose
their path in the anonymous network and build a corresponding circuit where every node
is only aware of its successor and predecessor nodes. The traffic goes through the circuit by
the mean of encrypted fixed-size cells that are decrypted and forwarded at each node [15].
This Onion Routing protocol makes use of telescopic path-building design to establish
reliable circuits. Meaning that the initiator of a connection first negotiates the session
keys with each of the successive nodes before adding them in the circuit [15]. Then, when
the client tries to reach another party through the network, he will successively encrypt
the communication cells with the session keys negotiated before, starting with the session
key negotiated with the last node in the circuit. The number of encryption layers depends
on the number of nodes in the circuits.

2.1 Tor nodes
The Tor network is based on a set of different kind of nodes that interact with each other
to provide a secure and an anonymous environment to its users. The list below gives a
brief insight of the role played by each of these nodes within Tor:

Onion proxies, also known as Tor clients, are special proxies that clients must run on
their machine to connect to the Tor network. The objectives of an onion proxy is
to establish new circuits in the Tor network and to forward the TCP traffic coming
from an Internet browser to the anonymous network, and conversely.

Onion routers, also known as Tor relays, form the heart of the Tor network. They
handle the Tor traffic and forward each flow of cells to their next destination. By
default, Tor establishes circuits using at least 3 relays : an entry, one or more
middle and an exit relay. The entry relay is the first node of the circuit. It receives
traffic from the client onion proxy and forwards it to the middle relay. Therefore,
the first node of the circuit is only aware of the client’s identity (IP address) and
doesn’t know the final destination. The middle relay only forwards traffic between
the entry and the exit relays. Consequently, it doesn’t know the real identities of the
communicating parties. Finally, the exit relay is in charge of forming the gateway
between the anonymous network and the Internet. Hence, the exit relay is aware of
the identity of the final destination but doesn’t know who is the source. This kind
of circuit made of 3 relays ensures relatively good anonymity and throughput.

Directory servers are trusted nodes that are responsible of constantly analysing, stor-
ing and relaying information about the network state. Each directory servers pro-

7

vides a complete mapping of the network, listing all the nodes and their character-
istics (state, flags, bandwidth, . . .). When an onion proxy starts, it first downloads
a list of available relays from a directory authority (i.e. directory servers) and then,
given this list, establishes the most effective/reliable circuit. Therefore, Directory
servers must be reliable and active almost all the time. Indeed, an adversary con-
trolling a Directory node could influence onion proxies to choose a given path by
advertising a modified network state.

Bridges are onion routers that aren’t listed in Tor directory authorities. The goal is to
hide some onion routers from the public so that ISPs or governments cannot block
the connection to all the relays at one time. Bridges are essential for Tor users
who live under censorship since ISPs in some countries are under control of local
authorities and they try as much as possible to block Tor traffic. The easiest way
for such ISPs to filter Tor connections is to block the traffic going to all the known
relays. Therefore, when censored Tor users want to connect to Tor, they need to
specify which bridge and what obfuscation technique they want to use.

Hidden servers are anonymous servers connected to the Tor network. They provide
usual web services (web/mail server, instant messaging server, . . .) without reveal-
ing their identities. They are called "hidden" because the real IP addresses of such
servers are unknown by clients accessing them. The only way to reach an hidden
server is to browse its onion address (16 alphanumeric characters followed by the
.onion suffix) in the onion proxies. This browsing request leads to the construction
of two circuits towards an onion router acting as a rendezvous point. One circuit
goes from the user to the rendezvous point and the other from the hidden server to
the rendezvous point. Once built, these circuits allow the user to interact with the
hidden server. The rendezvous point simply relays messages from client to service
and vice versa.

Now that all the components forming the Tor network have been briefly described, let’s
see how onion proxies build their anonymous circuits.

2.2 Path selection
The path selection algorithm is the strategy followed by Tor to choose an ordered sequence
of nodes (path) that will be used to build a circuit between a source and a destination.
Since its release, the Tor path selection algorithm has evolved many times in order to
improve either the performance, the anonymity, the reliability or in response to attacks
on the network. As stated in many papers, this algorithm is a key point of Tor design
because it has a direct impact on performance and users’ anonymity [32, 44, 4, 19]. In
its current version, the path selection algorithm mainly chooses three nodes of the cir-
cuit according to their bandwidth [13]. This strategy ensures that the network is able to
meet the user requirements. Indeed, if Tor was based on an unweighted path selection
algorithm, as it was the case in the past, clients would build their paths by choosing
relays uniformly at random. As a result, the anonymity provided by Tor would increase
since the diversity of paths would be greater but the average performance would suffer
since a lot of low-bandwidth nodes would be selected by the algorithm [44]. To overcome
this performance issue, the current version of the algorithm uses a strategy based on a
weighted random choice where the weight depends on the node’s bandwidth. This later

8

strategy ensures good performance but reduces path diversity since a few high bandwidth
relays are prioritized making the end-to-end traffic correlation attack easier to conduct.

In order to make end-to-end correlation attack harder to perform, the path selection
algorithm follows these constraints for each generated path [13]:

1. The same relay is not chosen twice for the same path.

2. No more than one router is chosen in a given /16 subnet or family.

3. Non-running or non-valid routers are not chosen.

4. If Guard nodes are used then the first node of a circuit must be a Guard.

The first and the second rule have been defined to make end-to-end correlation attacks
more difficult to perform. Indeed, by avoiding two nodes on a path being in the same
administrative domain, an attacker needs more than one malicious relay to perform an
attack [32]. Effectively, if this rule is not enforced, an adversary is able to perform a sim-
ple attack which consists in running one or two relays on the same machine or network.
Consequently, a client who would have chosen the adversary’s nodes as entry and exit
nodes would have a high probability of having his anonymity removed since the adversary
might observe both entry and exit traffic of this client.

The last rule has been added to the path selection algorithm to prevent well-known
attacks against Tor network such as the predecessor and the locating hidden servers
attacks [46, 37]. These profiling attacks rely on the fact that a client who always uses new
relays to build a circuit has a high probability of picking relays controlled by an adversary.
The official documentation confirms this claims [13]:

“If we choose entry and exit nodes at random, and an attacker controls C out
of N relays (ignoring bandwidth), then the attacker will control the entry and
exit node of any given circuit with probability (C/N)2. But as we make many
different circuits over time, then the probability that the attacker will see a
sample of about (C/N)2 of our traffic goes to 1.”

To mitigate this issue, the design of Tor has been improved to use entry guards. In
the next section, we provide some details about what is an entry guard, why is it useful
and how Tor manages them.

2.3 Entry guard
An entry guard is a onion router chosen at random by the onion proxy during the creation
of a circuit. This relay always acts as entry point in the circuit which means that only
the first node of a circuit can be an entry guard. This type of node has been added to the
Tor design in order to decrease the opportunities for an adversary to be the first hop of a
circuit. As we will see later, the fact that an adversary is able to observe both ends of a
communication channel is a serious threat to users’ anonymity. Another benefit given by
the entry guards is related to the fact that a relay must contribute to the Tor network for
several days before having a chance to be selected as an entry guard. This feature allows

9

to delay by several days all attacks which require the control of an entry guard by the
adversary. Note that a relay can only be promoted as an entry guard if it fulfills these
three requirements [11]:

1. Online longer than 12.5% of relays, or for 8 days.

2. Advertise at least the median bandwidth in the network, or 250KB/s.

3. Have at least the median weighted-fractional-uptime of relays in the network, or
98% WFU.

In the current version of Tor, each client maintains a list of entry nodes (chosen guards)
persistently stored on disk [13]. When a client builds a new circuit, the first hop of the
circuit (entry guard) is selected at random from among the first three usable guards on
the list. It is important to note that the entry guards list of a client is not fixed. Actually,
when an entry guard is used by a client for some time (60-90 days), the entry guard is dis-
carded from the list and another entry guard is selected. This rotation of entry guards is
beneficial, because on one hand, it allows a client that would have chosen a compromised
guard to recover some privacy and, on the other hand, it ensures a better load-balancing.

In the last few years, some work has been done to show that the way Tor is currently
using entry guards is not enough to prevent large-scale attackers from de-anonymizing
most users within a relatively short time frame [17, 12]. Based on that finding, a proposal
has been formulated to solve the problems of the current guard selection strategy [40].
The key idea of the proposal discussed is to choose a single guard for each client from a
set of high-bandwidth relays and then use it for every circuit during a period of up to
nine months. Since this strategy is not implemented in the current version of Tor, we will
not describe it in details.

2.4 Tor cells
In Tor, any traffic flowing between two entities (onion router ↔ onion router, onion
proxy ↔ onion router) is always divided into fixed-size cells (512 bytes) to provide some
resistance to traffic analysis [15]. These units of communication are composed of a header
and a payload. The header contains a circuit identifier (circID) that specifies to which
circuit the cell refers to and a command identifier (CMD) that describes how to interpret
the cell. According to the value of the command identifier, a cell can be interpreted as a
control cell (cf. Figure 2.1) or as a relay cell (cf. Figure 2.2).

Figure 2.1: Control cell structure.

Control cells are mainly used to set up new circuits and tear down existing ones. The
creation of a circuit always requires the exchange of two control cells. First of all, a create
cell which informs an onion router that a new circuit plan to add it as one of its three hops.

10

Then, a created cell which is returned by the receiver of the create cell to acknowledge it.
When it comes to release an existing circuit, a destroy cell is transmitted along network’s
entities being part of the circuit to destroy.

Figure 2.2: Relay cell structure.

Regarding relay cells, they are used to carry end-to-end stream data. Compared to
control cells, relay cells have an additional header (called the relay header) located in front
of the payload block (called the relay payload). This header contains useful information
about the cell such as the streamID field indicating to which stream the cell belongs
(many streams can be multiplexed over a circuit); The digest field containing the result
of the checksum; The len field holding the size of the relay payload, and finally, the relay
command field specifying the task assigned to the cell. This later field can take many
values1:

• Begin: to open a new stream.

• End: to close a stream cleanly.

• Connected: to notify the onion proxy when the stream is established.

• Extend: to extend the circuit by a hop.

• Extended: to acknowledge the circuit extension.

• Data: to carry some data.

As you will see in the next section, the entire content of the relay header and the relay
payload are encrypted (resp. decrypted) together whenever the cell reaches an entity
(OR/OP) along the circuit.

2.5 Circuit construction
When a Tor user wants to interact with a third party (user, website, hidden service, ...),
Tor has the responsibility to attach the TCP stream between these parties to an appro-
priate open circuit [13]. By default, Tor constructs a set of circuits preemptively in order
to avoid delays related to the establishment of a new circuit between peers. Obviously, a
circuit connecting two parties does not always exist, and thus, it is a necessity for Tor to
build it in order to handle user requests. The remainder of the section will describe Tor’s
circuit construction mechanism.

As illustrated by figure 2.3, the creation of a circuit is always initiated by the user’s
onion proxy (OP) which selects three onion routers (OR1, OR2, OR3) according to the

1Note that this list is not exhaustive. An interested reader may refer to this link [14] to get a detailed
view of all correct values.

11

Figure 2.3: Three-hop circuit construction in the Tor network.

Tor’s routers selection algorithm (cf. section 2.2). Then, given the three chosen relays,
the user’s OP is responsible of incrementally building a three-hops circuit towards a given
destination [14]. To achieve such a goal, the user’s OP and the chosen ORs communicate
with each other by sending fixed-size messages (cf. section 2.4). Basically, a circuit
construction requires four types of cells. The first type of cell sent by the user’s OP
to initiate the construction of a circuit is the create cell. The purpose of this cell is
to inform its receiver (e.g. OR1) about the cryptographic parameters that will be later
used to generate a shared encryption key. In the current version of Tor, the shared keys
are generated with a key agreement algorithm called ntor. This algorithm replaces the
previous TAP handshake to reduce the computation overhead of circuit construction.
Indeed, compared to TAP, ntor eliminates the use of RSA encryption-decryption and
relies on Curve25519 to reduce the Diffie-Hellman computational complexity [29, 6]. As
soon as an onion router receives a successful create cell, it responds to the sender of this
cell with a created cell that serves as an acknowledgement and that allows the receiver to
inform the sender about its own cryptographic parameters. Once this mutual exchange
of cells is done, the first portion of the circuit is established (one hop from the user’s OP
to OR1). To extend the current circuit up to the next onion router (OR2), the user’s
OP has to send an extend cell to the last relay of the current circuit (OR1). This cell
must indicate to OR1 the identity of the next onion router involved in the circuit (OR2).
Upon arrival of this message at OR2, a new shared key is negotiated between the user’s
OP and OR2, then OR2 has to acknowledge the extend cell by sending an extended cell
towards the user’s OP. The above process is repeated to extend the circuit from OR2 to
OR3. Note that, by default, each circuit has a lifetime of ten minutes. Once this limit is
reached, no new streams can be attached to the circuit.

12

2.6 Attacks on the Tor network

2.6.1 State of the Art

This section aims to give an overview of the different researches realized in the past and
which are related to the security and the anonymity of the Tor network. The reader
will be introduced to various threat models used against Tor and to the related attacks
developed in the literature.

As previously described, the Tor network is a low-latency anonymous network provid-
ing both user anonymity and network performance. In order to provide a good user experi-
ence, Tor focuses on providing low communication delays while preserving the anonymity
of its users. However, low Round Trip Time (R.T.T.) comes with a price. Indeed, since
Tor attempts to optimize the communication delays between peers, the traffic characteris-
tics such as the R.T.T and throughput at one end of the anonymous path gets reproduced
at the other end of the path. This makes the Tor network vulnerable to traffic analysis
attacks for an adversary who can eavesdrop the communication channels. Traffic analysis
attacks could be used to derive a wide range of information. It could be used to extract
information about the identity of the communicating peers. It could also be used to profile
the status or the habits of a specific target. And eventually, it could be used to extract
the information transferred in a specific communication. Therefore, traffic analysis is a se-
rious threat to the main objective of Tor which is preserving users and services anonymity.

Traffic analysis attacks against Tor network can be conducted in several ways and
by different kinds of adversaries. In such attacks, the attacker usually has some sort
of view on the network and can observe the traffic entering and leaving different net-
work links and/or relays. By analysing and correlating traffic statistics in these different
links, the attacker is, in theory, able to associate some network connections that seems
correlated. By doing so, he could be able to identify the source of some anonymous com-
munications. Traffic analysis against Tor generally aims to retrieve the identity of some
anonymous user(s) or to retrieve the source and/or target of anonymous connections. This
deanonymization process typically involves identifying an anonymous user among several
competing connections.

In the past years, researchers have designed, developed and implemented some attacks
to use against low-latency anonymous networks such as Tor. Some of the attacks de-
scribed in the literature are dedicated to low-latency anonymity systems in general and
some others are specifically designed to be carried against Tor. As the attacks designed
for general low-latency systems are more theoretical than real attacks, they have not re-
ally been implemented or tested against real anonymous networks. Nevertheless, other
attacks have been specifically designed for the Tor network and that is the kind of attack
that will be developed in the remainder of this section.

As explained above, a powerful adversary that can observe each link of the anonymous
network could identify the sources of anonymous communications. However, such an ad-
versary doesn’t exist since it is impossible to monitor all the network links and hosts at
the same time. In the last decade, researchers have been working on reducing the set of
network infrastructure to observe in order to perform a successful traffic analysis attack.
As an omnipotent adversary doesn’t exist, researchers focused on attacks that could be

13

carried out by a more realistic one.

A first approach considers a powerful adversary being able to observe the traffic en-
tering and leaving vantage Autonomous Systems (AS) or Internet Exchange Points (IXP)
[33, 16, 25]. In the paper written by Murdoch et al., researchers showed that IXPs are
a single vantage point where traffic analysis can be performed. As the IXPs are in gen-
eral designed to connect multiple ASes, the traffic leaving and entering the IXP generally
comes from different ISPs generally located in different countries. And since Tor partially
creates anonymous circuits based on the geographical diversity of the relays, IXPs are
an excellent location to collect data traffic and to carry out a successful traffic analysis
attack. In their results, they revealed, by the mean of a simulation, that a small set of
IXPs are able to observe traffic passing through several Tor entry and exit nodes located
in the UK. This means that an adversary which is able to observe the traffic passing
through one or a small set of IXP is able to conduct successful traffic analysis attacks.
They also showed that an adversary could complete a traffic analysis attack by analyzing
the logs of the traffic monitoring systems installed on high-speed routers.

Two years later, Edman and Syverson studied Autonomous System adversaries and
their potential threat against the anonymous network [16]. As the Tor network grows
over time, with more and more volunteers operating new relays, it is more and more dif-
ficult and unlikely for a single AS to be able to look at the both ends of an anonymous
connection. However, this last assertion was only an intuition and the researchers wanted
to prove if it was correct or not. The results of their experiments, carried out on the
Tor network, showed that a significant percentage of Tor circuits originate from a small
number of ASes and a significant percentage of the traffic is destined to a small number
of ASes. This means that a significant amount of Tor’s traffic enters and leaves from a
small number of ASes. Therefore, Tor is still vulnerable to AS-level adversaries despite
the growing number of relays. They also showed that the /16 subnet separation enforced
by the Tor path selection algorithm was not enough to imply ASes independence for the
anonymous circuits. Indeed, they demonstrated that for 22% of the Tor circuits originat-
ing from different subnets, there are ASes which can observe traffic going towards a Tor
entry node and from exit nodes to some popular destinations. They conclude that the
growth of the Tor network has only a moderate impact on the AS-level path independence,
meaning that, if indeed the growth of the Tor network makes more difficult for a single
AS adversary to conduct a successful correlation attack, it doesn’t make the attack un-
feasible. Indeed, as revealed in study published by Wacek et al., there were still, in 2013,
18% chances that a single AS appears in both sides of an anonymous connection [44].
As the number of relays have more than doubled from 2009 and 2013, the probability of
seeing the same AS on both side of an anonymous connection didn’t change that much [39].

In a more recent study, and following the steps of Edman and Syverson, Johnson et al.
made a realistic and exhaustive analysis of traffic correlation attacks against Tor network
[25]. In their new study, they proposed different attack scenarios where the adversary
is either controlling one or more ASes, IXPs or malicious relays. In the first case, they
showed that some users have over 95% chance of being deanonymized within three months
against a single AS or IXP. They argue that some users are safer than others due to their
geographical locations. In this case, safer locations means that an adversary would need
more time to deanonymize a user hiding in these locations. Nevertheless, they also claimed

14

that an adversary controlling more than one ASes or IXPs has a much higher compromis-
ing speed, including the safest locations. In their second attack scenario, the adversary
commands malicious relays providing no more bandwidth than a substantial volunteer
could do today. They revealed that this kind of adversaries could deanonymize regular
Tor user within three months with over 50% probability and the odds raise to over 80%
within six months. These results are quite pessimistic and worse than previously thought
considering that, in the case of a AS-level adversary, a single company could own multiple
IXPs or ASes and may have malicious intents against users passing through their networks.

The most recent paper regarding AS-level adversaries proposed an empirical study that
measures the threat faced by Tor against traffic correlation attacks [35]. The researchers
work with up-to-date maps of the Internet in addition with an algorithm that can predict
which ASes are in a good position to conduct correlation attacks on the forward and
reverse path of anonymous connections. Furthermore, they identified ASes that belongs
to the same organization providing a clearer picture of today’s network-level threats and
adversaries. The results of their experiments show that up to 40% of all Tor circuits
are exposed to traffic correlation attacks from AS-level adversaries. Moreover, 42% of all
the circuits are vulnerable to organizations that own several ASes or IXPs and 85% of
the circuits are vulnerable to state-level adversaries which can observe the traffic passing
through their regional ASes.

At the moment, Tor doesn’t implement proper protection to address the threat of
AS-level adversaries who operate a single or multiple ASes or IXPs. However, researchers
recently proposed refined relay selection algorithms to reduce to threat of AS-level at-
tackers [3, 35]. These new algorithms aim to build safer anonymous circuits by avoiding
situations where the circuit is vulnerable to a single or colluding AS(es) adversary.

In the remainder of this section, some end-to-end confirmation attacks are described
to highlight the fact that in many attack scenarios two relays controlled by an adversary
are enough to deanonymize communications.

In 2006, Øverlier and Syverson proposed a passive attack to reveal the location of a
hidden server just by having a single hostile Tor node under control [37]. Their attack
relies on the fact that any node of the network that claims to be stable can be used by
the hidden server to build an anonymous circuit to the rendezvous point. Hence, if an
attacker manages to take control of the first hop of the circuit from the hidden server to
the rendezvous point, he can immediately determine the real IP address of the hidden
server. Therefore, to carry out this attack, the attacker has to establish many circuits to
the hidden server until one of his malicious Tor’s relays is chosen as first hop of the circuit
from the hidden server to the rendezvous point. In older versions of Tor, this attack was
a serious threat to anonymity. Now, such an attack is much more complicated to set up
since Tor chooses the adjacent node of the hidden server from a set of entry guard nodes.

In a paper written by Fu and Ling in 2009, an active end-to-end confirmation attack
is presented to break Tor’s anonymity [21]. The purpose of their attack is to confirm
the fact that a given user (say Alice) is talking to another given user (say Bob). To
demonstrate that, the authors made use of a malicious entry and a malicious exit onion
router. The goal of the malicious entry node is to manipulate (duplicate, modify, insert or

15

delete) data sent through a circuit while the malicious exit node is in charge of detecting
the manipulation performed on the data. In all cases, an error is raised by the exit node
during the decryption of the stream containing modified data. This behavior helps an
adversary to confirm the fact that traffic entering the network at the entry node leaves
the network at the exit node. Furthermore, since the entry node knows the IP address of
the source and the exit node knows the IP address of the destination, the attacker can
easily learn who is talking to whom.

Three years later, another active end-to-end confirmation attack has been followed to
confirm the fact that it was possible to deanonymize two users (Alice and Bob) interacting
with each other through Tor [27]. In this approach, the attacker performs a cell counter
based attack which consists in two distinct steps. During the first step, the malicious
entry node transmits data cells through the circuit between Alice and Bob according to a
well-defined sending pattern (e.g. send three consecutive cells to simulate the binary digit
"1" and simulate the binary digit "0" by only sending a single cell). During the second
step, the malicious exit node tries to recognize the pattern. Once a match between the
pattern at the entry and the exit node is found, the attacker is able to confirm that Alice
and Bob communicate with each other.

In 2013, A. Biryukov, I. Pustogarov and R-P. Weinmann describe an attack capable
of deanonymizing hidden services protected by the concept of entry guard [7]. In order to
carry out their attack, the adversary needs to control at least two non-exit relays. One of
these relays is intended to play the role of malicious rendezvous point and the other one is
intended to serve as malicious entry guard between the hidden service and the rendezvous
point. Then by generating a traffic pattern at the rendezvous point and correlating it
at the malicious entry guard node, the attacker is able to retrieve the IP address of the
hidden service. As for the attack discussed by Øverlier and Syverson, the tricky part is
to build a circuit passing through the relays controlled by the attacker. Consequently, it
may require many circuit creations to achieve such a configuration.

In a more recent article from 2014, a traffic analysis attack using flow records (Net-
Flow2) is described to identify the source of an anonymous communication [8]. Basically,
the first step of the attack is to lure a victim to access a particular server controlled by
the adversary while some NetFlow data about the traffic between the exit node and the
server, as well as between Tor clients and the victim’s entry node, are collected. Since the
attacker has control of the malicious server, she knows from which exit node the traffic of
the victim originates. Therefore, the big challenge for the adversary is to determine the
identity of the anonymous client that interacts with the malicious server. To solve such
a challenge, a pattern is injected by the server to make the victim flow distinguishable
from all other flows. Then by computing the correlation among all entry-node-to-client
flows with the server-to-exit-node flow, the adversary is able to detect who is the source of
the anonymous communication since the flow of source will carry the same traffic pattern
than the one induced by the malicious server.

Finally, a thesis has been written by K. Müller to evaluate the cost in terms of per-
formance and network load of the existing protections against end-to-end confirmation
attacks [34]. In that thesis, a timing attack is implemented to validate the fact that the

2A protocol designed by Cisco for collecting and monitoring network traffic.

16

traffic flow of a controlled client (i.e. a client that always chooses the same entry and exit
nodes) can be identify with high accuracy. Like most end-to-end confirmation attacks, the
timing attack described by Müller requires the adversary to control (or observe) the entry
and the exit relays of a circuit. Once under control, the correlation among traffic flows
passing through these nodes can be computed by the mean of a cross-correlation formula
(cf. section 2.6.2). The key idea of the formula reused by Müller is to divide the time of
observation into adjacent time windows and then count the number of packets received
during each window size. By repeating this process for the duration of the attacker’s
stream, the adversary is able to recognize, for each flow, the sequences of packet count at
both malicious end points of the circuit, and hence, she can distinguish her traffic flow
from any other user’s one.

2.6.2 Traffic correlation techniques

As seen in the previous section, lots of effort has been made in the last years to either
deanonymize Tor’s traffic or to mitigate the threat of AS-level or relay adversaries. In
most of the papers regarding traffic correlation attacks, the researchers implemented a
two-step process to carry them out successfully. The first step of the process mostly
consists of getting into a situation where the attacker has some view on the anonymous
network and is able to gather interesting information from the transiting traffic. The
second step generally involves analysing and correlating the obtained traffic to unveil,
totally or in a part, user’s anonymity. As described in the preceding section, there exist
many ways for an attacker, whatever its size and resources, to set up a situation where
he is able to observe anonymous traffic. However, many of these studies rely on the same
techniques to eventually correlate some traffic in the interest of revealing the sender and
receiver of some communications. This section aims to introduce the most used correla-
tion techniques in the literature as well as their respective benefits and drawbacks.

A first approach has been described in 2005 by Murdoch et al. to conduct a traffic
analysis at low cost against Tor [31]. In their paper, Murdoch and al. proposed an attack
set-up where the adversary manages a corrupted server that inject a pattern in the traffic
flowing to the victim. The shape of the injected pattern changes in function of the server
sending rate. The adversary has also a latency probe under control that allows him to
check the load of a given relay at a given time. The goal of the experiment was to check
whether or not the load of a given relay is correlated with the injected traffic pattern
sent by the corrupted server. The researchers proposed a simple correlation technique
to unveil if a relay was carrying the anonymous modulated stream. Their correlation
formula can be defined as the sum of the multiplications of the template formed by the
modulated traffic and the probe data for every sampled time t. The template formed by
the modulated traffic, S(t), is known and defined as :

S(t) =

{
1 If the corrupted server is sending at sample number t
0 Otherwise

The probe data is expressed as L(t) and measures the latency (in µs) of a given relay
at sample time t. The normalized version of the probe data is expressed as L′(t) and
is calculated by dividing L(t) by the mean of all samples. They finally defined c as the

17

correlation between the injected pattern and the latency of a given relay :

c =

∑
S(t)× L′(t)∑

S(t)
(2.1)

The correlation index c reflects the strength of the correlation between the two data
streams. A high correlation index indicates a strong relationship between the two streams
whereas a low correlation index reveals that the two streams are quite different from one
another. An obvious drawback of this formula is related to the fact that it doesn’t take
into account the effect of latency. As the modulated traffic travels through the network,
it is more than likely that it will be reshaped due to transmission delays or packet loss.
Therefore, if an attacker tries to correlate the reshaped traffic with the initial one, she
will get distorted results if she doesn’t take into account the effect of network latency.

As the last correlation formula suffers from a lack of precision when it comes to corre-
late delayed traffic, researchers put some efforts in finding more powerful ones. Thankfully,
O’Gorman et al. wrote an article that presents and compares the most used correlation
techniques in the literature [36]. The remainder of this section is dedicated to introduce
the correlation techniques presented in their article.

The first approach known as packet counting is a simple technique that consists of
counting the number of packets in a traffic flow. By comparing the amount of packets
obtained for a given stream with the amount of packets presents into each stream from a
set, an adversary is able to find which stream from the set is potentially the same stream
as the initial one. As already stated above, some factors (e.g. latency, throughput) may
influence the number of packets observed for the same stream entering and exiting the
network. Therefore, simply checking the equality between the number of packets of two
streams could be inaccurate. Consequently, in practice, to measure the similarity between
the packet count x from stream X and the packet count y from stream Y , a distance mea-
sure is preferred.

d(x, y) =
√

(x− y)2 (2.2)

The formula 2.2 implies that the more the difference between packet count x and y
is small, the greater the similarity between stream X and Y is. This formula can also
be used to evaluate the similarity between two streams of Tor cells. Indeed, instead of
counting the packet flowing on the two streams, the adversary in control of Tor relays
could count the cells transiting on Tor circuits to estimate the similarity of two circuits.

The second approach described in the paper written by O’Gorman is the cross-
correlation coefficient technique. This technique is used to measure the similarity be-
tween two series as a function of the delay of one relative to the other. More precisely,
this technique consists in extracting a sequence of values from a data stream, to afterwards
comparing it with the sequences obtained by other streams in the network. The sequence

18

of values for a given stream is extracted by slicing the stream into small windows of size
W, and then by counting for the duration of each window, the number of packet received.
Hence, the correlation between two streams is computed as follow:

r(d) =

∑
i((xi − µ)(x′i+d − µ′))√∑

i(xi − µ)2
√∑

i(x
′
i+d − µ′)2

(2.3)

In the above formula, “The two streams being compared are x and x′ with delay value
d. This delay value is the time required for the stream to transit the network. xi is
the ith packet count of stream x and x′i is the ith packet count of stream x′. µ is the
average of packet counts in stream x and µ′ is the average of packet counts in stream x′.”
(O’Gorman, 2009, p. 2025)

The result of r(d) ranges from -1 to 1. When 1 is returned, it means that a linear
equation perfectly describes the relationship between the two streams being compared
(all data points lie on a line inclined at 45o). On the contrary, a value of -1 involves that
all data points lie on a sloped line of −45o, meaning that the increase of the value of
one variable results in a decrease of the value for the other variable. Finally, a value of
0 indicates that there is no linear correlation between the two streams. In practice, it is
very rare to see such values (-1, 0, 1). Most of the time, you will get a result somewhere
in between those values (cf. figure 2.4). The following table provides some guidelines for
interpreting the cross-correlation coefficient results [1] :

Coefficient, r
Correlation strength Positive Negative
High 0.5 to 1.0 -0.5 to -1.0
Medium 0.3 to 0.5 -0.3 to -0.5
Low 0.1 to 0.3 -0.1 to -0.3

Table 2.1: Categories of cross-correlation coefficient

Three graphical examples of cross-correlation coefficient are displayed below. The
first graph depicts a high positive correlation between two streams, the second depicts a
medium positive correlation and the third represents a situation where there is no corre-
lation at all.

Figure 2.4: Examples of cross-correlation coefficient

19

During their experiments on the real Tor network and on simulation environments,
the authors have confirmed that such correlation techniques offer a reasonable degree of
accuracy in ideal conditions, even with the simple byte counting strategy [36]. Moreover,
their results have also showed that an addition of extra “noise” in the network considerably
decreases the efficiency of the correlation. The “noise” in the network can be due to
network latency, packet loss or reordering. Therefore, it could be interesting to investigate
what kind of noise and how much noise is needed to mitigate the feasibility of these kinds
of attacks.

2.6.3 Developed end-to-end correlation attack

As explained in 2.5, clients send EXTEND cells to notify the current last hop of the
circuit to extend the circuit to another relay. Upon arrival of such a cell, a relay checks
if a TCP connection towards the next relay has already been established. If the TCP
connection doesn’t exist yet, the relay creates a new one with the next hop. Tor cells
associated with the circuits that transit between the two relays are transferred over this
(new) connection. Tor makes use of a single TCP connection to connect two Tor en-
tities that need to communicate. This means two things. First, there exists only one
TCP connection at given time to connect two Tor entities. Secondly, by using TLS, the
connection provides both encryption and authentication for all the cells passing through it.

In Tor implementation, different types of connections are used to connect the different
types of network entities. OR (Onion Router) connections are dedicated to connect Tor
relays while Edge connections are used to connect Exit relays to external peers. The OR
connections represent the TCP connection over TLS described above. The Edge con-
nections between Exit relays and remote servers could either use TLS (HTTPS) or not.
One connection between two Tor entities multiplexes all the circuits that the two entities
directly share together. Therefore, all the traffic that goes through these circuits travels
through a unique TCP/TLS connection.

The internal cell processing for Tor relays is depicted on figure 2.5. Relays listen for
incoming data on their connection (called channel in Tor implementation) and store them
in an internal input buffer. Once the data received on a channel makes full TLS record,
the record is decrypted and the extracted cells are sent to their respective internal circuit
queues. There exist as many circuit queues as there are distinct circuits on a relay. Once a
channel is ready to send, it selects one circuit queue from all the circuit travelling through
that channel and writes the content of the queue into the output buffer of the channel.
When the output buffer of a channel has gathered enough data, it sends all the data to
the next relay.

20

Figure 2.5: Internal architecture of cell processing inside a Tor relay. All cells from a
given relay arrive on a single channel, and are then de-multiplexed to circuit queues for
processing. Each circuit queue is emptied into the channel associated with the next hop
relay. Figure and caption taken from the paper written by Rob Jansen et al. [24]

In order to correctly forward the cells from one entity to another, Tor relays rely on
the circuit IDs it reads in each cells. As the circuits are incrementally extended one relay
at a time, all the relays from a given circuit are aware of its predecessor and its successor
in the chain. The figure 2.6 gives an example of a client sending an HTTP GET request
over the Tor network. In the context of this figure, the client has already created a circuit
with the 3 Onion Routers and is ready to send. Therefore, the connections between the
different routers have already been established and the encryption keys have already been
distributed. The circuit and connections IDs are also known from the concerned parties
and are shown on top of each entity (OP and OR). Now, imagine that the client process
behind the Onion Proxy wants to send an HTTP GET request to the remote website. To
do so, the client process needs to ask the Onion Proxy to create a remote connection with
the website. Upon reception of such a request, the Onion Proxy generates a new random
stream ID (e.g. StreamID=10) and attaches the stream to the most recent circuit (e.g.
CircID=1) it has created. The OP then creates a new relay cell with the command bits
set to Begin. The cell’s circuit and stream IDs are respectively set to 1 and 10. The IP
address and the port of the remote website are written in the data bits of the cell. The
OP finally adds some padding if necessary, encrypts three times the last 509 bytes of the
cell and sends it to the Entry relay on the shared connection (ConnID=48). Note that,
while transiting on the TCP connection, the 512 bytes cell is encrypted and wrapped in
a TLS record. Upon arrival of the cell at OR1, the relay extracts the cell’s circuit ID
(it’s not encrypted) and decides what to do with it. As the cell is not intended to him,
the relay decrypts one layer of encryption using its circuit key (Blue key) and changes
the cell’s circuit ID to 2. It then forwards the cell to the next hop of the circuit (OR2).
It is interesting to note that OR1 doesn’t use the same circuit ID to communicate with
the OP and OR2. Indeed, if the same circuit ID is used along all the circuit, an attacker
which controls both the Entry and the Exit would be able to directly match the two flows.
In the same way, Tor uses at least 3 relays to create a circuit because if only two were
used, an attacker would have no difficulty in finding the identities of the peers since it
would know the corresponding circuit IDs and remote IP addresses of the clients. When
the cell arrives at OR2, the same transformations as for OR1 are applied and the cell is
forwarded to OR3. When the cell finally reaches OR3, the relay decrypts the last layer

21

of encryption and starts executing the Begin command. It then establishes an exit TCP
connection with the chosen website. If the TCP handshake went well, the OR3 creates
a new relay cell with the command bits set to Connected and sends it to the OP. When
this last cell arrives at the OP, it notifies the user process that the connection has been
established and that the process can start sending data. Upon arrival of the cell contain-
ing the GET request at OR3, the relay knows what to do with it regarding the stream
ID (=10) attached to the cell. The response data are forwarded backward in the circuit
using the strategy described before.

Figure 2.6: Example of HTTP GET request sent over Tor using the Onion Proxy.

On Figure 2.6, the entry node knows the identity of the client (i.e. its IP address) and
the exit node knows the identity of the remote server. But there’s no way for the entry
node to discover the final destination of the cells as their content is encrypted. The exit
node, on the other hand, is not able to discover the origin of the request. However, as
Tor tries to provide low-latency communication, the shape and the timing of the traffic
flowing on the connection between the client and the entry node are susceptible to look
like the same as the traffic flowing on the connection between the exit and the remote
server. In the same way, the traffic flowing from the exit to the middle relay should be
similar to the traffic observed at the entry relay to the OP.

Based on those behaviours, two approaches can be followed by the adversary to perform
a traffic analysis attack. One approach consists of analyzing the traffic of the TCP/TLS
connections between the OPs and the entry relays and between the exit relays and the
remote servers. Such a scenario is depicted on Figure 2.7.

22

Figure 2.7: Example of TCP connections observable by a relay adversary who controls
entry and exit relays in the Tor network.

Figure 2.7 sketches an attack in which an adversary controls some entry nodes (OR1,
OR4) and some exit nodes (OR3, OR6). Considering that the blue flow corresponds to a
bulk download from the web server, the green flow to an SSH session between OP2 and
the web server and the pink flow represents an IRC session. Then, a possible objective for
the adversary would be to recognize that the blue flow at the entry nodes matches with
the orange flow at the exit nodes. If she succeeds then it will mean that the adversary has
broken the anonymity provided by Tor since she will know with whom a given client inter-
acts (e.g. OP1 ↔ web server). To reach such an objective, the adversary has to compare
the pattern of the blue connection with the pattern of all observable exit connections (in
this case, the purple, orange and red ones). The pattern of each TCP connection is built
by looking at the amount of data transferred per unit of time (bytes/sec). In Tor, the
generation of such a pattern can efficiently be obtained by using a built-in module named
the Tor controller. This module allows users to interact with the Tor process using the Tor
Control Protocol. It can be used, for example, to track the bandwidth consumed by every
connection on a relay at a given time. By default, the Tor controller creates a log file on the
relay to which it is connected. This log file contains all relevant information about specific
events occurring in the network. In the case of this approach, the CONN_BW event is
the interesting one since it provides the bytes read and written per second per connection.

It is important to point out that this kind of attack can be applied even if the ad-
versary doesn’t control Tor relays. Indeed, the adversary could eavesdrop TCP traffic
outside of the Tor network and could be able to retrieve the pattern of each connection
without the help of the Tor controller. However, this approach is quite difficult to put
into action for several reasons. First, Tor implements obfuscation techniques that can be
used to dissimulate Tor traffic flowing over the TCP/TLS connection. With such obfusca-
tion techniques, it becomes almost impossible for an adversary to determine whether an
observed TCP connection is carrying normal or Tor traffic. Another drawback is that the
TCP connections observed at the entry nodes carry cell traffic and can multiplex several
circuits. Therefore, the traffic observed at the entry won’t have the same distribution of
TCP packet than the connection that connect the exit relay and the remote peer. Mean-

23

ing that the two traffic flows won’t have the same patterns and will be more difficult to
match. Furthermore, even if the entry connection only carried the cells of a unique cir-
cuit, the exit connection should last long enough in order to be able to efficiently correlate
the flows. Indeed, if a client requests a web-page, the exit connection will at worst last
several seconds which is not enough for an adversary to accurately determine the corre-
sponding flows. This is not the case for the next approach that is discussed below. This
new approach relies on circuits, an abstraction defined by Tor, to retrieve the patterns to
compare during the correlation step.

Figure 2.8: Example of cell traffic patterns observable by an adversary who controls entry
and exit relays in the Tor network. The colored lines represent Tor circuits and the
doted lines represent the TCP connections that carry the circuits. Black lines represent
connections to a remote peer, a web server in this case.

Figure 2.8 depicts the second approach to remove the anonymity of communications
within the Tor network. In that scenario, the adversary defines a new type of pattern by
counting, for each entry and exit relays under her control, the number of RELAY cells
sent per circuit per unit of time. Knowing that the lifetime of a circuit is roughly 10
minutes, each pattern built indicates every second and for a total duration of approx-
imately 10 minutes the amount of RELAY cells exchanged between two peers. As all
entities (i.e. OR and OP) communicate with each other by exchanging cells over previ-
ously established circuits, once the adversary has access to the pattern of each of those
circuits, she can use, as in the above approach, some correlation techniques to bring out
a fairly strong correlation between a pattern belonging to a circuit used by a given client
at the entry side (i.e. the pattern of the circuit between the OP and the OR) and the
pattern of another circuit at the exit side (i.e. the pattern of the circuit between the
exit relay and the middle relay). In the figure below, the straight color lines represent
circuits established by the user’s OP. Each circuit is included between two dashed lines
representing a TCP connection. The straight black lines from the exit relays to the web
server describe TCP connections carrying the data from the web server (at this point
of the network, no circuit abstraction exists). Like in the approach described above, a
possible attack scenario might be to compare the correlation value of the blue flow with

24

CircID 1 at the entry side with all observable patterns of all circuits at the exit side (i.e.
CircID 9, CircID 15 and CircID 11). If she succeeds to highlight the fact that CircID 1 is
highly related to CircID 9 then she is able to infer that OP1 is interacting with the web
server (the source and destination of the blue flow are unveiled). Compared to the other
approach, this method requires the adversary to control at least one entry and one exit
relay since the patterns are built by analyzing the traffic flowing from the circuit point of
view which is a particular abstraction defined in the Tor network.

The end-to-end correlation attacks developed in this document are based on the sec-
ond approach described above. In order to get the best results, the developed attack only
focuses on the correlation of flows on the backward channel because this channel carries
the responses to client requests. Consequently, it will contain much more data than the
forward channel. As for the first approach, the Tor controller provides a convenient way
to build the pattern of the traffic flowing through each circuit. Indeed, the CELL_STATS
events, which is emitted every second by the Tor controller, can be used by the adversary
to retrieve the cell traffic patterns for each circuits on each relays. Then, by accessing
and analyzing the Tor controller logs, the adversary is able to recover all the information
she needs to perform correlation attacks against Tor circuits. By accurately correlating
and matching related circuits, the adversary reveals which Onion Proxy (IP address) is
linked to which remote exit connections. This is conceivable considering that the adver-
sary can determine which circuits are associated to which TCP/TLS connections. This is
the threat model that is considered and examined for the remainder of this document.

25

Chapter 3

Simulating the Tor network

This chapter begins by presenting a brief overview of some existing Tor experimentation
tools that can be used to set up an attack and evaluate its performance against the Tor
network. As explained in the paper written by Shirazi et al. [41], different tools exist
and they all have their own specifications (e.g. maximum number of relays supported,
resources requirements, ...). Section 3.2 describes in more details the specifications of the
chosen tool while section 3.3 presents the contribution to the Shadow project. Section
3.4 contains a complete description of the topologies and the types of traffic that were
simulated to evaluate the efficiency of the attacks depending on the user model. Section
3.5 explains how the circuit construction protocol has been altered to easily verify the
results. In other words, the circuit construction protocol has been altered to unveil which
circuits observed at the entry matches which circuit at the exit. Finally, the last section
of the chapter compares the performances of our simulations with the performances of
the live Tor network.

3.1 Tor experimentation tools
When it comes to carry out researches on the Tor network, an obvious approach is to di-
rectly apply the changes induced by the research topic on the live Tor network. However,
directly working on the live Tor network is not recommended since it might inadvertently
harm live users performance and anonymity. Therefore, a better approach consists of
using experimentation tools to build small-scale private Tor networks. At time of writ-
ing, five well-known experimentation tools are available to help researchers to simulate or
emulate downscaled Tor networks [41]:

Shadow is a discrete-event simulator designed to run real applications like Tor on a
single machine. According to its developer, it combines the accuracy of emulation with
the efficiency and control of simulation, achieving the best of both approaches [23].

ExperimenTor is a network emulator designed by Bauer et al. in 2011. Despite
being a valuable testbed for Tor experimentation, it is no longer maintained [5].

SNEAC (Scalable Network Emulator for Anonymous Communication) is a network
emulator dedicated to run unmodified Tor code and that can scale to thousands of nodes.
It has a very high hardware requirements since it runs all applications including Tor in
real time [43].

26

TorPS (Tor Path Simulator) is a simulator designed by Johnson et al. to simulate
the relay selection process during the circuit construction. It has only been developed
to provide results for the circuit construction process. Therefore, it is only suitable for
researches on improving or changing the path selection algorithm in Tor [25].

COGS (Changing of the Guards) is a simulation framework that helps to study the
effects of Tors entry guard selection on user privacy. COGS is no longer maintained [18].

Two of the tools described above have been developed for specific-purpose. TorPS has
been implemented to evaluate the circuit construction process and COGS for evaluating
the effects of Tor entry guard selection on user privacy. As this thesis does not focus on the
circuit construction process nor on the entry guard selection, TorPS and COGS can imme-
diately be removed from the list of suitable experimentation tools. Among the remaining
tools, two of them are categorized as being emulators (SNEAC and ExperimenTor) and
one of them as being a simulator (Shadow). Knowing that emulators require much higher
hardware resources and are more difficult to set-up than simulators, Shadow emerged as
the best experimentation tool to run, on a single machine, a downscale version of the live
Tor network and to set up the developed attack presented in the previous chapter. The
next section introduces the reader to the main features of the chosen experimentation
tool, Shadow.

3.2 The Shadow simulator
As previously mentioned, Shadow is a discrete-event simulator that allows to run a down-
scaled version of the live Tor network on a single machine [22, 23]. It provides accurate
results by natively executing the real Tor software within a virtual network topology.
Furthermore, simulations ran with Shadow can be tuned to model the negative effect of
the latency, the packet loss and the jitter that happen on the links connecting different
network entities. To take those factors into account, Shadow relies on geographic cluster-
ing by country. In this clustering approach, there exists one network vertex per country.
Each vertex is assigned to an upstream and downstream bandwidth and is connected with
several or all the other vertex with network edges. Each edge is assigned to a latency, a
packet lost and a jitter rate. The whole thing forms a complete graph that tries to approx-
imate the real Internet topology. When a node is simulated in a Shadow simulation, it is
assigned a geo-location (i.e. a country code like "US") and when two nodes communicate
with each other, their communication is affected by the latency, packet loss and jitter that
exist between the two locations. This allows a reasonable compromise regarding the fact
that replicating the real Internet topology (ASes, backbone, etc...) would be extremely
difficult and inefficient. Finally, Shadow is provided with a set of python scripts that
allow researchers to easily generate their own Tor network topology as well as parsing and
plotting some important statistics from the Shadow and the traffic generator messages
(e.g. network throughput over time, statistics of downloads performed by clients, etc...).

27

3.3 Developed plugin
By default, Shadow comes with a basic traffic generator, called tgen, that allows to
simulate simple users traffic behaviours such as basic bulk download and web surfing.
Unfortunately, this traffic generator is not really suitable to generate more complex traffic
behaviour such as IRC and SSH communications. To overcome this issue, a new plu-
gin was designed to directly replay IRC and SSH traffic traces within the simulated Tor
network. The plugin is in charge of creating two distinct peers that replay TCP traf-
fic saved in pcap files. One peer acts as a client and the other one as the remote peer
of the connection. The client replays the traffic intended to the remote peer and, con-
versely, the remote peer replays the traffic intended to the client according to the content
of the pcap files. Any TCP traffic that involves only two peers can therefore be repro-
duced in Shadow. Moreover, the Socks proxy handshake has been implemented to allow
the peers to send their traffic over the simulated Tor network. More detailed informa-
tion and implementation are available on the Shadow plugin extras Github repository [10]

3.4 Simulations set-up
In order to study the feasibility and the performance of the developed attack depending
on the user model (i.e. bulk, web, SSH, IRC), four topologies, one per traffic type, were
generated using a modified version of the script generate.py included with Shadow. This
script ensures that each simulation mimics as closely as possible the behavior of the live
Tor network. To achieve this objective, it relies on the following archived Tor data:

• The Alexa top 1000 list of one million most popular web sites.

• The Tor network consensus, relay descriptor and extra information.

• Some Tor metrics related to clients.

Running this script with all mandatory arguments (i.e. number of authorities, relays,
clients, servers wished) outputs an XML file specifying the structure of the topology. More
precisely, the XML file specifies when each virtual node is created and what software each
virtual node runs. It also indicates the proportion of entry, exit and middle relays in the
simulation.

As previously said in the chapter, Shadow runs each simulation on a unique machine.
As a result, the size of the simulated network is directly limited by the hardware re-
sources available. Therefore, in order to keep the simulations results consistent and, also
to keep a reasonable execution load and time for the simulations, an estimation of the
number of relays, servers and clients per topology has to be evaluated such that the total
network load is the same between all topologies (bulk, web, IRC, SSH) and the memory
requirement for a topology simulation never exceeds the memory available on the machine.

To satisfy the above constraints, the amount of relays and servers has been fixed to 50
for each topology and the bandwidth of each server has been set to 100 MiB/s to reduce
the risk for the servers to become the bottleneck of the communications. Although the
generated topologies were different, they follow the same distribution of relay flags :

28

• 9 Guard relays

• 2 Exit-Guard relays

• 33 Middle relays

• 4 Exit relays

• 2 Directory Authorities

Subsequently, the amount of clients per topology has been set in order to generate the
same total network load in all topologies. This has been made by first creating a web
topology with 500 bulk clients. This is the amount of bulk clients that consumes approxi-
mately all the available RAM of the machine. Then, based on the total throughput in the
bulk topology, a web topology with 500 web clients, an IRC topology with 500 IRC clients
and an SSH topology with 500 SSH clients have been set up. As Web, Irc and ssh clients
generate less traffic than bulk clients, a few highly loaded bulks have been added in those
topologies to compensate the lack of network load. In order to obtain reliable results, two
topologies of each kind have been generated and simulated, giving 8 simulations in total
and accumulating 1000 clients of each kind.

In the remainder of this section, each client behavior is described to give an idea of the
behavior of each topology. Note that the web surfing and the bulk traffic were simulated
using the Shadow traffic generator while the IRC and SSH ones have been generated using
the plugin discussed before (see Section 3.3).

The behavior of the web clients is set in a way that they request web-pages from a set
of servers, wait for the responses and then they randomly wait from 1 to 70 seconds before
requesting another page again. This behavior is in accordance with researches assessing
that almost 80% of web users don’t stay longer than 70 seconds on the same web-page
before requesting a new one [28]. As shadow does not allow the clients to request files of
random size, they are configured to request 320 KiB files from the remote servers. Re-
garding the bulk clients, they behave quite differently from the web clients, since, when
started, they choose a server at random and start downloading a single big file of ≈ 15
MiB from the chosen server.

In order to reproduce messaging and remote-control traffic in the simulations, some
IRC and SSH traces were recorded using Wireshark and replayed in Shadow using the
plugin described in section 3.3. The IRC traces are used to simulate peers communicating
over Tor with instant-messaging application while the SSH traces records typical remote-
control behavior such as sending commands or files, editing text, compiling programs on
a distant server.

Furthermore, in the interest of comparing the simulations performance with the live
Tor network, each simulation includes some special clients who act as performance mea-
surement probes. They are configured to randomly and repeatedly download either 50
KiB, 1 MiB or 5 MiB files from the different servers. Each probe records some statistics
about its download statistics (e.g. time to first byte, time to last byte). These statistics
are compared to the ones of the Tor network to ensure that the simulations adopt a con-
sistent behavior. This subject is examined in the simulation analysis section.

29

All simulations described above have been generated with Tor metrics (consensus, relay
descriptor, . . .) from February 2016. Moreover, each simulation has been configured to
simulate one hour of Tor traffic. In all topologies, the clients are started after half an hour
as it takes roughly 30 virtual minutes for the network to be fully bootstrapped. To give
an order of idea, it takes approximately 7 hours to generate one virtual hour of Tor traffic
on a machine having 16 GB of DDR4 RAM coupled with an Intel i7 CPU. Please also
note that each of the four topologies (web, bulk, IRC, SSH) has been simulated twice,
and for each kind of topology, the results of the first simulation have been aggregated
with the results of the second in order to form four distinct topologies of 1000 identical
clients (1000 web clients, 1000 bulk clients, ...). All results presented in section 3.6 and
chapter 4 are based on those topologies.

3.5 Circuit mapping
To the extent of analyzing and validating the results of the developed attacks, the Tor
implementation employed in the simulations has been modified to unveil the clients
anonymity. The circuit construction protocol implementation has been altered to ad-
join the IPv4 address of the circuit initiator to the CREATE and EXTEND cells that are
sent to create a new circuit. Likewise, the unique circuit ID generated and used by the
initiator of the circuit is appended next to the IP address. Upon arrival of a CREATE
or an EXTEND cell at a relay, this one extracts and saves the information about the
initiator and pursue the rest of the protocol as normal.

Figure 3.1: Modified Tor circuit construction protocol. The red square represents the
IPv4 address of the Onion Proxy and the unique circuit ID that will be used by the OP
to identify this circuit.

Figure 3.1 depicts how the new circuit construction protocol carries the client infor-
mation from one relay to another. As the combination of the initiator’s IPv4 address and
circuit ID is unique for a given simulation, it is possible to map all of the circuit to their

30

origin. The mapping will allow to verify and validate the results of the correlation at-
tacks. The complete implementation of the modified Shadow Tor plugin is available at [9].

3.6 Simulation analysis
This section is dedicated to examine the performance of the simulated networks compared
to the live Tor network. As the efficiency of the developed correlation attack is directly
affected by the performance of the network, it is crucial to ensure that the Shadow simu-
lations behave as closely as possible to the live network. Indeed, in a way, the more the
simulations are accurate, the more the results of the attacks are reliable.

The simulations have been configured to model a reduced Tor network using real Tor
metrics collected in February 2016. Therefore, the client performance measured in the test
environment must be compared with the performance measured in the live Tor network
at that time. The performance of the live Tor network are given by torperf, a tool that
monitors Tor’s performance by downloading files of different sizes (50 KiB, 1 MiB and 5
MiB) from randomly chosen server located all around the world. The torperf tool acts as
typical Tor client and is used, in part, to measure the time to download files through Tor.
The torperf clients also measure the time to download the first and last byte of payload
for a given request. Lots of torperf clients monitor the Tor network everyday and the
complete history of their measurements is publicly available on the CollecTor web-site
[38]. The aggregation of all these measurements gives a good indication of the network
throughput and responsiveness over time. In the same way, torperf clients have been
included in the simulations and their measurements are compared to the performance of
the live Tor network.

The time to download the first and last byte of payload are respectively a good in-
dicator of the network latency and throughput. Figures 3.2, 3.3, 3.4 expose the time to
download the first and the last byte of payload when downloading 50 KiB, 1 MiB and
5 MiB files. The dark lines represent the measurements of the live Tor network and the
dotted lines represent the simulations measurements for the different simulations. As can
be seen on the graphs, the time to download the first byte of payload in the live network
is quite similar to the one observed in the simulations. This means that the simulations
approximate adequately the latency of the live network. On the other hand, it seems that
it takes longer in the simulations to download the files. This is the sign that the simulated
network was too heavily loaded in traffic. However, all the simulations behaved quite the
same way whatever the type of client that was simulated. This ensures that the results of
the correlation attacks for a given simulation will be coherent with the results obtained
with other simulations.

31

(a) 50 KiB - Time to first byte (b) 50 KiB - Time to last byte

Figure 3.2: Performance comparison between the live Tor network and the Shadow sim-
ulations when downloading 50 KiB files.

(a) 1 MiB - Time to first byte (b) 1 MiB - Time to last byte

Figure 3.3: Performance comparison between the live Tor network and the Shadow sim-
ulations when downloading 1 MiB files.

(a) 5 MiB - Time to first byte (b) 5 MiB - Time to last byte

Figure 3.4: Performance comparison between the live Tor network and the Shadow sim-
ulations when downloading 5 MiB files.

The conducted analysis reveals that the reduced size Tor networks simulated with
Shadow behave quite like the live Tor network, at least until the 80th percentile. More
precisely, the simulated networks seem to approximate very closely the latency observed
in live network. However, the simulations seem to be slightly too loaded in traffic but it
is not a big deal considering that the simulated communications need to be negatively
affected at least as in the live network. This ensures that the results of the developed
attacks will be consistent and reliable and that they should approximate as closely as

32

possible the behaviour that could be observed in the live network. In addition to that,
the performance analysis gives to the potential adversary some insights on how to conduct
her attack. Indeed, as the time-to-first-byte gives a good approximation of the average
RTT observed in the network, an attacker could conveniently predict the network delay
she needs to use for a more successful correlation attack. If it takes half second for the
request to reach the remote server and to receive the first byte of payload at the client, it
takes roughly 250 ms for the first bytes to travel from the server to the client. Therefore,
the bytes streams observed at the exit relays are delayed, on average, for approximately
250 ms from the streams seen at the entry relays. The attacker could use this value to
refine her attack and to raise the correlation accuracy.

33

Chapter 4

Threat analysis

This chapter aims to evaluate and measure the threat of an adversary that conduct end-
to-end correlation attacks against the Tor network using malicious relays. The feasibility
and the effectiveness of the attacks are assessed against the reduced size Tor networks
described in chapter 3.

4.1 Experimental set-up
The second threat model introduced in section 2.6.3 assumes an adversary that controls
or observes the traffic of at least one entry and one exit node inside the Tor network. If
a user communicates to a remote server outside the Tor network using a Tor circuit that
passes by the malicious entry and exit nodes, the adversary should be able to determine
if the observed cell flow at the entry matches any of the flows observed at the exit relays.
In the case the adversary finds two matching circuits and that the circuits are indeed
related, then, the adversary has correctly unveiled the user’s anonymity. As described
in previous sections, the cells that flows to and from the Tor nodes can be observed and
recorded using the Tor controller. With the modified Tor implementation, the Tor con-
troller also records the IPv4 address of the initiator as well as the circuit ID used by the
circuit initiator.

The implemented attacks make use of the cell traffic recorded by the Tor controller
on both the entry and exit nodes to correlate Tor circuits. The Shadow simulations have
been configured to save the Tor controller records of every entry and exit nodes, and, it
is based on these records that the correlation attacks are performed and evaluated. The
operation of extracting, analyzing and correlating the cell traffic patterns saved in the Tor
controller logs is actually performed by a program written in Python. The program is
first in charge of parsing Tor controller logs to make a complete mapping of the simulated
network. The mapping consists of extracting and storing in memory all the data necessary
to conduct and validate the attacks. This includes :

• Client and relay identities : Name and IPv4 addresses

• Traffic pattern for each circuit and each relay.

• Circuits identification at relays : IPv4 address and the unique circuit ID generated
and used by the initiator.

34

When the program has generated the mapping, it computes the correlation value be-
tween the interesting circuits observed at the entry relays with all the circuits observed
at the exit. The interesting circuits are the ones originating from a potential victim (
Web, Bulk, ssh, Irc) and which have been used to transfer data. In order to know if a
circuit have in fact been used, the program examines if the client have marked the circuit
as dirty in its log file. Note that only an global (unrealistic) adversary could determine
if a circuit is marked as dirty since this information is only detained by the clients. This
means that a blind adversary would need another method to find out if a circuit observed
at the entry should be analyzed or not. In the same way, the program determines which
exit circuits are worth correlating with the entry circuit being analyzed by determining
if there is some traffic activity at the exit circuit during the interval of correlation. In
addition, the program implements three different correlation techniques inspired by the
methods described in section 2.6.2. The goal of implementing these different correlation
techniques is to compare their performance and to observe if one technique is more suit-
able than another regarding the different client models.

The last step of the program consists of analyzing the results and establishing the
performance of the attack given the network mapping previously generated. Section 4.2
addresses this subject.

The correlation attacks are carried out using three different techniques. The first
method is inspired from the work of Murdoch et al. which describes a basic timing
analysis attack using latency probes [31]. The sampling method has been reviewed to fit
the current threat model resulting in a basic timing analysis attack that is performed using
the observed cells traffic. In the following sections, this first method will be called “the
basic approach”. The second and the third methods that are implemented and tested are
respectively the “packet counting” and “cross-correlation” technique described in section
2.6.2. The following sub-sections explain how these techniques have been utilized to
conduct the attacks.

4.1.1 Basic approach

As previously described, the basic approach consists of a timing analysis attack inspired
from the work of Murdoch et al. [31]. The correlation attack has been reviewed in order
to be applicable to the current threat model. With the revisited attack, the adversary
does not rely on latency probes to determine the traffic patterns. Instead, she relies on the
cell traffic histories generated by the Tor controller to obtain the traffic patterns. With
the new method, the traffic patterns observed at the entry and exit relays are respectively
defined as E(t) and E ′(t) :

E(t) =

{
1 If one ore more RELAY cells are sent on the entry circuit at time t
0 Otherwise

(4.1)

E ′(t) =

{
1 If one ore more RELAY cells are sent on the exit circuit at time t
0 Otherwise

(4.2)

35

Both E(t) and E ′(t) acts as activity probes and defines the patterns at both the entry
and exit nodes in function of the time. The adversary determines if the two circuits are
related using formula defined by Murdoch et al. 4.3:

c =

∑
E(t)× E ′(t)∑

E(t)
(4.3)

The resulting correlation value c reveals if the two circuits were active at the same
moment. The closer to one the value c is, the more the circuits are active at the same time.
Meaning that they are more related, at least in a timing point of view. Therefore, this
approach is considered a pure timing analysis attack since the effective throughput (i.e.
cell/s) is not taken into account. It is also relevant to point out that the Tor controller
records the traffic of Tor cells once every second. Therefore, the traffic patterns of cell
flows are sliced into time windows of one second. This shouldn’t be problem considering
that this size of window should give accurate results [42].

4.1.2 Packet counting

The second technique that is implemented consists in calculating the number of RELAYS
cells that transits on the entry and exit circuits during a period of time and to compute
the distance between the two cell counts using Formula 2.2. The counts of RELAYS cells
observed at the entry and exit relays during an interval of time t are respectively defined
as x and y. The distance between two cell counts x and y is defined as d(x, y) and can
be used to measure the similarity of the flows. However, the resulting distance d(x, y)
between two cell counts cannot be used as such and must be normalized with the maximum
distance observed among the correlated circuits to obtain a consistent measurement. The
correlation value c between the cell flows x and y is given by the following formula :

c = 1− d(x, y)

dmax

(4.4)

The more the distance is close to zero, the more the two cell counts are related. A
distance of zero means that cell counts x and y are equal. The distance d(x, y) is nor-
malized with the maximum distance observed in order to obtain a normalized distance
varying from 0 to 1. Thus, the correlation value c varies from zero to one, one being the
best correlation value (i.e. when cell counts x and y are equal). In contrary to the basic
approach, the packet counting strategy only relies on the amount of Tor cells transferred
during a period of time to compare the similarity of two flows. And the method does not
take into account the exact time at which the cells are sent.

Considering that Tor circuits are designed to be used for maximum 10 minutes by
default, the interval t during which the cell are counted is also set to 10 minutes. This
long interval should allow to distinguish the related circuits for the other.

36

4.1.3 Cross-correlation

The last tested technique consists in applying the cross-correlation formula (equation 2.3)
as correlation measurement for the attacks. The formula requires the adversary to fix a
network delay d and a time windowW to be applicable. In the context of the experiments,
and as the RTT have been evaluated to approximately 500 ms, the network delay d is set
to 0 second. And the window size W is set to one second as suggested in a past article
[42]. As for the other approaches, the formula is applied against the cell flows observed at
the entry and exit relays. The obtained correlation values vary from -1 to 1, one being the
best value (i.e. the two cells flows are highly related). This formula should give the most
accurate results as it takes both timing and throughput into account to correlate two flows.

4.2 Evaluation methodology
This section is dedicated to define how the accuracy and the effectiveness of the correla-
tion attacks can measured and evaluated.

As the attacks are carried out in the Shadow environment and that Tor implementation
has been altered to withdraw circuits anonymity, it is possible to determine if an attack
has given correct results. Indeed, for each correlation value c computed between an entry
and an exit circuit, and given a fixed threshold t, the adversary can determine if the
correlation is a :

True-positive (TP) The correlation value is higher than the threshold (c ≥ t) and the
two circuits are indeed related. It is a correct match.

True-negative (TN) The correlation value is lower than the threshold (c < t) and the
two circuits are indeed not related. It is a correct non-match.

False-positive (FP) The correlation value is higher than the threshold (c ≥ t) and the
two circuits are not related. It is an incorrect match.

False-negative (FN) The correlation value is lower than the threshold (c < t) and the
two circuits are related. It is an incorrect non-match.

The threshold value t is set by the adversary and determines the performance of the
attack. If the threshold t is set too high, there is a risk of not finding any correct matches.
On the other hand, a low threshold emphasizes the risk of finding false-positive matches.
Therefore, the threshold should be set to maximize the number of true-positive while
keeping the number of false-positive as low as possible. Two measurements, the false-
positive rate and the false-negative rate, can be used to evaluate the effectiveness of the
attacks for a given threshold [20]. The false positive rate, also known as the false-alarm
rate, is defined as follow :

FPR =
FP

FP + TN
(4.5)

The FPR measures the proportion of false-positives found among all the unrelated
circuits. A low FPR is desirable considering that the adversary is less susceptible to

37

find false-positives in the results. The second measurements that helps evaluating the
performance of the attacks is the false-negative rate :

FNR =
FN

FN + TP
(4.6)

The FNR measures the proportion of related circuits that have not been correctly
matched (c < t). As for the FPR, a low FNR is desired, since in that case, the attacker
is more susceptible to find correct matches among the results.

The performance of an attack can be evaluated using the FPR and the FNR as both
measurements reveal the efficiency and the accuracy of the conducted attack for a fixed
threshold t. One manner to determine the best accuracy achievable for an attack is to
compute the equal error rate (EER), which is obtained by adjusting the threshold t to
make the FPR and the FNR equal [26]. The more the EER is low, the more the attack
is accurate. The EER can be used as a point of reference to compare the accuracy of
the conducted attacks against the different client models. Furthermore, this evaluation
method can be applied regardless of the correlation method used. Then, the accuracy of
the different correlation techniques can also be compared.

The following sections aim to detail and discuss the results of the attacks obtained
in the case of two different adversaries. In the first scenario, the adversary is global and
knows which circuits are used by which clients. She is also aware of the time when the
circuits were first used and she carries out the correlation attacks using these information.
Consequently, the results should be optimal and should reflect the efficiency of the differ-
ent correlation methods, as well as their effectiveness against the different client models.
In the second case, the adversary is not almighty, she just has access to the Tor logs of all
relays and needs to determine how to set up the attacks to achieve the best results. One
of the objective of the first scenario is to gather results that will give some insights on how
to maximize the performance of the attack in the case of a blind attacker. The second
scenario places the adversary in a more realistic situation and is dedicated to illustrate
how an adversary could set-up an attack in the live Tor network.

4.3 Global adversary
This section details and discusses the results of the end-to-end correlation attacks per-
formed by a global adversary that can monitor the entire Tor network. In this scenario,
the opponent has access to all the information she needs to achieve the most accurate
attacks. She knows the complete network mapping and knows which entry circuits are
worth correlating. Moreover, she can determine when to start correlating the cell flows
since she knows when the circuits have been used for the first time with the circuit_dirty
timestamp. The time interval of correlation is set to ten minutes and starts when the
victims circuits have became dirty. The interval is set to ten minutes as it is the maximum
lifetime of a circuit in the simulation (Tor default settings).

The three correlation techniques described in the above sections are tested against
1000 clients of each kind (web, bulk, SSH and Irc). The following sections 4.3.1, 4.3.2 and
4.3.3 will first describe and analyze the results for each technique individually. Then, a

38

comparison is made between the techniques to determine which one is most accurate and
efficient. The focus is placed on finding which method will best suit the needs of the blind
adversary and to obtain some insight on how to achieve the best results in that scenario.

4.3.1 Basic approach

As previously described in section 4.2, the accuracy of a correlation attack can be estab-
lished using the equal error rate (EER) which is obtained by finding the threshold t such
that the false positive and negative rates are equal. The lower the equal error rate is, the
more accurate the attacks are. Calculating the EER helps to determine if a correlation
technique has a chance of achieving good results. Furthermore, it gives an adequate mea-
surement to compare the accuracy of different attacks.

Figure 4.1 illustrates the false positive and negative rates obtained for each kind of
client when varying the threshold t between 0 and 1. The EER for each type of traffic is
given when the FPR and FNR intersect.

(a) Web clients (b) Bulk clients

(c) Ssh clients (d) Irc clients

Figure 4.1: Graphs of the false positive and negative rates obtained with the basic ap-
proach for every type of client when varying the threshold between 0 and 1. The equal
error rate is shown where the FPR and FNR curves intersect.

The graphs in Figure 4.1 reveal that the basic approach seems accurate against all
kind of traffic. Indeed, the EER is quite constant and only varies from 2,9% (Irc) to 5,8%
(Bulk). It seems that the basic approach achieves better accuracy when correlating ssh

39

and Irc clients. This can be explained by the fact that the traffic observed on the circuits
belonging to ssh and Irc clients are more unique since they carry little traffic with lots of
random gaps in the transfers. On the other hand, one might expect that bulk traffic, with
the lack of gaps in the traffic patterns, would be more difficult to correlate (EER = 5,8%).

Nevertheless, the obtained EERs are given for different thresholds. This means that a
blind adversary, who doesn’t know what kind of traffic an entry circuit is carrying, must
fix a unique threshold t for its attacks. Fixing the threshold to the most efficient value
is discussed later. Still, the problem of fixing a unique threshold can already be observed
graphically. Imagine that an adversary fixes the threshold to 0.5, then she should obtain
good results for every kinds of clients since the FPRs will be low in each case (i.e. less in-
correct matches in the results). However, by fixing this threshold, she would obtain higher
FNRs leading to less correct matches in the results. Since having less correct matches
in the results is less damaging than having false positives, the adversary would prefer a
high threshold to maximize its chance of successfully matching related flows. Still, one
can observe that the FNRs for each types of client do not evolve in the same way. Then,
fixing the threshold too high, even if it is acceptable for one type of traffic, could decrease
the chance of matching another type of client. Let’s take the Web and SSH clients of
Figure 4.1 as example. Imagine that the adversary fixes the threshold to 0.8 because she
thinks that it will maximize the probability of achieving good results for the ssh clients
(i.e. low FNR and FPR). With that threshold, she would obtain a relatively high FNR
with the web clients, leading to miss more web clients than ssh clients.

40

4.3.2 Packet counting

This section develops the results obtained with the packet counting method. As for the
previous approach, the accuracy of the method is given by the equal error rate obtained
when the FPR and FNR are equal.

(a) Web (b) Bulk

(c) SSH (d) Irc

Figure 4.2: Graphs of the false positive and negative rates obtained with packet counting
technique for every type of client when varying the threshold between 0 and 1. The equal
error rate is shown where the FPR and FNR curves intersect.

Figure 4.2 reveals that using the packet counting strategy based on a distance measure-
ment is quite challenging. As can be seen on the graphs, the optimal threshold for every
type of traffic must be chosen with precision to obtain reliable results. If the attacker does
not fix the threshold very precisely, the results will be either full of false positive or false
negative as the FPR and FNR tend to grow abruptly around the EER. This is particularly
true for the ssh and Irc traffic. Imagine that the adversary fixes the threshold to 0.99 for
the ssh clients. In that case, the false negative rate drops to zero, meaning that there will
be no false-negative in the results. However, with this threshold, the false positive rate
is very high, leading to an inaccurate attack. This is even more true for the Irc traffic.
Thus, it is difficult for the adversary to fix a threshold that would be optimal for all types
of traffic as one threshold could fit one type of client but would be disastrous for the others.

41

4.3.3 Cross-correlation

This section details the results obtained with the cross-correlation method. As for the
last techniques, the performance of the attacks against the different client models are
established using the equal error rate. Figure 4.3 depicts the false positive and negative
rates obtained for each kind of client when varying the threshold t between -1 and 1.

(a) Web (b) Bulk

(c) SSH (d) Irc

Figure 4.3: Graphs of the false positive and negative rates obtained with cross-correlation
technique for every type of client when varying the threshold between -1 and 1. The equal
error rate is shown where the FPR and FNR curves intersect.

Results presented on Figure 4.3 show that the cross-correlation formula gives accurate
results for every client model. The EER varies from 1,9% (Irc) to 6,5% (Bulk) and
the thresholds obtained with the EER for each type of traffic are close to each other
(0.106 < t < 0.235). Furthermore, the FNR and FPR curves have quite the same shape
suggesting that it could be easy for the adversary to set a threshold t providing satisfying
results whatever the type of traffic observed.

4.3.4 Comparison of the correlation techniques

This section aims to compare the performance between the different correlation tech-
niques in the case of a global adversary. As explained previously, in this scenario, the
adversary is all-knowing and can differentiate the type of traffic that is flowing on each
circuits. Therefore, the adversary can conduct distinguishing attacks and determine the
optimal threshold for each type of clients. However, this scenario is only conceivable in
an experimental environment and the results obtained with the global adversary are only

42

intended to find the most appropriate technique for the blind attacker. The technique
must be both accurate and polyvalent. Meaning that the adversary, by fixing a unique
threshold t, should be able to precisely correlate all types of traffic. The remainder of
this section is committed to determine which technique and thresholds will best suit the
needs of a blind attacker.

Table 4.1 summarizes the results obtained with the three correlation techniques. The
table recaps the thresholds and the resulting equal error rates obtained for every tech-
niques and client models.

Threshold EER
B

as
ic

ap
p
ro

ac
h Bulk 0.449 0.0584

Web 0.186 0.0491
SSH 0.625 0.0346
IRC 0.329 0.0290

P
ac

ke
t

co
u
nt

in
g Bulk 0.99543 0.089847

Web 0.99205 0.044009
SSH 0.99915 0.019249
IRC 0.99996 0.01001

C
ro

ss

co
rr

el
at

io
n Bulk 0.235 0.065

Web 0.106 0.0476
SSH 0.198 0.0327
IRC 0.122 0.019

Table 4.1: Summary of EERs obtained for each type of correlation technique and traffic.

As one can observe, all approaches provide pretty much the same EERs when the
same type of traffic is compared. Indeed, the highest difference among the EERs for
a fixed type of traffic is ≈ 3% (when the EER of the bulk traffic of the packet count-
ing approach is compared with the results obtained for the bulk traffic of the two other
approaches). In all other cases, the EERs differ from less than 3%. Therefore, from the
global attacker’s point of view, each approach appears to be as accurate as the two others.

However, even if the equal error rate allows to compare the accuracy of the different
correlation techniques, it doesn’t give any clue about the probability of matching two cell
flows that are indeed related. Consider an entry flow I and an exit flow J , the probability
that the adversary matches flow I with flow J when the two flows are related is defined
as P (I = J |I ∼ J). The probability P (I = J) is equal to 1

n
, where n is the number of

concurrent flows at the exit relays that exist in the time interval of the correlation. The
probability P (I = J |I ∼ J) can be evaluated using the equation 4.7 defined by Levine et
al. in their paper concerning timing analysis attacks [26] :

P (I = J |I ∼ J) =
(1− FNR) ∗ P (I = J)

(1− FNR− FPR) ∗ P (I = J) + FPR
(4.7)

Equation 4.7 defines the probability that flow I and J are correctly matched when they
have been correlated. As the equation illustrates, the probability depends on the FNR

43

and the FPR as well as the number of concurrent exit flows existing during the interval
of correlation. The lower the FNR and the FPR are, the more the attack has chances of
being successful. Additionally, the more there are concurrent exit flows existing at the
time of the correlation, the less the attack is reliable. Indeed, as n increases, P (I = J)
decreases, decreasing in same time the probability of finding a correct result.

As stated above, the probability that the adversary matches the two related flows
among n concurrent exit flows is defined by P (I = J) = 1

n
. In the developed attack,

a Python script is in charge of counting the average number of concurrent cell flows
detected at the exit relays. The number of concurrent cell flows observed at the exit
relays slightly varies from one simulation to another and from one correlation interval
to another. Thus, the number of concurrent flows, n, is set to the average number of
concurrent flows observed during all attacks. The average number n has been evaluated
to ≈ 1000 (855 < n < 1247). Then, when the adversary correlates an entry flow, she
observes on average 1000 concurrent flows at the exit relays. The evaluated number n
gives the probability P (I = J) for the experiments.

The probability P (I = J |I ∼ J) gives to the adversary a convenient measurement to
evaluate the performance of an attack for a fixed threshold. Furthermore, by varying the
threshold, the adversary can find the optimal threshold that maximizes the probability
of matching two related flows. Table 4.2 illustrates the optimal threshold that gives the
best chance of successfully matching two related flows for each technique and client model.

Optimal Threshold FNR FPR P(I=J | I ∼ J)

B
as

ic

ap
p
ro

ac
h Bulk 0.932 0.2797 0.0072 0.09

Web 0.715 0.1630 0.0034 0.195
SSH 0.832 0.0664 0.0062 0.131
IRC 0.842 0.4914 0.00013 0.79

P
ac

ke
t

co
u
nt

in
g Bulk 0.99998 0.2804 0.0019 0.265

Web 0.999936 0.147 0.0027 0.24
SSH 0.999975 0.2030 0.0003 0.693
IRC 0.999978 0.0890 0.0102 0.082

C
ro

ss

co
rr

el
at

io
n Bulk 0.879 0.445 0.00004 0.928

Web 0.745 0.3307 0.0003 0.686
SSH 0.934 0.499 0.00001 0.975
IRC 0.761 0.349 0.0 1.0

Table 4.2: Summary of FPR, FNR and P (I = J |I ∼ J) for every correlation techniques
when fixing the threshold such that it maximize the probability P (I = J |I ∼ J) for a
given type of client.

As can be seen on Table 4.2, the results for the basic approach suggest that, even
if the optimal threshold does not vary that much from one client model to another, the
technique is not that efficient. The best probabilities of matching two related circuits that
belong to bulk, web and ssh clients varies from 9% to 19%. However, the approach gives
satisfying results for the Irc clients. Then, it seems that the technique does well when
correlating irregular, intermittent and slightly loaded traffic and is less efficient when it
comes to correlate traffic with less interleaving.

44

By having a look at the results for the packet counting approach, it seems that this
approach is more efficient than the basic one to match two related bulk, web and ssh
circuits. Indeed, for each of those traffic types, P (I = J |I ∼ J) is higher. However, when
it comes to match IRC traffic, it is clear that the packet counting approach is less reli-
able than the previous one. For such a type of traffic, the matching probability severely
decreases (79% → 8.2%). Concerning the optimal thresholds in the approach, one can
observe that they barely moves from one traffic type to another. Consequently, it is easier
for an adversary to set a threshold that is close to the optimal ones and suitable for each
type of traffic (e.g. 0.9999).

Finally, the cross-correlation technique seems to be the approach providing the best
matching probabilities regardless of the client model. With this technique, the matching
probability is above 92% for three out of four traffic types. Only the web surfing traffic
achieves a lower probability, while remaining much better in this approach than in the
two previous ones. However, the cross-correlation technique is far from perfect since the
FNR is relatively high for each type of traffic. As a result, the risk of not detecting a
correct match is not negligible.

Furthermore, as already stated, the probability of matching two related flows is di-
rectly affected by the amount of concurrent exit flows. In the live Tor network, this
amount can vary a lot depending on the amount of active Tor users. Logic dictates that
the concurrent exit flows are expected to be higher during the rush hour and lower during
off-peak. Consequently, the matching probability can drastically change depending on
that factor. For example, if the matching probably is computed with the parameters of
the cross-correlation web clients from table 4.2 (FNR=0.3307, FPR=0.0003) and a rush
hour scenario (n=10000) is considered then the resulting P (I = J |I ∼ J) is about 18%. If
on the other hand, an off-peack scenario (n = 100) is taken then the matching probability
roughly jumps to 96%. Therefore, when the number of active Tor users is large, it is of
the first importance for the adversary to choose an accurate correlation technique that
minimizes the FNR and the FPR.

Finally, based on the results from table 4.1 and table 4.2, it would be interesting
to determine which correlation technique is best suited when an adversary has no prior
knowledge about the types of traffic flowing in the Tor network. In such a case, a unique
threshold must be set per approach. Consequently, it is likely that some techniques prove
to be less efficient or more difficult to put in place than others. This subject is covered in
more detail in the next section.

45

4.4 Blind adversary
This section develops the scenario of a blind adversary carrying correlation attacks as in
the live Tor network. In this situation, the adversary is not all-knowing and only have
access to the Tor controller logs of all relays. She has no information regarding the type
of traffic flowing on each circuit and does not know which circuits are indeed used by
the victims (i.e. which circuits are dirty). Therefore, several problems stand before the
adversary.

One of the first difficulty for the blind adversary is that she needs to determine which
circuits observed at the entry relays are worth correlating. One way to achieve this could
be to determine if the cells that are received on a circuit come from a victim and if the
circuit indeed carries some RELAY cells. Imagine that the adversary has a list of IP
addresses of potential victims. Then, if the adversary receives some cells at an entry relay
on a TCP/TLS connection originating from a victim IP address, she can determine which
circuits belong to the victims. Moreover, she just needs to count the RELAY cells that
transit on a circuit to find out which circuits have been really used. Finally, she can
determine when to start the correlation by finding when the first RELAY cell containing
data is sent. In the case of a 3-hop circuit, the cells carrying data are the ones that
are sent after the circuit construction protocol (Figure 2.3). Thus, when the attacker
observes that an EXTENDED and a RELAY cell are first sent back to the OP (i.e. the
construction protocol is achieved), she knows that the following cells, if they exist, will
carry some data traffic. Meaning that the circuit has been used by the client and should
be analyzed. As for the global adversary, the blind one should choose to fix the interval
of correlation to 10 minutes as it is the average lifetime of dirty circuit in Tor.

Another complication for the blind adversary is that she must choose which is the best
correlation method to employ and must determine how to fix a unique efficient threshold
allowing to accurately correlate diversified kind of traffic. The previous section partially
answers to the question by revealing that the cross-correlation is the most efficient tech-
nique regardless of the type of traffic. Nonetheless, it remains to determine what is the
most effective threshold to use. In the context of the experiments, the adversary cor-
relates the circuits of 1000 clients of each kind. Therefore, in this situation, the blind
adversary has one chance out of four to stumble upon a given type of client. So, the
adversary should fix the unique threshold to the average optimal value. However, in the
live Tor network, the client distribution is not the same. There are approximately 93%,
3.5% and less than 1% chance to respectively encounter a web, a bulk or a ssh/irc client
[30]. Therefore, the adversary that operates on the Tor network would prefer to fix a
threshold that maximizes the chance of correctly correlate web clients. Table 4.3 illus-
trates that situation by showing the performances of the three correlation methods when
the adversary fixes a unique threshold that maximizes the probability of matching web
clients. The performances of each method are compared by evaluating the probabilities
of correctly matching the flows for each type of clients. The obtained performances are
to be compared to the best performances achievable which have been determined by the
global adversary (see table 4.2).

As can be observed on Table 4.3, the results obtained for the basic approach are quite
unsatisfying. Fixing the threshold in order to get the best probability of catching web

46

clients greatly reduces the chance of catching the other types. Indeed, the probabilities
of matching the other types of client are almost divided by two considering the best
probabilities achievable. Furthermore, the overall performance of the method are not
astonishing as the probability of matching two related circuits only varies from 4 to 42%.

Fixed Threshold FNR FPR P(I=J | I ∼ J)
Best probability

achievable

B
as

ic

ap
p
ro

ac
h Bulk 0.715 0.1782 0.0160 0.0489 0.09

Web 0.715 0.1630 0.0034 0.195 0.195
SSH 0.715 0.0395 0.0097 0.0902 0.131
IRC 0.715 0.2202 0.0011 0.4218 0.79

P
ac

ke
t

co
u
nt

in
g Bulk 0.999936 0.0 0.4734 0.0021 0.265

Web 0.999936 0.147 0.0027 0.24 0.24
SSH 0.999936 0.0 0.8970 0.0011 0.693
IRC 0.999936 0.0 0.8520 0.0012 0.082

C
ro

ss

co
rr

el
at

io
n Bulk 0.745 0.2330 0.0007 0.5172 0.928

Web 0.745 0.3307 0.0003 0.686 0.686
SSH 0.745 0.1357 0.0002 0.8144 0.975
IRC 0.745 0.2883 0.0000 0.9980 1.0

Table 4.3: Summary of FPR, FNR and P (I = J |I ∼ J) for each type of traffics and
correlation techniques when fixing the threshold that maximizes the chance of correlating
Web clients.

The case of the packet counting strategy, although similar to the basic approach, is
more extreme. Notwithstanding the web clients, the probabilities for the other types of
clients are roughly divided by 100 considering the best achievable probabilities. Even if
this method achieves better results than the basic approach for the web clients, it gives
poor results in overall as the probability of matching related circuits only varies from 0,11
to 24%. The best performance are achieved with the cross-correlation method. With
this last method, the probability of catching bulk client is almost divided by two. How-
ever, the probabilities do not decrease that much for the ssh and irc clients and remain
quite satisfactory (respectively 81 and 99.8%). The particularly good results for this last
method can be explained by the relatively low FPR for each client model. Indeed, if there
are almost no false-positives in the results, they should only contain matching results (i.e.
P (I = J |I ∼ J) is close to one). Nevertheless, one should notice that the FNRs for this
method are quite high and vary from 13 (ssh) to 33% (web). This means that, even if the
results are almost filled with correct matches, the attacker has also a great chance of miss-
ing a correct results. Let’s make an example with the Web clients of the cross-correlation
method. If the adversary encounters an entry circuit carrying web traffic, she has 33%
chance that the correlation with the related exit circuit will be less than the threshold
(c < t). Then, she will put 1 correct match out of 3 in the negative results by mistake.
Thereby, even if she gets very satisfying probabilities that the results will be correct, she
will miss quite a lot of correct matches. Again, as explained earlier, the adversary prefers
missing correct matches than having results filled with false positives.

Now that the adversary has determined what threshold she should use, she ultimately
wants to determine what is the probability of matching related circuits when she has no
information about the traffic that is flowing (blind adversary). If she operates on the live

47

Tor network, she can determine that she has approximately 93%, 3.5% and less than 1%
chance to respectively encounter a web, a bulk or a ssh/irc client. Then, she fixes the
threshold such that it maximizes her chance of catching web clients and computes the
average probability in function of the client ratios to determine her probability of match-
ing related circuits. The resulting probabilities have been calculated for each correlation
technique and are shown on Table 4.4. The table reveals the chance of correctly matching
one entry and one exit circuit that are related, when the entry circuit is picked at random
and that the threshold is fixed to maximize the chance of catching web clients. While
considering that the client distribution respects the following ratios : 93%, 5%, 1% and
1% of chance to respectively encounter a web, a bulk, a ssh or a irc client.

Fixed Threshold P(I=J | I ∼ J)
Basic approach 0.715 0.189
Packet counting 0.999936 0.223
Cross-correlation 0.745 0.682

Table 4.4: Probability of correctly matching related circuits when the client distribution
respects the following ratios : 93%, 5%, 1% and 1% of chance to respectively encounter a
web, a bulk, a ssh or a irc client

The results shown on Table 4.4 are not surprising considering the previous results but
give some insight to the blind adversary. Indeed, even if the packet counting approach
is challenging to set up because the adversary needs to find a very precise threshold,
if the threshold is accurately fixed, this approach can be more effective than the ba-
sic approach. However, the first two methods achieve clearly worst performance than the
cross-correlation as this last technique obtains a chance of 68% that two correctly matched
circuits (c > t) are indeed related.

4.5 Discussion and Further work
The results show that end-to-end correlation attacks are a real threat against the Tor
anonymity network. However, the results must be put into perspective. As explained,
the probabilities of correctly matching two circuits that are indeed related depends on the
number of concurrent circuits observed at the exit relays. For the simulation, the number
of concurrent circuits have been evaluated to ≈ 1000. However, a realistic adversary that
operates on the Tor network may encounter far more concurrent circuits. This situation
would hugely reduce her chance of correctly matching related circuits. Moreover, if the
adversary has only compromised few relays, her odds drop even more. Yet, as identified by
Jhonson et al., the adversary can significantly raise her chance by performing a long-term
attack campaign. By doing so, they showed that an adversary with only few resources
could deanonymize any given user within six months with over 80% probability [25]. In
response to that paper, the Tor developers reduced the default number of guards and
raised the time before a guard expires. Even with these changes, the anonymity network
is still at risk and no real and effective defense strategy has been adopted yet. Most of
the defenses proposed in the literature impact negatively the network performance and
the user experience. However, promising researches showed that multiple-path circuits

48

could be used to improve both the performance and the anonymity of the network at the
cost of increasing the cryptographic load at the relays [19]. Splitting user’s traffic among
several circuits at the same time has some advantages. The bandwidth load is more evenly
distributed across the network resulting in a better user experience. Furthermore, increas-
ing the number of circuits that are used across the network at the same time decreases
the chance of correctly correlating two related circuits. At the time being, it is the only
known defense strategy that could improve both the performance and anonymity of the
Tor network at the same time. An implementation of such multi-path routing algorithm
has been presented in a recent paper [47]. The authors demonstrated the reliability of
the new routing algorithm, mTor, with the Shadow simulator. They revealed that the
new algorithm leads to better network performance and makes traffic analysis attacks
harder to perform. Then, an interesting subject of further researches could be to measure
the difference in performance and anonymity between the single and the multi-path algo-
rithm. Another interesting subject could be to measure the performance of the correlation
attacks against different client models when using multi-path routing.

Another area of research, which could benefit the adversary this time, would be to
evaluate the performance of the attacks when correlating the cell traffic going both in the
backward and forward directions. By doing so, the adversary could obtain more unique
traffic patterns that could be easier to distinguish from the others. This would result
in lowering the false-positive and negative rates, making the attacks more precise and
efficient. Furthermore, it could be interesting to see what happens to chance of correctly
matching related circuits when the adversary has only compromised a few relays and has
only a partial view of the network. As for now, the Tor bandwidth is known to be quite
unbalanced between the different relays. As relays advertising high bandwidth are more
susceptible to be chosen by the client to create circuits, it could be interesting to identify
how much relays and/or bandwidth an adversary needs, to obtain a relatively good chance
of matching related circuits. The Shadow simulation tools could be used to assess these
subjects.

49

Chapter 5

Conclusion

Over the course of this document, we developed and analyzed the threat of a relay adver-
sary carrying end-to-end correlation attacks against the Tor network. For this purpose,
we first laid the foundation of the Tor anonymity scheme and defined in details how to
conveniently set-up correlation attacks using the Tor log files. Then, the document de-
scribes how we utilized and adapted the Shadow simulation tools to test and assess the
severity of the threat. We tested three different correlation methods. The first method,
called the basic approach, which consists of a timing analysis attack inspired from the
work of Murdoch et al. has given the worse results considering a blind adversary oper-
ating on the live Tor network. The packet-counting method almost gave the same poor
results as the basic approach and is more problematic to calibrate. The cross-correlation
was identified as the method giving the most satisfying results. With this last method,
a blind adversary has a great chance to successfully deanonymize circuits carrying any
type of traffic. The cross-correlation method has been identified as the most multipurpose
among the three methods implemented and should be used instead of the two others. The
research that was conducted illustrates that an adversary, given enough time and some
access to Tor relays log files, could deanonymize users circuits regardless of their online
activity. Users can either do some web-surfing, instant-messaging or even download large
files over Tor, they are almost taking the same risk. At least, this is true if the adversary
uses the cross-correlation method.

The above situation demonstrates another time the urge for an efficient and reliable
defense mechanism to counteract end-to-end correlation attacks. After a decade of re-
search, the problem is still unsolved but there exist some promising study showing that
using multi-path circuits with Tor could increase both the performance and the anonymity
of the Tor network. Therefore, it could be interesting to evaluate the benefit in term of
performance and anonymity that multi-path circuits can provide considering different
kind of client models. Researches going towards this objective would encourage the Tor
community to eventually improve and adopt a more efficient system providing better
performance and anonymity to Tor users.

50

Bibliography

[1] Pearson product-moment correlation. https://statistics.laerd.com/
statistical-guides/pearson-correlation-coefficient-statistical-guide.
php.

[2] What attacks remain against onion routing. https://www.torproject.org/docs/
faq.html.en#AttacksOnOnionRouting, 2016.

[3] M. Akhoondi, C. Yu, and H.V. Madhyastha. Lastor: A low-latency as-aware tor
client. In Security and Privacy (SP), 2012 IEEE Symposium on, pages 476–490,
May 2012.

[4] Michael Backes, Aniket Kate, Sebastian Meiser, and Esfandiar Mohammadi. (nothing
else) mator(s): Monitoring the anonymity of tor’s path selection. IACR Cryptology
ePrint Archive, 2014:621, 2014.

[5] Kevin Bauer, Micah Sherr, Damon McCoy, and Dirk Grunwald. Experimentor: A
testbed for safe and realistic tor experimentation. In Proceedings of the 4th Con-
ference on Cyber Security Experimentation and Test, CSET’11, pages 7–7, Berkeley,
CA, USA, 2011. USENIX Association.

[6] Daniel J. Bernstein. Curve25519: New diffie-hellman speed records. In Public Key
Cryptography - PKC 2006, 9th International Conference on Theory and Practice of
Public-Key Cryptography, volume 3958 of Lecture Notes in Computer Science, pages
207–228. Springer, 2006.

[7] Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. Trawling for tor hid-
den services: Detection, measurement, deanonymization. In Proceedings of the 2013
IEEE Symposium on Security and Privacy, SP ’13, pages 80–94, Washington, DC,
USA, 2013. IEEE Computer Society.

[8] Sambuddho Chakravarty. Traffic analysis attacks and defenses in low latency anony-
mous communication. Columbia University, 2014. Graduate School of Arts and Sci-
ences.

[9] Henri Crombé and Mallory Declercq. Github of the modified version of the
tor shadow plugin used for the simulations. https://github.com/HenriCrombe/
shadow-plugin-tor-enhanced, 2016.

[10] Henri Crombé and Mallory Declercq. Github of the pcap-replay plugin. (pulled
to shadow-plugin-extras). https://github.com/shadow/shadow-plugin-extras/
tree/master/pcap_replay, 2016.

51

https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php
https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php
https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php
https://www.torproject.org/docs/faq.html.en#AttacksOnOnionRouting
https://www.torproject.org/docs/faq.html.en#AttacksOnOnionRouting
https://github.com/HenriCrombe/shadow-plugin-tor-enhanced
https://github.com/HenriCrombe/shadow-plugin-tor-enhanced
https://github.com/shadow/shadow-plugin-extras/tree/master/pcap_replay
https://github.com/shadow/shadow-plugin-extras/tree/master/pcap_replay

[11] Roger Dingledine. Better guard rotation parameters. In Tor Tech Report 2011-08-
001, 2011.

[12] Roger Dingledine. Improving tor’s anonymity by changing guard parameters., 2013.

[13] Roger Dingledine and Nick Mathewson. Tor path specification. https://gitweb.
torproject.org/torspec.git/tree/path-spec.txt.

[14] Roger Dingledine and Nick Mathewson. Tor protocol specification. https://gitweb.
torproject.org/torspec.git/tree/tor-spec.txt.

[15] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation
onion router. In Proceedings of the 13th Conference on USENIX Security Symposium
- Volume 13, SSYM’04, pages 21–21, Berkeley, CA, USA, 2004. USENIX Association.

[16] Matthew Edman and Paul Syverson. As-awareness in tor path selection. In Proceed-
ings of the 16th ACM Conference on Computer and Communications Security, CCS
’09, pages 380–389, New York, NY, USA, 2009. ACM.

[17] Tariq Elahi, Kevin Bauer, Mashael AlSabah, Roger Dingledine, and Ian Goldberg.
Changing of the guards: A framework for understanding and improving entry guard
selection in tor. In Proceedings of the 2012 ACM Workshop on Privacy in the Elec-
tronic Society, WPES ’12, pages 43–54, New York, NY, USA, 2012. ACM.

[18] Tariq Elahi, Kevin Bauer, Mashael AlSabah, Roger Dingledine, and Ian Goldberg.
Changing of the guards: A framework for understanding and improving entry guard
selection in tor. In Proceedings of the 2012 ACM Workshop on Privacy in the Elec-
tronic Society, WPES ’12, pages 43–54, New York, NY, USA, 2012. ACM.

[19] O. Pereira F. Rochet and O. Bonaventure. Moving tor circuits towards multiple-path:
Anonymity and performance considerations. 2015.

[20] Tom Fawcett. An introduction to roc analysis. Pattern Recogn. Lett., 27(8):861–874,
June 2006.

[21] Xinwen Fu and Zhen Ling. One cell is enough to break tor’s anonymity. Proceedings
of Black Hat Technical Security Conference, 2009.

[22] Rob Jansen and Nicholas Hopper. Shadow: Running tor in a box for accurate and
efficient experimentation. In NDSS. The Internet Society, 2012.

[23] Rob G. Jansen. The shadow simulator. https://github.com/shadow/shadow, 2015.

[24] Rob Jansen John Geddes and Nicholas Hopper. Tor IMUX: Managing connections
from two to infinity, and beyond. In Proceedings of the 12th Workshop on Privacy in
the Electronic Society (WPES), November 2014.

[25] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syverson. Users
get routed: Traffic correlation on tor by realistic adversaries. In Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications Security, CCS
’13, pages 337–348, New York, NY, USA, 2013. ACM.

52

https://gitweb.torproject.org/torspec.git/tree/path-spec.txt
https://gitweb.torproject.org/torspec.git/tree/path-spec.txt
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://github.com/shadow/shadow

[26] Brian N. Levine, Michael K. Reiter, Chenxi Wang, and Matthew K. Wright. Timing
attacks in low-latency mix-based systems. In Ari Juels, editor, Proceedings of Finan-
cial Cryptography (FC ’04), pages 251–265. Springer-Verlag, LNCS 3110, February
2004.

[27] Zhen Ling, Junzhou Luo, Wei Yu, Xinwen Fu, Dong Xuan, and Weijia Jia. A new
cell-counting-based attack against tor. IEEE/ACM Trans. Netw., 20(4):1245–1261,
August 2012.

[28] Chao Liu, Ryen W. White, and Susan Dumais. Understanding web browsing behav-
iors through weibull analysis of dwell time. In Proceedings of the 33rd International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’10, pages 379–386, New York, NY, USA, 2010. ACM.

[29] Nick Mathewson. Improved circuit-creation key exchange. https://gitweb.
torproject.org/torspec.git/tree/proposals/216-ntor-handshake.txt, 2011.

[30] Damon Mccoy, Kevin Bauer, Dirk Grunwald, Tadayoshi Kohno, and Douglas Sicker.
Shining light in dark places: Understanding the tor network. In Proceedings of the
8th International Symposium on Privacy Enhancing Technologies, PETS ’08, pages
63–76, Berlin, Heidelberg, 2008. Springer-Verlag.

[31] Steven J. Murdoch and George Danezis. Low-cost traffic analysis of tor. In Proceed-
ings of the 2005 IEEE Symposium on Security and Privacy, SP ’05, pages 183–195,
Washington, DC, USA, 2005. IEEE Computer Society.

[32] Steven J. Murdoch and Robert N. M. Watson. Metrics for security and performance
in low-latency anonymity networks. In Nikita Borisov and Ian Goldberg, editors, Pro-
ceedings of the Eighth International Symposium on Privacy Enhancing Technologies
(PETS 2008), pages 115–132. Springer, July 2008.

[33] Steven J. Murdoch and Piotr Zieliński. Privacy Enhancing Technologies: 7th Inter-
national Symposium, PET 2007 Ottawa, Canada, June 20-22, 2007 Revised Selected
Papers, chapter Sampled Traffic Analysis by Internet-Exchange-Level Adversaries,
pages 167–183. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[34] Konstantin Müller. Defending end-to-end confirmation attacks against the tor net-
work. Gjøvik University College, 2015. Department of Computer Science and MT-
DMT Technology.

[35] Rishab Nithyanand, Oleksii Starov, Adva Zair, Phillipa Gill, and Michael Schapira.
Measuring and mitigating as-level adversaries against tor. CoRR, abs/1505.05173,
2015.

[36] Gavin O’Gorman and Stephen Blott. Improving stream correlation attacks on anony-
mous networks. In Proceedings of the 2009 ACM Symposium on Applied Computing,
SAC ’09, pages 2024–2028, New York, NY, USA, 2009. ACM.

[37] Lasse Øverlier and Paul Syverson. Locating hidden servers. In Proceedings of the
2006 IEEE Symposium on Security and Privacy. IEEE CS, May 2006.

[38] Tor project. Data-collecting service in the tor network portal. https://collector.
torproject.org/, 2016.

53

https://gitweb.torproject.org/torspec.git/tree/proposals/216-ntor-handshake.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/216-ntor-handshake.txt
https://collector.torproject.org/
https://collector.torproject.org/

[39] Tor project. Tor metrics portal. https://metrics.torproject.org, 2016.

[40] Nick Mathewson Roger Dingledine, George Kadianakis and Nicholas Hopper. One
fast guard for life (or 9 months). In 7th Workshop on Hot Topics in Privacy Enhancing
Technologies, HotPETs, 2014.

[41] Fatemeh Shirazi, Matthias Goehring, and Claudia Diaz. Tor experimentation tools.
In Proceedings of the 2015 IEEE Security and Privacy Workshops, SPW ’15, pages
206–213, Washington, DC, USA, 2015. IEEE Computer Society.

[42] Vitaly Shmatikov and Ming-Hsiu Wang. Timing analysis in low-latency mix net-
works: Attacks and defenses. In Dieter Gollmann, Jan Meier, and Andrei Sabelfeld,
editors, Computer Security – ESORICS 2006: 11th European Symposium on Re-
search in Computer Security, Hamburg, Germany, September 18-20, 2006. Proceed-
ings, pages 18–33, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[43] Sukhbir Singh. Large-scale emulation of anonymous communication networks. Uni-
versity of Waterloo, 2014.

[44] Christopher Wacek, Henry Tan, Kevin Bauer, and Micah Sherr. An Empirical Evalu-
ation of Relay Selection in Tor. In Proceedings of the Network and Distributed System
Security Symposium - NDSS’13. Internet Society, February 2013.

[45] Zeadally Sherali Winkler Stephanie. An analysis of tools for online anonymity. Uni-
versity of Kentucky, 2015.

[46] Matthew K. Wright, Micah Adler, Brian Neil Levine, and Clay Shields. The prede-
cessor attack: An analysis of a threat to anonymous communications systems. ACM
Trans. Inf. Syst. Secur, 7:2004, 2004.

[47] Lei Yang and Fengjun Li. mtor: A multipath tor routing beyond bandwidth throt-
tling. In Communications and Network Security (CNS), 2015 IEEE Conference on,
pages 479–487, Sept 2015.

54

https://metrics.torproject.org

	Introduction
	Contributions

	Background
	Tor nodes
	Path selection
	Entry guard
	Tor cells
	Circuit construction
	Attacks on the Tor network
	State of the Art
	Traffic correlation techniques
	Developed end-to-end correlation attack

	Simulating the Tor network
	Tor experimentation tools
	The Shadow simulator
	Developed plugin
	Simulations set-up
	Circuit mapping
	Simulation analysis

	Threat analysis
	Experimental set-up
	Basic approach
	Packet counting
	Cross-correlation

	Evaluation methodology
	Global adversary
	Basic approach
	Packet counting
	Cross-correlation
	Comparison of the correlation techniques

	Blind adversary
	Discussion and Further work

	Conclusion

