Faculté de Psychologie et des Sciences de l’Education, orientation logopédie

Bilinguisme : Effet de l’interférence dans l’apprentissage Hebb

Promoteur : Arnaud Szmalec
Co-promoteur : Lize Van der Linden
En collaboration avec Mélanie Vanhulst

Mémoire présenté en vue de l’obtention du grade de Master en logopédie par Julie Verhelpen

Louvain-la-Neuve
Juin 2015
Remerciements

Tout d’abord, je souhaiterais remercier mon promoteur, le Professeur Arnaud Szmalec, pour la mise en place de ce mémoire et la transmission de son savoir à l’occasion de cette étude.

Je tiens ensuite à adresser de chaleureux remerciements à Lize Van der Linden pour ses précieux conseils, sa grande disponibilité, ainsi que pour toute l’aide qu’elle nous a apportée durant cette année académique.

Je remercie également du fond du cœur Mélanie Vanhulst, ma co-mémorante et amie, pour le travail d’équipe effectué, ses encouragements et ses conseils.

J’aimerais aussi remercier toutes les personnes qui ont accepté de participer à notre expérience, et sans qui ce mémoire n’aurait pas pu voir le jour.

Enfin, je tiens à remercier mes proches pour leur aide et leur soutien tout au long de la réalisation de ce travail.
Table des matières

A. Introduction .. 7
 A. 1. Conscience métalinguistique ... 10
 A. 2. Contrôle exécutif ... 14
 A. 3. Articulation de ces deux avantages ... 16

B. Partie expérimentale ... 19
 B.1. Méthodologie globale .. 21
 EXPERIENCE 1 ... 22
 1.1. Apprentissage Hebb en situation d'interférence ... 22
 1.2. Décision lexicale ... 26
 EXPERIENCE 2 ... 29
 1.1. Apprentissage Hebb sans interférence ... 29
 1.2. Décision lexicale ... 31
 EXPERIENCE 3 ... 33

C. Discussion générale ... 37
 C.1. Apport de cette étude ... 40
 C.2. Pistes d'amélioration .. 41

D. Conclusion .. 43

E. Références bibliographiques .. 45

F. Annexes .. 55
A. Introduction

Que ce soit pour des raisons sociales, économiques, politiques, éducatives ou professionnelles, une personne peut être amenée à apprendre une autre langue que sa langue maternelle. Le nombre de langues ou dialectes dans le monde est estimé à 7106 d’après les dernières statistiques de Summer Institute of Linguistics (SIL International, 2015). Au moins 50% de la population mondiale serait bilingue (Javier, 2007 ; Mousty, 2013). Ce pourcentage s’élèverait même à 56% de la population en Europe, dont le Luxembourg qui compterait 99% de bilingues (Bialystok, Craik, & Luk, 2012). Le « bilinguisme » est un concept qui a fait l’objet de nombreuses définitions, sans doute en raison de la diversité des disciplines scientifiques (sociologie, linguistique, psychologie) traitant de ce phénomène (Altarriba & Heredia, 2008). Parmi les diverses définitions, le niveau de maîtrise de la seconde langue est le critère utilisé par certains auteurs tels que Bloomfield (1933), alors que d’autres se basent plus récemment sur le concept d’« usage » des langues. Grosjean (2010) décrit ainsi les bilingues comme étant « des personnes qui utilisent deux ou plusieurs langues (ou dialectes) dans leur vie de tous les jours ». C’est cette dernière définition que nous retiendrons dans le cadre de cette étude.

langues ne concerneraient pas uniquement l’aspect orthographique, ils auraient également lieu au niveau phonologique et sémantique.

Au-delà des recherches concernant l’organisation cognitive des langues, de nombreuses études se sont penchées sur les effets du bilinguisme dans les performances à divers types de tâches. Alors que le bilinguisme a longtemps été considéré comme néfaste, les recherches de ces dernières décennies lui reconnaissent surtout des avantages. Parmi les quelques inconvénients relevés chez les bilingues, le principal effet négatif concerne de moins bons scores et/ou temps de réaction dans les tâches sollicitant le vocabulaire réceptif (e.g., Bialystok, Luk, Peets, & Yang, 2010) et le vocabulaire expressif (e.g., Roberts, Garcia, Desrochers, & Hernandez, 2002) par rapport aux groupes de monolingues dans chaque langue. Les bilingues semblent devoir déployer plus d’efforts pour retrouver en mémoire les mots attendus. Néanmoins, ces résultats pourraient s’expliquer par la demande attentionnelle liée à l’activation conjointe des lexiques, présente chez les bilingues mais pas chez les monolingues. En effet, comme énoncé plus haut, l’accès lexical et conceptuel aux langues serait non sélectif. Dès lors, la contrainte de sélection d’une des langues s’ajoute à celle liée à la réalisation de la tâche (Bialystok et al., 2012).

En outre, de nombreux auteurs mettent en avant les bénéfices du bilinguisme par rapport au monolinguisme, tant au niveau linguistique que non linguistique. Deux avantages sont principalement mis en évidence. Tout d’abord, sur le plan linguistique, les participants bilingues montrent de meilleures performances en conscience métalinguistique, impliquant un meilleur apprentissage de nouveaux mots (e.g., Bialystok, Peets, & Moreno, 2014 ; Kaushanskaya & Marian, 2009 ; Papagno & Vallar, 1995 ; Van Hell & Mahn, 1997). La conscience métalinguistique se réfère à la conscience des éléments constituant la langue, ce qui permet d’analyser la structure et la forme des énoncés, au-delà de leur compréhension et de leur production (Malakoff & Hakuta, 1991). Concernant les compétences cognitives non linguistiques, un bénéfice du bilinguisme dans les tâches de contrôle exécutif est rapporté par divers chercheurs (e.g., Bialystok, 2006, 2011 ; Bialystok, Craik, Klein, & Viswanathan, 2004 ; Costa, Hernández, & Sebastian-Gallés, 2008 ; Pelham & Abrams, 2014). Le contrôle exécutif concerne les fonctions de contrôle de haut rang qui soutiennent un comportement orienté vers un but, à savoir principalement les fonctions de flexibilité mentale, de mise à jour et d’inhibition (Miyake, Friedman, Emerson, Witzki, Howarter, & Wager, 2000). Les recherches que nous avons ciblées dans le cadre de cette étude concernent

A. 1. Conscience métalinguistique

Dans le but d’écarter cette hypothèse, Kaushanskaya et Marian (2009) ont testé l’apprentissage de nouveaux mots chez des adultes bilingues précoces ayant acquis leur L2 en immersion naturelle. Ils ont montré un avantage chez les deux groupes de bilingues (Anglais-Espagnol et Anglais-Mandarin), indépendamment du degré de similarité des systèmes d’écriture des langues. Ces résultats divergent, de ce fait, de précédentes études dans lesquelles les enfants bilingues ne présentaient une meilleure conscience phonologique que lorsque les deux langues partageaient un même système d’écriture ou principe de conversion entre l’écrit et l’oral (Bialystok, Majumder, & Martin, 2003 ; Bialystok, Luk, & Kwan, 2005).

Afin d’en savoir plus sur les raisons de cette facilitation du bilinguisme dans l’apprentissage lexical, il convient de mieux comprendre les mécanismes sous-jacents à l’apprentissage lexical. Bien que ceux-ci ne soient pas encore clairement identifiés, plusieurs chercheurs prétendent un rôle central à la mémoire à court terme dans l’acquisition de nouvelles formes verbales du langage. Ils citent plus précisément le
processus permettant le rappel sériel à court terme (e.g., Gupta, 2003 ; Leclercq & Majerus, 2010). En effet, à l’aide d’un nombre restreint de phonèmes (37 dans la langue française), un nombre presque illimité de représentations lexicales peuvent être créées. L’acquisition d’une langue suppose donc la mémorisation de séquences composées des mêmes éléments dont seul l’ordre diffère. Sur base de cette caractéristique particulière de la langue, Szmalec, Duyck, Vandierendonck, Barberá Mata et Page (2009) avancent l’hypothèse selon laquelle le processus sous-tendant l’apprentissage en rappel sériel immédiat verbal serait le même que celui qui sous-tend le développement de nouvelles représentations lexicales en mémoire à long terme.

En vue de vérifier cette hypothèse, l’équipe de Szmalec (2009) a utilisé le paradigme de Hebb, permettant de faire le lien entre le rappel sériel immédiat verbal et l’apprentissage de nouvelles formes lexicales. Ce paradigme a été élaboré par Hebb en 1961. L’auteur a réalisé une étude dans laquelle il proposait une tâche de rappel sériel verbal immédiat de chiffres. Parmi les 24 séquences de neuf chiffres que les participants devaient rappeler, une séquence particulière se répétait tous les trois essais (séquence répétée), tandis que les autres séquences étaient différentes d’essai en essai (séquences non répétées). Après le rappel de chaque séquence, une mise à jour en mémoire de travail était supposée se faire, selon l’auteur, afin que le rappel de la nouvelle séquence ne soit pas influencé par la séquence précédente. Or, une amélioration du rappel des séquences répétées a été constatée, en comparaison des séquences non répétées. Cet apprentissage, appelé « effet Hebb », montre comment une suite d’éléments maintenue en mémoire à court terme forme progressivement une trace stable en mémoire à long terme.

Ce paradigme de Hebb a permis à Szmalec et ses collègues (2009) de démontrer que des séquences d’informations phonologiques, apprises lors d’un même contexte de rappel immédiat, créent des représentations similaires à celles développées dans le lexique mental lors de l’acquisition de nouveaux mots. Dans leur étude, les auteurs n’ont pas utilisé des séquences de chiffres mais des séries de neuf syllabes. Les séquences répétées (« séquences Hebb ») étaient composées de trois non mots trisyllabiques tandis que les séquences non répétées (« filler ») étaient des suites de syllabes aléatoires. Après la tâche de rappel sériel immédiat, les participants étaient soumis à une tâche de décision lexicale. Au cours de celle-ci, les résultats ont mis en évidence une inhibition du rejet des non mots appris dans la tâche de rappel immédiat. Par exemple, si le non mot « lofodu » était présenté dans les séquences répétées lors de
la première tâche d’apprentissage Hebb, les participants mettaient plus de temps pour le rejeter lors de la deuxième tâche de décision lexicale. Dans une étude plus récente, Szmalec, Page et Duyck (2012) sont parvenus à des résultats similaires en proposant une tâche de détection de pause, en plus de la tâche de décision lexicale. Pour ce faire, les non mots des séquences Hebb étaient phonologiquement proches de mots existants en néerlandais, et ne différaient que par leur syllabe finale. Par exemple, la séquence la-
va-bu-sa-fa-ra-re-si-di était composée des trois non mots lavabu, safari et residi, en chevauchement phonologique avec les mots néerlandais lavabo, safari, residu. Ainsi, leur point d’unicité se situait le plus tardivement possible. Les deux tâches de lexicalisation (détection de pause et décision lexicale) ont mis en avant une compétition entre les non mots appris lors de la tâche Hebb et les mots existants, proches des non mots. Cette compétition suggère que, pour ces non mots, de nouvelles représentations lexicales ont été formées en mémoire à long terme. En utilisant ce paradigme artificiel, nous pouvons donc recréer en laboratoire les conditions de l’apprentissage de nouvelles formes phonologiques en mémoire, ce qui rejoint les résultats de Mosse et Jarrold (2008).

De même, Page, Cumming, Norris, McNeil et Hitch (2013) ont appliqué le paradigme de Hebb auprès de jeunes adultes. Ils ont utilisé de nouveau des syllabes, ce qui procure un set plus important d’items. Les auteurs ont comparé les résultats lors de variations dans l’espacement entre les répétitions des séquences répétées (Hebb) ainsi que dans le chevauchement phonologique entre ces séquences et celles des séquences non répétées (les filler). Comme attendu par les auteurs, les résultats ont rapporté un meilleur apprentissage Hebb lors de l’éloignement phonologique entre les items des listes Hebb et filler, ainsi qu’une absence d’apprentissage lors d’un chevauchement phonologique complet. Cependant, la variable d’espacement n’a donné lieu à aucun effet, puisqu’un apprentissage robuste a été constaté avec un espacement de trois, six, neuf ou douze listes.

Ainsi, d’après ces diverses études ne tenant pas compte du profil linguistique des participants, le rôle de la mémoire à court terme serait primordial dans l’apprentissage de nouveaux mots. Cependant, l’étude de Kaushanskaya et Marian (2009) ne permet pas d’expliquer la supériorité des bilingues en apprentissage lexical, étant donné l’absence de différence entre les groupes linguistiques en tâche d’empan de chiffres. Selon ces auteurs, l’avantage du bilinguisme en conscience métalinguistique
pourrait être lié à d’autres facteurs non linguistiques, notamment une récupération lexicale plus rapide en mémoire grâce à un meilleur contrôle exécutif.
A. 2. Contrôle exécutif

Un autre avantage fréquemment rapporté auprès des bilingues de tous âges, précoces ou tardifs, se situe au niveau du contrôle exécutif, avec notamment une plus grande résistance à l’interférence (e.g., Bialystok, 2006, 2011 ; Bialystok et al., 2004 ; Costa et al., 2008 ; Pelham & Abrams, 2014). Notons que certaines études n’ont cependant pas pu mettre en évidence cette facilitation du bilinguisme dans diverses tâches évaluant le contrôle exécutif (e.g. Kousaie & Phillips, 2012 ; Paap & Greenberg, 2013).

Dans la recherche de Bialystok et de ses collègues (2004), par exemple, les adultes bilingues ont montré une supériorité dans les performances à la tâche de Simon, par rapport aux monolingues. Lors de cette tâche non-verbale, faisant intervenir les fonctions exécutives et attentionnelles, les participants doivent tenir compte d’un aspect particulier des stimuli (la couleur) et inhiber un autre aspect saillant de ces mêmes stimuli (la position). Les résultats révèlent que les bilingues inhibent plus rapidement l’information non pertinente pour la tâche. Ils présentent un moindre effet Simon, c’est-à-dire un moindre écart entre les scores ou les temps de réaction de la condition incongruente (incompatibilité entre les positions du bouton-réponse et de la couleur) et de la condition congruente (compatibilité entre les deux positions). Auprès d’un échantillon d’enfants, des résultats supérieurs pour les bilingues en tâche Simon ont également été obtenus, mais seulement en situation de réponse rapide, sans délai de réflexion, imposant un haut niveau de contrôle (Martin-Rhee & Bialystok, 2008).

de récupérer en mémoire (ou de construire) les différentes séquences d’actions nécessaires à l’exécution de la tâche. Quand la tâche demande l’utilisation d’une des deux langues, les schémas de tâches augmentent l’activation des représentations de cette langue cible et inhibent l’activation des représentations de la langue non cible. Pour pouvoir effectuer cette distribution de l’activation, un mécanisme d’« étiquetage » est mis en place au préalable, permettant d’identifier les représentations lexicales propres à chaque langue.

Selon ce modèle, les lemmes de la L1 demandent un degré d’inhibition plus important lors de la réalisation d’une tâche en L2, étant donné qu’ils ont un niveau d’activation de base plus élevé. De ce fait, le modèle ICM permet d’expliquer des phénomènes tels que les coûts asymétriques de switching (Green, 1998). Ces derniers peuvent être observés lors d’une tâche de fluence verbale réalisée à tour de rôle dans les deux langues (L1 et L2). La tâche est mieux réussie lorsqu’elle est d’abord effectuée en L1 puis en L2 que dans l’ordre contraire, alors que la L2 n’est quant à elle pas affectée par cet effet d’ordre de testing. En effet, quand l’épreuve se déroule en L2 en premier lieu, la langue dominante (L1) doit être davantage inhibée, ce qui perturbe sa « réactivation » pour la seconde épreuve en L1 (Van Assche, Duyck, & Gollan, 2013).

Ainsi, les bilingues vivant fréquemment des situations d’alternance entre leurs différentes langues sont plus expérimentés en résolution d’interférence. Dès lors, la condition d’alternance fréquente serait davantage déterminante que celle de maîtrise balancée des langues (e.g., Verreyt, Woumans, Vandelanotte, Szmalec, & Duyck, in press ; Woumans, Ceuleers, Van der Linden, Szmalec, & Duyck, in press). En effet, lors de ces deux dernières études, les bilingues équilibrés alternant fréquemment entre les langues (ou les interprètes) présentent de meilleures performances en tâches de contrôle exécutif par rapport aux monolingues, mais aussi par rapport aux bilingues équilibrés alternant moins souvent et aux bilingues non équilibrés (Verreyt et al., in press ; Woumans et al., in press).
A.3. Articulation de ces deux avantages

Le bilinguisme apporterait des avantages tels qu’un meilleur apprentissage lexical et une meilleure résistance à l’interférence. Ces deux avantages ont longtemps été étudiés de manière distincte. Ainsi, Bialystok et Barac (2011) ont mis en avant une dissociation entre les facteurs prédicteurs expliquant la supériorité des bilingues en conscience métalinguistique et en contrôle exécutif non verbal, par rapport aux monolingues. Pour ce faire, les auteurs ont testé des enfants en immersion scolaire dont la langue parlée en famille différât généralement de celle employée à l’école. Ils ont ensuite comparé ce groupe à des enfants issus d’un autre type d’immersion. D’après les résultats, les scores en contrôle exécutif seraient liés à l’expérience en contexte d’éducation bilingue, tandis que les scores en métalinguistique seraient influencés par le niveau de connaissance de la langue.

Néanmoins, selon Prior et Gollan (2011), le facteur de fréquence d’alternance entre les langues pourrait être à la base des deux avantages. Dans leur étude, les bilingues alternant souvent entre les langues, comparés à ceux alternant moins souvent, rapportent une plus grande flexibilité dans les tâches linguistiques et non linguistiques, en plus de moindres coûts de switching. De plus, les auteurs n’écartent pas le fait que le niveau de maîtrise des langues puisse également jouer un rôle dans les deux avantages. Certaines études rapportent d’ailleurs une corrélation entre les variables de fréquence d’alternance et de maîtrise des langues (e.g. Luk & Bialystok, 2013).

En outre, diverses recherches ont tenté d’examiner l’existence d’un lien entre ces deux principaux avantages du bilinguisme. Par exemple, certains auteurs évoquent le fait que le meilleur apprentissage lexical des bilingues puisse être lié à des avantages non linguistiques, étant donné qu’il s’inscrit dans un réseau de traitement d’informations dans lequel divers mécanismes d’encodage, stockage et rappel entrent en jeu (e.g., Costa et al., 2008 ; Gupta, 2003 ; Kaushanskaya & Marian, 2009 ; Leclercq & Majerus, 2010 ; Moreno, Bialystok, Wodniecka, & Alain, 2010). D’autres auteurs vont plus loin en montrant qu’un lien bidirectionnel pourrait exister entre l’avantage métalinguistique et celui de contrôle exécutif (e.g., Kapa & Colombo, 2014 ; Woumans et al., in press). Par exemple, l’étude de Woumans et son équipe (in press) révèle, chez des adultes bilingues équilibrés, une corrélation positive entre les scores en contrôle langagier, évalué par une tâche de fluence verbale sémantique, et les scores en contrôle exécutif, évalué à l’aide des tâches Simon et ANT (Attention Network Test). Dans leurs
résultats, cette corrélation n’a pu être rapportée qu’auprès du groupe de bilingues équilibrés, qui sont également susceptibles d’alterner souvent entre les langues. Dès lors, les auteurs avancent l’idée que ces avantages linguistiques et non linguistiques du bilinguisme, liés entre eux, sont modulés par le type de profil de chaque bilingue, ses expériences en situations de bilinguisme. Ces dernières obligent en effet les bilingues à adapter leur capacité d’inhibition, ce qui modifierait leurs réseaux neuronaux et faciliterait la réalisation de tâches verbales et non verbales (Abutalebi & Rietbergen, 2014 ; Abutalebi & Green, 2007 ; Sullivan, Janus, Moreno, Astheimer, & Bialystok, 2014).

Les recherches sus-mentionnées emploient généralement des tâches distinctes pour examiner le contrôle cognitif et la conscience métalinguistique. Dès lors, notre intention lors de cette étude est d’articuler ces deux capacités cognitives au sein d’une même tâche, afin de comparer les sujets bilingues et monolingues. Dans cette optique, nous simulons l’apprentissage de nouveaux mots au moyen du paradigme de Hebb et nous le modifierons de manière à créer une situation d’interférence, permettant d’évaluer le contrôle exécutif.
B. Partie expérimentale

La présente étude a pour but d’articuler au sein d’une même tâche les deux avantages du bilinguisme précédemment développés, à savoir un meilleur apprentissage de mots et une meilleure résistance à l’interférence. Ainsi, les objectifs de cette étude sont de comparer les bilingues et les monolingues au niveau de l’apprentissage de non mots, d’une part, et de la résistance à l’interférence, d’autre part, mais également au niveau de la combinaison des deux. Pour y parvenir, nous avons testé un total de 44 sujets, dont 22 monolingues et 22 bilingues. Ces deux groupes linguistiques étaient appariés en âge, en QI et en niveau de connaissance en L1, au moyen du questionnaire LEAP-Q (Marian, Blumenfeld, & Kaushanskaya, 2007), du test avancé des matrices de Raven (APM ; Raven, Raven, & Court, 1998), et du test LexTALE (Brysbaert, 2013 ; Lemhöfer & Broersma, 2011, non publié).

Nous nous sommes basés sur l’étude de Szmalec et ses collègues (2009), dans laquelle le paradigme de Hebb mime l’apprentissage naturel de mots. Dès lors, les tâches élaborées sur base de ce paradigme nous permettent d’observer s’il existe un avantage du bilinguisme dans l’apprentissage lexical. Nos tâches d’apprentissage Hebb consistaient en 48 séquences écrites de 9 syllabes de type conso-nomme-voyelle à rappeler immédiatement. Parmi ces séquences, deux séries différentes de 12 séquences se répétaient (séquences Hebb1 et Hebb2) - formant ainsi 2 fois 12 séquences - alors que 24 autres séquences ne se répétaient pas (séquences filler). Szmalec et son équipe (2009) n’utilisaient qu’une série de séquences Hebb, mais Page et son équipe (2013) ont démontré un apprentissage possible avec une séquence supplémentaire. Les séquences étaient composées de trois regroupements de trois syllabes, formant les non mots trisyllabiques que nous cherchons à faire apprendre par la répétition de leur rappel sériel immédiat. Pour cette tâche, nous nous attendons à observer des pentes d’apprentissage plus élevées des séquences répétées (Hebb1 et Hebb2) comparées aux séquences non répétées (filler), et ce, de manière plus saillante chez les bilingues. Les pentes d’apprentissage représentent l’évolution du nombre de syllabes correctement rappelées dans la séquence, au cours des répétitions de celle-ci.

Après chaque tâche d’apprentissage Hebb, une tâche de décision lexicale auditive était proposée aux participants, afin de voir si l’apprentissage des non mots avait effectivement conduit à former de nouvelles représentations lexicales en mémoire à long terme. Cette tâche, contenant les non mots issus des séquences Hebb, permet
ainsi de voir si les bilingues encodent mieux les mots appris comme s’il s’agissait de mots existants, comparés aux monolingues. Si cela s’avère exact, comme nous le postulons, nous devrions constater des temps de réponse plus longs pour rejeter comme non mots les stimuli issus des séquences répétées, et ce, davantage encore chez les bilingues.

Grâce au paradigme Hebb, les caractéristiques telles que le degré d’interférence entre les mots peuvent être facilement manipulées dans les tâches. Dès lors, cela nous permet de voir l’influence de l’interférence sur l’apprentissage lexical. Pour ce faire, nous avons créé deux conditions au sein de ces tâches : une condition interférente, où les mots sont en chevauchement phonologique, et une non interférente, sans chevauchement phonologique. Nous postulons que les bilingues, de par la nécessité de gérer leurs différentes langues, présentent une meilleure résistance à l’interférence induite dans la condition interférente. De ce fait, nous nous attendons à une facilitation d’apprentissage d’autant plus marquée dans cette condition pour les bilingues, par rapport aux sujets monolingues.

Enfin, certaines études ne montrant pas de facilitation du bilinguisme dans le contrôle exécutif (e.g. Kousaie & Phillips, 2012 ; Paap & Greenberg, 2013), nous avons également administré une tâche Simon (Simon & Rudell, 1967) évaluant les capacités de contrôle exécutif à un niveau non linguistique. Cette tâche consiste en la présentation de boules rouges ou vertes, apparaissant une à une, à gauche ou à droite sur l’écran. Le participant doit répondre à l’aide de deux boutons, en fonction de la couleur de la boule, sans tenir compte de sa position sur l’écran. Or, la position de la boule sur l’écran peut se trouver en situation facilitatrice de concordance avec la position du bouton réponse adéquat (condition congruente) ou en situation inhibitrice d’opposition (condition incongruente). Nous faisons l’hypothèse d’un meilleur contrôle exécutif chez les bilingues, impliquant dès lors des scores plus élevés et des temps de réaction plus courts à cette tâche, en comparaison aux individus monolingues. L’effet de congruence dans cette tâche, consistant en la différence de résultats entre la condition incongruente et la condition congruente, devrait également être amoindri chez les bilingues, ceux-ci étant supposés mieux inhiber les informations non pertinentes.
B.1. Méthodologie globale

Chaque participant a été testé au cours d’une même séance d’une durée d’environ 1h45. Afin d’éviter un effet d’ordre et de fatigue, nous avons alterné l’ordre de passation de ces différentes tâches, en tâchant cependant à toujours directement faire suivre l’épreuve de décision lexicale à la tâche d’apprentissage Hebb correspondante.

Participants

Dans le cadre de notre étude, nous avons testé un total de 44 sujets dont 22 personnes bilingues (6 hommes et 16 femmes, âgés de 21 à 58 ans (M=27.091, SD=9.013)) et 22 personnes monolingues (8 hommes et 14 femmes, âgés de 18 à 58 ans (M=27.636, SD=10.952)). Sur base du profil linguistique établi à l’aide du LEAP-Q (Marian et al., 2007), nous avons écarté 3 participants monolingues, leurs scores en connaissance de la L2 étant trop élevés par rapport aux autres sujets du groupe. Donc, au final, nous avons inclus les données de 22 bilingues (6 hommes et 16 femmes, âgés de 21 à 58 ans (M=27.091, SD=9.013)) et 19 monolingues (6 hommes et 13 femmes, âgés de 18 à 58 ans (M=28.526, SD=11.568)). Tous les participants ont rempli 4 questionnaires permettant d’estimer les connaissances linguistiques moyennes des deux groupes. L’estimation de la connaissance linguistique générale a été établie par le complètement au préalable du questionnaire LEAP-Q. Celui-ci a permis de recueillir des informations générales telles que l’âge et le sexe des participants, ainsi que la langue maternelle (L1) et la deuxième langue la mieux parlée (L2). Le LEAP-Q a également fourni le pourcentage moyen d’exposition à chacune des langues parlées, ainsi que le niveau moyen de connaissance dans ces langues. Ce dernier élément a été obtenu sur base d’une autoévaluation de leurs compétences en production orale, compréhension orale et lecture (de “0 - aucun” à “10 - parfait”). Pour désigner les L1 et L2, nous prenons ici en considération l’ordre de dominance, plutôt que l’ordre d’acquisition. Une évaluation du niveau de maîtrise des L1 et L2 était aussi réalisée à l’aide du test LexTALE. Les participants ont rempli ce questionnaire en français (Brysbaert, 2013), en néerlandais (Lemhöfer & Broersma, non publié) et en anglais (Lemhöfer & Broersma, 2011). Pour chacune des trois langues évaluées, une liste de mots et non mots était présentée au participant, qui devait y cocher tous les mots qu’il connaissait. Finalement, nous avons utilisé le test avancé des matrices de Raven (APM ; Raven et al., 1998) pour estimer le QI des participants.
Le Tableau 1 reprend toutes les statistiques descriptives relatives aux données de ces tests et questionnaires. Nous avons notamment réalisé des tests t de Student pour échantillons indépendants, afin de comparer le groupe des monolingues à celui des bilingues sur les variables d’âge, de QI, de connaissance moyenne en L1 et L2, et d’exposition à ces langues. Sur base de ces analyses, nous avons observé que les deux groupes linguistiques étaient appariés au niveau de l’âge, du QI et de la connaissance en L1 (LexTALE et LEAP-Q). De plus, les sujets bilingues, comparés aux participants monolingues, étaient significativement moins exposés à la L1 et montraient des compétences significativement supérieures en L2, langue à laquelle ils étaient plus exposés que les monolingues.

EXPERIENCE 1

Les expériences 1 et 2 sont des tâches d’apprentissage Hebb, ayant pour but de voir s’il existe un avantage du bilinguisme en apprentissage de nouveaux mots, ainsi qu’une facilitation dans la résistance à l’interférence au cours de cet apprentissage. Pour ce faire, l’apprentissage de non mots est testé dans deux conditions différentes : une situation d’interférence où les séquences répétées sont en chevauchement phonologique (expérience 1) et une situation de non interférence où ces séquences sont phonologiquement différentes (expérience 2). Lors de cette première expérience, c’est-à-dire en situation interférente, nous faisons l’hypothèse d’un apprentissage des séquences répétées, en comparaison aux séquences non répétées, qui serait davantage marqué pour les sujets bilingues que pour les sujets monolingues. En effet, nous nous attendons à ce que les bilingues apprennent mieux et résistent également mieux à l’interférence.

1.1. Apprentissage Hebb en situation d’interférence

Matériel et procédure

Le matériel et la procédure sont basés sur l’étude de Szmalec et ses collègues (2009), utilisant l’apprentissage Hebb. En vue de créer nos tâches d’apprentissage, nous
avons sélectionné un corpus de 27 syllabes de structure consonne-voyelle, que nous avons ensuite réparties en trois listes de neuf syllabes (a, b, c). Ces syllabes ont été choisies de façon à être sans signification pour les participants et appariées selon leur fréquence d’utilisation en français, anglais et néerlandais, sur base de l’outil WordGen (Duyck, Desmet, Verbeke, & Brysbaert, 2004). Les trois listes de syllabes ont été utilisées pour créer un bloc de 48 séquences de neuf syllabes. Au sein de ce bloc, deux séquences se répétaient invariablement tous les quatre essais (= séquences Hebb). Chacune des séquences Hebb était suivie par une séquence non répétée (= séquences filler). Nous obtenions ainsi un schéma de type : Filler - Hebb1 - Filler - Hebb2 - Filler - Hebb1 - etc.

En vue de minimiser les possibles effets spécifiques aux stimuli, nous avons contrebalancé le matériel entre les participants. Plus précisément, au sein de chacune de ces listes, nous avons construit quatre séquences composées des neuf syllabes de chaque liste, qui ont servi de matériel Hebb. De plus, les séquences filler ont également été créées sur base de ces trois mêmes listes, en construisant 24 séquences par liste, différentes des séquences Hebb. Nous avons donc obtenu un total de 84 séquences différentes (12 séquences Hebb et 72 séquences filler), permettant de proposer diverses combinaisons aux participants. Notons que nous n’avons pas sélectionné les combinaisons qui contenaient une suite de syllabes en chevauchement phonologique avec un mot existant dans l’une des langues contrôlées (anglais, néerlandais et français), afin d’éviter tout biais de cette provenance.

Afin de créer une situation d’interférence, les deux séquences répétées ont été manipulées de sorte à être en chevauchement phonologique entre elles. Elles ont donc été sélectionnées au sein d’une même liste, parmi les quatre séquences destinées au matériel Hebb. Ces deux séquences étaient ainsi composées des mêmes neuf syllabes mais formaient des regroupements de trois non mots différents. Cette manipulation, de laquelle les participants n’étaient bien sûr pas informés, est importante pour la suite puisque ce matériel est réutilisé au sein de la décision lexicale dans l’expérience 1.2. De plus, afin d’équilibrer les occurrences de chaque syllabe entre les séquences répétées et les séquences non répétées, ces dernières étaient composées de séquences issues de deux listes différentes. Ceci pour éviter que les résultats obtenus s’expliquent par la familiarité des syllabes, que ce soit pour les séquences Hebb ou les filler. Ainsi, pour un premier participant, les séquences répétées (Hebb) ont été sélectionnées parmi les séquences de la liste a tandis que les séquences non répétées (filler) provenaient des
séries des listes b et c. Pour un second participant, les séquences Hebb provenaient de la liste b et les filler provenaient des listes a et c. Enfin, pour un troisième participant, la liste c a fourni les séquences Hebb tandis que les listes a et b ont fourni les séquences filler. Le lecteur intéressé trouvera les différentes listes et les séquences Hebb en Annexe I. En résumé, la liste des séquences présentée à chaque participant comptait 24 séquences non répétées (ou filler) composées de séquences issues de deux listes différentes de syllabes CV, et 24 séquences répétées (ou séquences Hebb) composées de deux séquences issues d’une liste différente de celles des filler, et contenant donc les mêmes syllabes CV.

Les séquences CV ont été présentées visuellement aux participants à l’aide du logiciel Eprime 2.0 (Psychology Software Tools, Pittsburgh, PA), sur un écran d’ordinateur de 15,6”, en caractères gras de police Arial front, taille 48. Elles étaient affichées une à une pendant 1000ms, avec un intervalle de temps variable entre elles puisqu’elles se suivaient directement par groupe de trois et qu’un délai de 2000ms était marqué entre ces groupes. Cette segmentation en groupes de 3 syllabes encourage la visibilité des non mots que nous cherchons à faire apprendre. Sans cela, nous ne pourrions pas nous assurer que les participants combinent les CVs de la même manière, et utilisent donc les mêmes non mots (Szmalec et al., 2009).

A la fin de chaque séquence, il était demandé de rappeler l’ordre d’apparition des syllabes. Les participants voyaient donc apparaître les syllabes toujours réparties aléatoirement en cercle “bruyant”. Au centre de ce cercle se trouvait un point d’interrogation. Pour procéder au rappel, les participants devaient sélectionner les syllabes une par une à l’aide d’une souris. Il était permis de sélectionner une même syllabe à plusieurs reprises mais le nombre de sélections possibles était restreint à neuf. En cas d’oubli, il était également possible de choisir le point d’interrogation central. Enfin, une fois le rappel enregistré, les participants étaient amenés à appuyer sur la touche “espace” pour pouvoir passer à la présentation de la séquence suivante.

Résultats

Pour établir les scores de chaque participant, deux méthodes existent. Une première méthode accorde des points uniquement pour les items rappelés au bon endroit dans la séquence. La deuxième méthode, que nous avons choisi d’appliquer, a été développée par McKelvie (1987). Elle a pour avantage de ne pas s’arrêter simplement à l’aspect positionnel, elle prend également en compte l’aspect sériel. Les points sont
donc comptabilisés à la fois pour les items restitués au bon endroit et pour les groupes d’items situés au mauvais endroit mais dans le bon ordre.

Nous avons ainsi obtenu un score pour chacune des 12 répétitions de chaque type de séquences (filler, Hebb1, Hebb2). Les séquences filler étant au nombre de 24, nous les avons regroupées par deux pour obtenir ces 12 scores. Les scores moyens pour le rappel des séquences Hebb et filler sont représentés, pour chaque groupe, sur la Figure 1. Les courbes de tendance ont été ajoutées pour montrer l’évolution de l’apprentissage. Pour mesurer l’effet de répétition Hebb, nous avons comparé les pentes d’apprentissage des séquences Hebb à celles des séquences filler pour chaque participant. Les pentes d’apprentissage correspondent aux pentes des lignes de régression générées par ces séries de 12 scores. Nous avons réalisé une analyse de la variance (ANOVA) 3x2 de ces pentes en spécifiant le type de séquence (filler - Hebb1 - Hebb2) et le groupe (monolingues versus bilingues) comme variables indépendantes.

Le test de Mauchly étant non significatif (p=.429), la condition de sphéricité est respectée. Les résultats montrent un effet simple du type de séquence, $F(2, 78)=8.994$, $\eta^2_p=.187$, $p<.001$, ainsi qu’un effet simple de groupe, $F(1, 39)=4.323$, $\eta^2_p=.100$, $p=.044$. Les monolingues (M=.140, ET=.110) présentent des pentes d’apprentissage significativement supérieures à celles des bilingues (M=.078, ET=.079). Aucun effet d’interaction entre le type de séquence et le groupe n’est observé, $F(2, 78)=.399$, $\eta^2_p=.010$, $p=.672$. De plus, les comparaisons planifiées des différents types de séquences révèlent que les pentes d’apprentissage des séquences filler (M=.045, ET=.114) diffèrent significativement de celles des séquences Hebb1 (M=.113, ET=.141), $F(1, 39)=7.256$, $\eta^2_p=.157$, $p=.010$, ainsi que de celles des séquences Hebb2 (M=.161, ET=.166), $F(1, 39)=14.861$, $\eta^2_p=.276$, $p<.001$. La différence entre les pentes d’apprentissage des séquences Hebb1 et Hebb2 est, quant à elle, marginalement significative ($F(1, 39)=3.181$, $\eta^2_p=.075$, $p=.082$).

De plus, nous avons comparé les deux groupes sur le nombre d’essais nécessaires pour un apprentissage effectif des deux séquences Hebb. Pour ce faire, nous avons réalisé une ANOVA 2x2 avec le groupe (monolingues versus bilingues) comme variable indépendante et le nombre d’essais comme variable dépendante. Les résultats ne rapportent pas de différence entre les groupes, $F(1, 39)=.049$, $\eta^2_p=.001$, $p=.826$.

Nous avons réalisé une seconde fois les analyses en excluant les sept participants (1 monolingue et 6 bilingues) qui ne montraient pas d’apprentissage pour au moins une des deux séquences Hebb. Avec une condition de sphéricité également
respectée (p=.671), les résultats montrent, tout comme lors de l’analyse avec tous les participants, un effet simple du type de séquence, F(2, 64)=6.926, $\eta^2_p=.178$, p=.002, ainsi qu’un effet simple du groupe (F(1, 32)=5.628, $\eta^2_p=.150$, p=.024). Les résultats révèlent un effet d’apprentissage pour les monolingues (M=.149, ET=.022) significativement supérieur à celui des bilingues (M=.071, ET=.024). A nouveau, aucun effet de l’interaction entre le type de séquence et le groupe n’est démontré (F(2, 64)=.950, $\eta^2_p=.029$, p=.390). Au niveau des comparaisons planifiées, nous observons également que la pente d’apprentissage des filler (M=.050, ET=.104) est significativement inférieure à celles des séquences Hebb1 (M=.122, ET=.149), F(1, 32)=6.444, $\eta^2_p=.168$, p=.016, et des séquences Hebb2 (M=.165, ET=.173), F(1, 32)=12.109, $\eta^2_p=.275$, p<.001. La pente d’apprentissage des séquences Hebb1 et Hebb2 ne diffèrent pas entre elles (F(1, 32)=1.733, $\eta^2_p=.051$, p=.197).

En outre, nous avons également comparé, pour chaque groupe, le nombre d’essais nécessaires pour que l’apprentissage des séquences Hebb soit effectif. Nous avons donc réalisé une ANOVA 2x2 avec le groupe (monolingues versus bilingues) comme variable indépendante et le nombre d’essais comme variable dépendante. Cette fois-ci, les résultats montrent une différence marginalement significative entre les groupes, F(1, 32)=3.726, $\eta^2_p=.104$, p=.062. En moyenne, les bilingues (M=4.813, ET=.730) ont besoin de moins d’essais que les monolingues (M=6.750, ET=.689).

1.2. Décision lexicale

Cette tâche a pour but de voir si les non mots appris lors de la première phase d’apprentissage Hebb sont encodés comme des mots existants. Nous nous attendons à ce que les bilingues montrent davantage cet effet que les monolingues, par des temps de latence plus longs pour le rejet des non mots appris.

Participants

L’échantillon testé était constitué des mêmes 41 participants que pour l’expérience 1.1., au sein desquels nous avons exclu les sept sujets n’ayant pas montré d’apprentissage pour au moins une des deux séquences Hebb. En effet, sans apprentissage Hebb effectif, il n’était pas pertinent d’analyser leurs résultats à cette
nouvelle tâche. Nous avons donc analysé les résultats de 34 participants, 18 monolingues et 16 bilingues.

Matériel

Pour les besoins de cette expérience, nous avons présenté 140 stimuli trisyllabiques aux participants, 70 non mots et 70 mots de la langue française. L’échantillon des non mots était constitué des 6 non mots créés à partir des syllabes des séquences Hebb (*ti-ru-ki, ra-da-vo, po-ru-ve*, etc.), de 12 non mots issus des séquences filler, de 6 non mots de type CVCVCV non présents dans l’expérience 1.1 et de 35 non mots d’une autre structure que CVCVCV. De plus, nous avons sélectionné des mots fréquents au sein de la base de données Lexique 3.80 (New, Pallier, Ferrand & Matos, 2001), 35 étaient de structure CVCVCV et 35 d’un autre type de structure. De par ce contrebalancement au niveau du type de structure des stimuli, les participants ne pouvaient pas se baser sur ce critère pour prendre leur décision. En outre, nous avons évité, autant que possible, d’y inclure des mots cognats dans les langues contrôlées. En effet, les mots cognats sont des mots de signification équivalente et similaires au niveau orthographique et/ou phonologique dans les langues du bilingue, ce qui diminue généralement le temps de réaction et le taux d’erreurs lors de la décision lexicale, par rapport à des mots contrôles non cognats (Peeters, Dijkstra & Grainger, 2013). Afin de limiter cet effet de facilitation, les quelques mots cognats sélectionnés étaient très fréquents et, dès lors, susceptibles d’être connus de tous les participants, pas seulement les bilingues des langues concernées. Tous les stimuli utilisés lors de cette tâche ont été énoncés par une voix féminine et enregistrés en format WAV. A l’aide du logiciel Audacity 2.0.6, ils ont été ramenés à 800ms chacun, en tâchant de ne pas perdre en qualité, et le bruit de fond a été éliminé.

Procédure

Les participants ont été soumis à une tâche de décision lexicale auditive. Tout effet observé lors de cette tâche ne sera dès lors pas imputable à des traces en mémoire épisodique spécifiques à une modalité (Szmalec et al., 2009). Les sujets disposaient pour cette tâche de casques audio. Les stimuli y étaient présentés durant 800ms et suivis d’un délai de réponse de 2500ms. Ils devaient alors décider, le plus vite et le plus correctement possible, s’il s’agissait d’un mot ou d’un non mot. Pour ce faire, ils appuyaient avec leurs index sur le bouton de droite (mot) ou le bouton de gauche (non
mot). Pour toute réponse donnée en dehors de ce délai, la note de 0 était attribuée pour l’essai. L’évaluation de cette tâche a porté à la fois sur le nombre d’erreurs et sur le temps de réaction moyens de chaque participant, dans chacune des catégories de stimuli (filler, Hebb1, Hebb2, mots et non mots).

Résultats

Nous avons exclu les données de 4 participants de par l’absence de réponses enregistrées pour certaines catégories, pour deux d’entre eux, et de par un nombre trop élevé de réponses données avant la fin de la présentation du stimulus, pour les deux autres. Les essais n’étaient en effet enregistrés qu’après chaque présentation de stimulus. Seuls 11% du total des essais de tous les participants ont été réalisés avant ce délai de 800ms et n’ont donc pas été validés. Selon les constatations d’Ernestus et Cutler (2015), ce phénomène est relativement peu fréquent. Lors de la passation d’une décision lexicale de 5541 stimuli à 20 participants, les auteurs n’ont recensé que 3% de réponses données avant la fin de l’énonciation complète du stimulus. Pour les données des participants restants (14 monolingues et 16 bilingues), nous avons réalisé une analyse des outliers pour chacune des cinq conditions de stimulus (filler, Hebb1, Hebb2, mots, non mots). Nous avons éliminé à chaque fois, parmi les réponses correctes, les temps de réaction (TR) déviant de 2.5 écart-types de la moyenne générale. Le Tableau 2 reprend les moyennes des TR et du pourcentage de réponses correctes, pour chacune des 5 conditions de stimulus.

Nous avons effectué une analyse de la variance (ANOVA) 5x2 des temps de réponse en spécifiant la condition (filler, Hebb1, Hebb2, mots, non mots) et le groupe (monolingues versus bilingues) comme variables indépendantes. La condition de sphéricité, évaluée par le test de Mauchly, n’étant pas respectée (p<.001), nous nous sommes basés sur les statistiques de Greenhouse-Geisser. Les résultats montrent un effet simple de la condition (F(2, 64)=6.752, \(\eta_p^2=.194\), p=.001) mais ne rapportent pas d’effet simple de groupe (F(1, 28)=.855, \(\eta_p^2=.030\), p=.363), ni d’effet d’interaction entre la condition et le groupe (F(2, 64)=.984, \(\eta_p^2=.034\), p=.389). Au niveau de l’effet de condition, les comparaisons planifiées révèlent des temps de réaction significativement plus courts pour la condition mot (M=1010.993, ET=78.387) que pour la condition filler (M=1077.915, ET=135.875), F(1, 28)=21.604, \(\eta_p^2=.436\), p<.001. Cependant, aucune différence n’est observée entre les conditions filler et Hebb 1 (M=1071.194,
ET=106.460), F(1, 28=.158, η_p^2=.006, p=.694, ni entre les conditions filler et Hebb 2 (M=1112.811, ET=169.914), F(1, 28)=2.369, η_p^2=.078, p=.135.

Nous avons également réalisé une ANOVA 5x2 sur la précision des participants, en spécifiant à nouveau la condition (filler, Hebb1, Hebb2, mots, non mots) et le groupe (monolingues versus bilingues) comme variables indépendantes. La condition de sphéricité, évaluée par le test de Mauchly, n’étant pas respectée (p<.001), nous nous sommes basés sur les statistiques de Greenhouse-Geisser. Les résultats montrent un effet simple de la condition, F(2, 74) = 9.884, η_p^2 =.261, p<.001. Cependant, les résultats ne révèlent pas d’effet simple de groupe (F(1, 28)=.029, η_p^2=.001, p=.865), ni d’effet d’interaction entre la condition et le groupe (F(2, 64)=1.642, η_p^2=.055, p=.192). Concernant l’effet de condition, les comparaisons planifiées montrent une différence significative entre les conditions filler (M=.947, ET=.112) et mots (M=.780, ET=.158), en faveur des filler, F(1, 28)=48.436, η_p^2=.634, p<.001. Néanmoins, aucune différence n’est constatée entre les conditions filler et Hebb 1 (M=.911, ET=.173), F(1, 28)=1.125, η_p^2=.039, p=.298, ni entre les conditions filler et Hebb 2 (M=.933, ET=.135), F(1, 28)=.297, η_p^2=.010, p=.590.

EXPERIENCE 2

Alors que l’expérience 1 se déroulait en situation d’interférence, l’expérience 2 ne contient pas d’interférence, c’est-à-dire que les séquences répétées (Hebb1 et Hebb2) sont phonologiquement différentes. Cette expérience sans interférence a pour but de comparer les bilingues et les monolingues en apprentissage de non mots, mais cette fois-ci sans demande de résistance à l’interférence. Nous postulons que les participants bilingues présentent un meilleur apprentissage des non mots que les sujets monolingues.

2.1. Apprentissage Hebb sans interférence

Matériel et procédure

Le matériel et la procédure sont similaires à ceux de l’expérience précédente, qui faisait intervenir de l’interférence dans l’apprentissage Hebb. De nouveau, pour cette
tâche, des séquences de neuf syllabes ont été présentées aux participants. Nous avons utilisé le même matériel que pour l’expérience 1, soit nos listes a, b et c, avec un même contrebalancement, entre les différents participants, des listes et des combinaisons de syllabes au sein de ces listes. La seule différence réside dans l’absence d’interférence induite dans la présente expérience. Afin de respecter cette condition de non interférence, les séquences répétées étaient chacune issues de listes différentes et étaient donc constituées de neuf syllabes phonologiquement différentes.

Ainsi, pour un participant donné, les deux séquences répétées ont été construites, respectivement, à partir des listes a et b. La séquence non répétée, quant à elle, a été construite à partir de la liste c. Pour un second participant, les listes b et c ont fourni les séquences répétées et la liste a a fourni la séquence non répétée. Enfin, pour un troisième, les listes a et c ont fourni les séquences répétées et la liste b a fourni la séquence non répétée.

Résultats

Nous avons réalisé les mêmes analyses que pour l’expérience 1.1. Les scores moyens pour le rappel des séquences Hebb et filler sont représentés, pour chaque groupe, sur la Figure 2. Les courbes de tendance ont été ajoutées pour montrer l’évolution de l’apprentissage. Nous avons effectué une analyse de la variance (ANOVA) 3x2 de ces pentes, en spécifiant le type de séquence (Hebb 1 - Hebb2 - filler) et le groupe (monolingues versus bilingues) comme variables indépendantes. Le test de Mauchly étant non significatif (p=.548), la condition de sphéricité est respectée. Les résultats montrent un effet simple de condition, F(2, 78)=10.473, η²p =.212, p<.001. Cependant, ils ne révèlent pas d’effet simple du groupe, F(1, 39)=.001, η²p <001, p=.975, ni d’effet d’interaction entre la condition et le groupe, F(2, 78)=2.210, η²p =.054, p=.117. Au sujet de l’effet de condition, les comparaisons planifiées montrent que les pentes des séquences filler (M=.026, ET=.127) sont significativement inférieures à celles des séquences Hebb 1 (M=.145, ET=.150), F(1, 39)=14.044, η²p =.265, p=.001, et des séquences Hebb 2 (M=.159, ET=.162), F(1, 39)=20.135, η²p =.340, p<001. Aucune différence n’est rapportée entre les pentes des séquences Hebb 1 et Hebb 2, F(1, 39)=.311, η²p =.008, p=.580.

1 Nous sommes parvenus aux mêmes résultats en excluant les participants qui ne montraient pas d’apprentissage pour au moins une des deux séquences Hebb.
Nous avons également comparé, pour chaque groupe, le nombre d’essais nécessaires pour que l’apprentissage des séquences Hebb soit effectif. Nous avons donc réalisé une ANOVA 2x2 avec le groupe (monolingues versus bilingues) comme variable indépendante et le nombre d’essais comme variable dépendante. Les résultats ne montrent aucune différence entre les groupes, $F(1, 37)=.041, \eta_p^2=.001, p=.840$.

2.2. Décision lexicale

Participants

L’échantillon était constitué des mêmes 41 participants que lors de l’expérience 2.1, parmi lesquels nous avons exclu deux participants (un monolingue et un bilingue) n’ayant pas montré d’apprentissage pour au moins une des deux séquences Hebb. Nous avons donc analysé les résultats de 39 participants, 18 monolingues et 21 bilingues.

Matériel et procédure

Voir 1.2.

Résultats

Nous avons exclu les données de 6 participants (3 monolingues et 3 bilingues), de par un nombre trop élevé de réponses données avant la fin de la présentation du stimulus. Pour les 33 participants restants (15 monolingues et 18 bilingues), nous avons réalisé une analyse des outliers pour chacune des cinq conditions de stimulus (filler, Hebb1, Hebb2, mots, non mots). Nous avons éliminé à chaque fois, parmi les réponses correctes, les temps de réaction (TR) déviant de 2,5 écart-types de la moyenne générale. Le Tableau 3 reprend les moyennes des TR et du pourcentage de réponses correctes, pour chacune des 5 conditions de stimulus.

Nous avons effectué une analyse de la variance (ANOVA) 5x2 des temps de réponse en spécifiant la condition (filler, Hebb1, Hebb2, mots, non mots) et le groupe (monolingues versus bilingues) comme variables indépendantes. Nous nous sommes basés sur les statistiques de Greenhouse-Geisser étant donné que la condition de sphéricité n’était pas respectée lors du test de Mauchly ($p<.001$). Les résultats montrent un effet simple de la condition ($F(3, 92)=5.395, \eta_p^2=.148, p=.002$), mais pas d’effet simple de groupe, $F(1, 31)=1.059, \eta_p^2=.033, p=.311$, ni d’effet d’interaction entre la
condition et le groupe, F(3, 92)=.576, $\eta_p^2=.018$, p=.631. Au niveau de l’effet de groupe, les comparaisons planifiées révèlent des temps de réponse significativement plus élevés pour la condition filler (M=1079.959, ET=130.876) que pour la condition mots (M=1012.147, ET=69.278), F(1, 31)=12.406, $\eta_p^2=.286$, p=.001. Cependant, la condition filler ne diffère pas de la condition Hebb 1 (M=1075.202, ET=153.042), F(1, 31)=.086, $\eta_p^2=.003$, p=.771, ni de la condition Hebb 2 (M=1102.899, ET=141.691), F(1, 31)=1.452, $\eta_p^2=.045$, p=.237.

Nous avons également réalisé une ANOVA 5x2 sur la précision des participants, en spécifiant à nouveau la condition (filler, Hebb1, Hebb2, mots, non mots) et le groupe (monolingues versus bilingues) comme variables indépendantes. Étant donné que la condition de sphéricité n’était pas respectée lors du test de Mauchly (p=.014), nous nous sommes basés sur les statistiques de Greenhouse-Geisser. Les résultats montrent un effet simple de la condition, F(3, 101) =13.261, $\eta_p^2=.300$, p<.001, mais ils ne rapportent pas d’effet simple de groupe, F(1, 31)<.001, $\eta_p^2<.001$, p=.987, ni d’effet d’interaction entre la condition et le groupe, F(3, 101)=1.270, $\eta_p^2=.039$, p=.289. Concernant l’effet de groupe, les comparaisons planifiées révèlent des scores significativement plus élevés pour la condition filler (M=.932, ET=.105) que pour la condition mots (M=.776, ET=.150), F(1, 31)=37.986, $\eta_p^2=.551$, p<.001. Mais aucune différence n’est mise en évidence entre les conditions filler et Hebb 1 (M=.899, ET=.176), F(1, 31)=1.058, $\eta_p^2=.033$, p=.312, ni entre les conditions filler et Hebb 2 (M=.949, ET=121), F(1, 31)=.503, $\eta_p^2=.016$, p=.483.

Discussion intermédiaire

Pour ces deux premières expériences, les résultats montrent une différence significative entre les pentes filler et Hebb au niveau des phases d’apprentissage Hebb des deux conditions. En effet, que la condition soit interférente ou non interférente, les séquences répétées (Hebb 1 et Hebb 2) sont chaque fois mieux rappelées que les séquences non répétées (filler), comme nous l’avions prédit. Néanmoins, cette différence n’est pas visible dans les résultats des décisions lexicales. De plus, les résultats rapportent un effet simple de groupe lors de l’apprentissage Hebb en condition interférente, mais pas en condition non interférente. Lorsqu’une interférence est présente, les pentes d’apprentissage Hebb des bilingues sont significativement plus faibles que celles des monolingues.
Plusieurs hypothèses pourraient expliquer cet effet de groupe en faveur des monolingues : un meilleur apprentissage de la part des monolingues, une meilleure mémoire à court terme chez les bilingues, ou encore un apprentissage plus rapide pour les bilingues. L’hypothèse d’une meilleure mémoire à court terme pour les bilingues supposerait que ceux-ci aient un niveau de réussite supérieur dès le début. Cette possibilité peut néanmoins être écartée, étant donné qu’aucune différence significative n’est constatée, entre les groupes, au niveau du pourcentage de réponses correctes pour les séquences filler. Cela suggère que les bilingues et les monolingues possèdent une capacité similaire en mémoire à court terme. Quant à l’hypothèse d’un apprentissage plus rapide pour les bilingues, elle peut être mise à l’épreuve grâce à la comparaison du nombre d’essais nécessaires à l’apprentissage effectif des séquences Hebb. Or, celle-ci rapporte une différence marginalement significative en faveur des bilingues. Dès lors, nous pouvons écartier la possibilité d’une supériorité des monolingues en apprentissage de non mots, les bilingues retenant ceux-ci plus rapidement, bien que cela ne soit que marginalement significatif.

EXPERIENCE 3

La tâche Simon est une épreuve non verbale faisant intervenir le contrôle exécutif et, plus particulièrement, la fonction d’inhibition. Pour réaliser cette tâche, les participants doivent résister à l’interférence induite par une incompatibilité non ponctuelle (i.e., lors des essais incongruents) entre la position spatiale du stimulus et la position, fixe, de la touche réponse. Certaines études n’ayant pas montré d’avantage exécutif de la part des bilingues, nous avons administré cette épreuve dans le but d’observer, par nous-mêmes, si nous pouvions retrouver ou non cet avantage parmi notre échantillon. Nous émettons l’hypothèse d’un meilleur contrôle exécutif chez les bilingues et donc, d’une plus grande capacité d’inhibition. Ceci implique que nous attendons des scores plus élevés et des temps de réaction plus rapides pour les bilingues par rapport aux monolingues. Nous nous attendons également à trouver une différence moindre entre les deux conditions (i.e., congruente et incongruente) chez les bilingues, faisant preuve de leur meilleure capacité de résistance à l’interférence.
Participants

L’échantillon était constitué des mêmes 41 participants que lors des expériences 1 et 2.

Matériel et procédure

Le matériel et la procédure sont basés sur l’étude de Woumans et al. (in press). Des boules rouges ou vertes ont été présentées visuellement sur un écran de 15,6” au moyen du logiciel Tscope (Stevens, Lammertyn, Verbruggen, & Vandierendonck, 2006). Celles-ci étaient affichées une après l’autre, à gauche ou à droite de l’écran. Il a été demandé aux participants d’appuyer sur une touche de réponse (e.g., à gauche) lorsque la boule était rouge et sur une autre (e.g., à droite) lorsque la boule était verte. L’association touche de réponse/couleur a été contrebalancée parmi les participants. Ceux-ci ne doivent donc prendre que la couleur en considération, et non la position. Ces deux aspects peuvent concorder lorsque l’emplacement de la touche de réponse correspond à la position de la boule sur l’écran (condition congruente) mais peuvent aussi être en opposition dans le cas contraire (condition incongruente).

Chaque essai débutait par l’apparition d’une croix centrale de fixation durant 500ms. Un écran vide suivait pour, ensuite, laisser apparaître une boule - rouge ou verte - à gauche ou à droite de l’écran. La boule était présentée jusqu’à la réponse du participant ou pendant un délai maximum de 900ms. Ensuite, un écran vide apparaissait pendant 500ms, avant la nouvelle croix de fixation. L’épreuve comportait deux blocs de 100 essais. Avant ceux-ci, un entraînement de 10 essais était présenté aux participants. La moitié des essais était congruent (i.e., le côté de la touche de réponse et celui de la boule concordaient) et l’autre moitié était incongruente (i.e., le côté de la touche de réponse et celui de la boule ne concordaient pas).

Résultats

Nous avons dû éliminer les résultats d’une participante monolingue qui n’a donné aucune réponse lors de cette tâche. Sur base des données des participants restants (18 monolingues et 22 bilingues), nous avons réalisé deux analyses de la variance (ANOVA) 2x2 en considérant le groupe (monolingues versus bilingues) et la condition (congruente versus incongruente) comme variables indépendantes.
Dans une première ANOVA, la variable dépendante était le temps de réaction (TR) des essais corrects et des essais suivant une réponse correcte. Nous avons exclu les autres TR, de manière à écarter une possible lenteur engendrée par la prise de conscience de l’erreur produite. Cette ANOVA révèle un effet simple de la condition, F(1, 38)=59.882, ηₚ²=.612, p<.001, avec des TR plus courts pour la condition de congruence (M=437.079, ET=54.187) que pour la condition d’incongruence (M=464.737 ; ET=54.527). Mais aucun effet de groupe n’est rapporté, F(1, 38)=.013, ηₚ²<.001, p=.911, ni d’effet d’interaction entre la condition et le groupe, F(1, 38)=.027, ηₚ²=.001, p=.870.

Une seconde ANOVA, avec le pourcentage de réponses correctes comme variable dépendante, rapporte également un effet simple de la condition, F(1, 38)=22.067, ηₚ²=.367, p<.001, avec des scores supérieurs en condition de congruence (M=.967, ET=.085), par rapport à la condition d’incongruence (M=.937, ET=.073). De nouveau, nous ne constatons pas d’effet simple de groupe, F(1, 38)=.739, ηₚ²=.019, p=.395, ni d’effet d’interaction entre la condition et le groupe, F(1, 38)=.157, ηₚ²=.004, p=.694.

Discussion intermédiaire

Lors de cette tâche Simon, de contrôle exécutif non verbal, les analyses des temps de réaction (TR) et des pourcentages de réponses correctes ont rapporté des résultats similaires. A chaque fois, un effet de congruence est mis en évidence, les items en condition de congruence étant plus rapidement et plus précisément réussis que ceux en condition d’incongruence, comme cela était attendu. Néanmoins, aucune différence n’a été mise en évidence entre les performances des bilingues et celles des monolingues. Le bilinguisme ne semble pas avoir d’effet sur la performance en contrôle exécutif non verbal.
C. Discussion générale

L’objectif de cette présente étude était de comparer les bilingues et les monolingues sur leurs capacités d’apprentissage de nouveaux mots et de contrôle exécutif, verbal et non verbal. En effet, le bilinguisme a montré des avantages dans ces domaines au cours de diverses études, comme nous l’avons évoqué. Dès lors, nous espérions observer une supériorité des bilingues en apprentissage de non mots, à l’aide des tâches de rappel immédiat basées sur le paradigme de Hebb (1961). Grâce à des tâches de décision lexicale, nous voulions également voir si une trace stable de cet éventuel apprentissage pouvait être constatée en mémoire à long terme. De plus, nous attendions de meilleures capacités de contrôle exécutif chez les bilingues, au niveau verbal, par l’instauration d’une condition d’interférence dans l’apprentissage lexical, et au niveau non verbal, au moyen de la tâche Simon (Simon & Rudell, 1967).

Les résultats de notre étude suggèrent, avec les deux groupes confondus, qu’un apprentissage de non mots se réalise en phase de rappel immédiat, comme nous l’avions prédit. Mais il n’y a pas de transfert vers la mémoire à long terme, du moins cela n’est pas visible ici dans les résultats des décisions lexicales. De plus, sur le plan de la comparaison des groupes linguistiques, les bilingues parviennent à apprendre les non mots relativement plus rapidement que les monolingues, mais uniquement lorsque la tâche demande une résistance à l’interférence. Notre étude ne révèle pas de différence entre bilingues et monolingues lors de la condition d’apprentissage sans interférence. De plus, dans la tâche Simon de contrôle exécutif non verbal, le bilinguisme n’a pas d’impact sur les performances, alors que nous l’avions prédit.

Cet apprentissage significatif des séquences répétées par rapport aux séquences non répétées concorde avec les précédentes études utilisant ce même paradigme d’apprentissage (Szmalec et al., 2009, 2012 ; Page et al., 2013). Mais ces recherches ne tenaient pas compte du profil linguistique des participants. Or, diverses études montrent un avantage du bilinguisme en apprentissage lexical, à l’aide d’autres tâches (e.g., Bialystok et al., 2014 ; Kaushanskaya & Marian, 2009 ; Papagno & Vallar, 1995 ; Van Hell & Mahn, 1997). Il nous semblait intéressant de voir si cet avantage du bilinguisme pouvait aussi être observé avec le paradigme Hebb, qui permet de simuler l’apprentissage lexical naturel (e.g., Mosse & Jarrold, 2008). Dans notre étude, nous constatons bien un apprentissage relativement plus rapide pour les bilingues, comparés aux monolingues. Cet effet n’est pas lié à une meilleure capacité de mémoire à court
terme, étant donné le taux de réussite similaire entre les groupes pour les séquences non répétées. Cela rejoint les conclusions de l’étude de Kaushanskaya et Marian (2009), mais diverge des recherches montrant un lien entre les performances en mémoire à court terme et l’apprentissage lexical (e.g., Gupta, 2003 ; Leclercq & Majerus, 2010).

Néanmoins, cet effet de groupe, marginalement significatif, n’est rapporté que dans une des deux conditions, lorsque la tâche demande une résistance à l’interférence. En effet, quand les deux séquences répétées à rappeler étaient formées de syllabes distinctes, les performances étaient semblables pour les deux groupes. Dès lors, une facilitation d’apprentissage lexical du bilinguisme pourrait être liée aux capacités de contrôle exécutif. En ce sens, Moreno et ses collègues (2010) ont rapporté une différence entre des adultes bilingues et monolingues. Néanmoins celle-ci concernait uniquement les enregistrements électrophysiologiques, pas les scores. Dans leur étude, les bilingues montraient une plus grande mobilisation des processus de contrôle exécutif pour réaliser une tâche linguistique impliquant une résolution de conflit, par rapport aux monolingues. De plus, ils amélioraient leurs scores par rapport à ceux obtenus dans la simple tâche linguistique réalisée sans la condition de conflit. D’autres études mettent en avant un lien bidirectionnel entre la capacité de conscience métalinguistique et la capacité de contrôle exécutif (e.g., Kapa & Colombo, 2014 ; Woumans et al., in press).

Cependant, notre étude n’a pas pu démontrer un avantage du bilinguisme dans la tâche Simon de contrôle exécutif non verbal. Un effet de congruence a pu être avancé, comme l’avaient déjà rapporté d’autres expériences utilisant la même tâche Simon (e.g., Woumans et al., in press). Mais, à l’inverse de l’étude de Woumans (in press), les bilingues ne montraient pas de différence significative en TR ou précision dans la tâche, par rapport aux monolingues. Cette absence d’avantage du bilinguisme au niveau du contrôle exécutif rejoint les conclusions d’autres études ayant notamment réalisé la même expérience (e.g. Kousaie & Phillips, 2012). De manière plus nuancée, une facilitation du bilinguisme pourrait être présente uniquement lors de tâches demandant un haut niveau de contrôle exécutif (e.g., Costa, Hernández, Costa-Faidella, & Sebastián-Gallés, 2009). Cependant, avec l’utilisation d’une même tâche dans deux études, des résultats différents apparaissent. En effet, nous avions utilisé la même tâche que, par exemple, Woumans et ses collègues (in press).

D’autres hypothèses pourraient être avancées pour expliquer cette absence de différence, entre bilingues et monolingues, dans l’apprentissage en condition non interférente et dans la tâche de contrôle exécutif non verbal. Notamment, le fait que la
plupart de nos participants soient de jeunes adultes, et surtout des universitaires, pourrait être à l'origine de cette absence d’effet de groupe dans les performances en contrôle exécutif (Bialystok, Martin, & Viswanathan, 2005). En effet, Bialystok et ses collègues (2005) ont révélé un avantage du bilinguisme dans la tâche Simon chez les enfants, les adultes plus âgés et les personnes âgées, mais pas pour les jeunes adultes. Ces sujets seraient à leur plus haut niveau d’efficacité en contrôle exécutif. De plus, la pratique de jeux vidéos influencerait également les résultats à la tâche Simon, de par son entrainement des fonctions exécutives (Bialystok, 2006).

En outre, la création des groupes linguistiques elle-même a pu jouer un rôle dans le manque de différence entre ces groupes. Ainsi, certaines études ont montré un impact de l’âge d’acquisition de la L2 sur les compétences en contrôle exécutif (e.g., Yow & Li, 2015), mais d’autres recherches ont nuancé ces conclusions en montrant des effets cognitifs comparables entre les bilingues précoces et tardifs (e.g., Vega-Mendoza, West, Sorace, & Bak, 2015). De plus, le critère d’alternance des langues a souvent été mis en avant, puisqu’il créerait un entrainement aux capacités de contrôle exécutif (e.g., Prior & Gollan, 2011). Mais d’autres études montrent une corrélation entre les facteurs de fréquence d’alternance et de maîtrise des langues (e.g., Luk & Bialystok, 2013), un bilingue équilibré ayant plus tendance à alterner entre les langues qu’un bilingue non équilibré. Or, cela n’est pas toujours clairement établi. Un continuum de profils peut exister entre un monolingue ne parlant qu’une langue et le bilingue équilibré qui alterne fréquemment entre les langues. Dans une récente étude, Sullivan et ses collaborateurs (2014) ont analysé les scores et les modulations électrophysiologiques obtenus auprès de jeunes adultes anglophones, lors de tâches de contrôle exécutif verbal et non verbal. Les étudiants ayant reçu un entrainement de seulement 6 mois en Espagnol montraient des modulations électrophysiologiques significativement différentes des autres étudiants, même si les résultats ne sont pas encore visibles. Ces modifications électrophysiologiques présentes en l’absence de différences comportementales ont également été relevées pour des tâches de conscience métalinguistique (Moreno et al., 2010). Elles pourraient impliquer par la suite une supériorité dans les performances.
C.1. Apport de cette étude

Les résultats obtenus lors cette présente étude nous permettent de nuancer les différentes recherches portant sur le bilinguisme. D’une part, le fait de n’obtenir qu’un effet marginalement significatif entre les groupes, et ce, uniquement en condition d’interférence, ne démontre pas clairement un avantage du bilinguisme en apprentissage lexical. De plus, nos résultats relativisent le rôle de la mémoire à court terme dans l’explication de cet avantage. Néanmoins, les résultats tendent à rejoindre les études révélant une corrélation entre apprentissage lexical et résistance à l’interférence. D’autre part, nos résultats vont à l’encontre des études démontrant une facilitation du bilinguisme en contrôle exécutif non verbal, du moins nous n’avons pas pu le démontrer. D’autres facteurs peuvent entrer en jeu, tels que l’âge, l’expérience linguistique quotidienne, la maîtrise des langues, l’âge d’acquisition de la L2, ou encore la pratique d’activités mobilisant les fonctions cognitives. En effet, à divers stades d’apprentissage et d’utilisation des langues, des modifications pourraient être réalisées au niveau cognitif et s’exprimer ensuite au niveau des performances dans les tâches linguistiques et non linguistiques, dans certains contextes.
C.2. Pistes d’amélioration

Afin d’en savoir plus sur d’éventuels avantages du bilinguisme en apprentissage lexical et contrôle exécutif, il conviendrait de modifier quelques éléments en vue de futures études. Tout d’abord, la puissance des résultats pourrait être améliorée par l’augmentation de l’échantillon de participants. Par exemple, nous pourrions envisager d'atteindre le nombre de 80 participants, soit 40 bilingues et 40 monolingues.

De plus, différentes tranches d’âge pourraient être comparées, afin de mettre à l’épreuve l’hypothèse d’un pic de performance chez les jeunes adultes universitaires. En ce sens, les groupes de bilingues et de monolingues de cette tranche d’âge pourraient contenir une moitié d’universitaires et une moitié de non universitaires.

Une autre proposition d’amélioration pourrait être d’utiliser des critères plus stricts pour former les deux groupes linguistiques, au niveau des facteurs de maîtrise et d’alternance des langues surtout. Ces variables devraient d’ailleurs être évaluées à l’aide du regroupement de divers tests. En effet, le test LexTALE semble être moins sensible pour évaluer la connaissance des langues que le LEAP-Q. Mais une autre solution pourrait être de créer trois groupes, en tâchant de trouver des participants pouvant se situer aux deux extrémités ou au milieu du « continuum de profils linguistiques ».

Enfin, d’autres tâches de contrôle exécutif non verbal pourraient être proposées afin d’obtenir d’autres points de comparaison concernant la capacité de contrôle exécutif non verbal des participants. De plus, ces résultats pourraient être appuyés par un enregistrement simultané des potentiels évoqués, à l’aide d’un électroencéphalogramme.
D. Conclusion

Cette présente étude permet de nuancer les résultats de la littérature quant à la facilitation du bilinguisme en apprentissage lexical et en résistance de l’interférence. Elle a pour but d’articuler ces deux avantages au sein d’une même tâche, basée sur le paradigme de Hebb, simulant l’apprentissage naturel de nouveaux mots. Une tâche de contrôle exécutif non verbal permet d’analyser avec plus de confiance les résultats de l’apprentissage.

Les résultats obtenus ne rejoignent qu’en partie les conclusions des études démontrant un avantage du bilinguisme dans les deux domaines. En effet, un apprentissage a bel et bien pu être montré à l’aide du paradigme Hebb mais avec un avantage moins important qu’attendu pour les bilingues. Ceux-ci ne montraient des performances marginalement supérieures que lorsqu’une interférence était instaurée par le chevauchement phonologique des séquences à apprendre. Ils apprendraient plus rapidement les séquences. De plus, les tâches de décision lexicale n’ont pas pu confirmer la présence d’une trace stable en mémoire à long terme de cet apprentissage, pour aucun des deux groupes.

Ce léger avantage du bilinguisme en apprentissage lexical pourrait ainsi être influencé par une meilleure résistance à l’interférence, les bilingues étant plus habitués à gérer deux langues. Néanmoins, la tâche Simon de contrôle exécutif n’a pas pu appuyer cette hypothèse étant donné qu’aucun avantage n’y a été constaté pour les bilingues, comparés aux monolingues.

Cependant, des améliorations peuvent être apportées dans la sélection des participants, afin de contrôler les différentes variables pouvant entrer en jeu (maîtrise des langues, fréquence d’alternance de celles-ci, activités d’entraînement des fonctions cognitives), et dans l’utilisation de mesures multiples (EEG, tâches diverses de contrôle exécutif), afin d’observer des modifications plus fines.
E. Références bibliographiques

F. Annexes

<table>
<thead>
<tr>
<th></th>
<th>Monolingues</th>
<th>Bilingues</th>
<th>Test</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>19</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio homme/femme</td>
<td>6/13</td>
<td>6/16</td>
<td>(\text{Chi}^2 (1) = .091)</td>
<td>.763</td>
</tr>
<tr>
<td>L1 : Fr/Nl/Ang</td>
<td>19/0/0</td>
<td>18/4/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2 : Fr/Nl/Ang</td>
<td></td>
<td>3/3/16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>28.53 (11.57)</td>
<td>27.09 (9.01)</td>
<td>(t(39) = .446)</td>
<td>.658</td>
</tr>
<tr>
<td>QI (Raven)</td>
<td>9.05 (1.78)</td>
<td>8.82 (2.11)</td>
<td>(t(39) = .381)</td>
<td>.705</td>
</tr>
<tr>
<td>L1 maîtrise LexTALE</td>
<td>81.58 (6.46)</td>
<td>84.56 (9.70)</td>
<td>(t(39) = 1.137)</td>
<td>.262</td>
</tr>
<tr>
<td>L1 maîtrise LEAP-Q</td>
<td>9.21 (.82)</td>
<td>9.60 (.58)</td>
<td>(t(39) = 1.755)</td>
<td>.080</td>
</tr>
<tr>
<td>L1 exposition</td>
<td>91.26 (10.55)</td>
<td>65.13 (25.66)</td>
<td>(t(39) = 4.141)</td>
<td>< .001</td>
</tr>
<tr>
<td>L2 maîtrise LexTALE</td>
<td>65.26 (6.11)</td>
<td>76.97 (7.90)</td>
<td>(t(39) = 5.241)</td>
<td>< .001</td>
</tr>
<tr>
<td>L2 maîtrise LEAP-Q</td>
<td>3.91 (2.64)</td>
<td>7.98 (.079)</td>
<td>(t(39) = 6.894)</td>
<td>< .001</td>
</tr>
<tr>
<td>L2 exposition</td>
<td>6.26 (7.88)</td>
<td>26.95 (22.09)</td>
<td>(t(39) = 4.100)</td>
<td>< .001</td>
</tr>
</tbody>
</table>

Note. Les écart-types sont fournis entre parenthèses.
Tableau 2. Temps de réponse et taux de précision moyens pour chaque type de stimulus dans la tâche de décision lexicale utilisée dans l’expérience 1.2

<table>
<thead>
<tr>
<th>Groupe</th>
<th>Condition</th>
<th>TR (ms)</th>
<th>%Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monolingue (N=14)</td>
<td>Filler</td>
<td>1104 (173)</td>
<td>94 (11)</td>
</tr>
<tr>
<td></td>
<td>Hebb 1</td>
<td>1068 (115)</td>
<td>90 (16)</td>
</tr>
<tr>
<td></td>
<td>Hebb 2</td>
<td>1127 (181)</td>
<td>90 (16)</td>
</tr>
<tr>
<td></td>
<td>Mot</td>
<td>1030 (82)</td>
<td>83 (14)</td>
</tr>
<tr>
<td></td>
<td>Non mot</td>
<td>1114 (140)</td>
<td>92 (10)</td>
</tr>
<tr>
<td>Bilingue (N=16)</td>
<td>Filler</td>
<td>1055 (93)</td>
<td>95 (11)</td>
</tr>
<tr>
<td></td>
<td>Hebb 1</td>
<td>1074 (102)</td>
<td>92 (19)</td>
</tr>
<tr>
<td></td>
<td>Hebb 2</td>
<td>1100 (165)</td>
<td>96 (11)</td>
</tr>
<tr>
<td></td>
<td>Mot</td>
<td>994 (74)</td>
<td>74 (16)</td>
</tr>
<tr>
<td></td>
<td>Non mot</td>
<td>1044 (115)</td>
<td>90 (9)</td>
</tr>
</tbody>
</table>

Note : les écart-types sont fournis entre parenthèses.

Tableau 3. Temps de réponse et taux de précision moyens pour chaque type de stimulus dans la tâche de décision lexicale utilisée dans l’expérience 2.2

<table>
<thead>
<tr>
<th>Groupe</th>
<th>Condition</th>
<th>TR (ms)</th>
<th>%Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monolingue (N=15)</td>
<td>Filler</td>
<td>1072 (139)</td>
<td>92 (13)</td>
</tr>
<tr>
<td></td>
<td>Hebb 1</td>
<td>1111 (222)</td>
<td>91 (15)</td>
</tr>
<tr>
<td></td>
<td>Hebb 2</td>
<td>1149 (188)</td>
<td>95 (12)</td>
</tr>
<tr>
<td></td>
<td>Mot</td>
<td>1024 (66)</td>
<td>80 (13)</td>
</tr>
<tr>
<td></td>
<td>Non mot</td>
<td>1076 (112)</td>
<td>87 (14)</td>
</tr>
<tr>
<td>Bilingue (N=18)</td>
<td>Filler</td>
<td>1101 (141)</td>
<td>94 (08)</td>
</tr>
<tr>
<td></td>
<td>Hebb 1</td>
<td>1102 (173)</td>
<td>89 (20)</td>
</tr>
<tr>
<td></td>
<td>Hebb 2</td>
<td>1161 (182)</td>
<td>94 (13)</td>
</tr>
<tr>
<td></td>
<td>Mot</td>
<td>1023 (76)</td>
<td>75 (16)</td>
</tr>
<tr>
<td></td>
<td>Non mot</td>
<td>1112 (129)</td>
<td>92 (11)</td>
</tr>
</tbody>
</table>

Note : les écart-types sont fournis entre parenthèses.
Annexe I. Listes et séries

Liste a : da, ra, fu, bo, ni, vo, di, mi, pe
Liste b : po, ve, fo, ba, jo, za, ki, ru, ti
Liste c : gu, ka, ro, su, lo, fe, vi, li, bi

Séquences Hebb construites à partir de la liste a :

- Série 1 : ra - da - vo ; di – pe – mi ; bo – fu – ni

Séquences Hebb construites à partir de la liste b

- Série 1 : ve – jo – fo ; ki – ru – ti ; ba – po – za
- Série 2 : ti – ru – ki ; za – fo – po ; ve – ba – jo

Séquences Hebb construites à partir de la liste c

Figure 1. Scores moyens pour la tâche de rappel sériel réalisée lors de l’apprentissage Hebb avec manipulation de l’interférence

Figure 2. Scores moyens pour la tâche de rappel sériel réalisée lors de l’apprentissage Hebb sans manipulation de l’interférence
Résumé

De récentes études mettent en évidence un avantage du bilinguisme principalement à deux niveaux : en conscience métalinguistique et en contrôle exécutif. Le but de cette étude est de comparer les bilingues et les monolingues dans l’apprentissage lexical, la résistance à l’interférence, ainsi que dans l’articulation de ces deux habilités. Pour ce faire, nous avons comparé 44 adultes (22 monolingues et 22 bilingues) lors de trois expériences. Au sein de deux épreuves d’apprentissage Hebb, nous avons manipulé le niveau de chevauchement phonologique des non mots, afin de proposer deux situations d’apprentissage : une interférente et une non interférente. Ces épreuves étaient suivies d’une tâche de décision lexicale, permettant d’observer si l’apprentissage avait bien conduit à la formation d’une trace stable en mémoire à long terme. Nous avons également testé le contrôle exécutif non verbal dans une troisième expérience, à l’aide d’une tâche Simon. Nous faisions l’hypothèse de meilleurs scores chez les bilingues en apprentissage lexical et en résistance à l’interférence, au niveau verbal et non verbal, comparés aux monolingues. Les résultats révèlent un apprentissage Hebb identique pour les deux groupes, et sans transfert visible vers la mémoire à long terme. Seule la situation d’interférence montre un avantage marginalement significatif du bilinguisme. De plus, aucun effet du bilinguisme n’a pu être montré en tâche Simon. La facilitation du bilinguisme en apprentissage lexical pourrait être liée aux capacités de contrôle exécutif. De plus, nos résultats pourraient avoir été influencés par des caractéristiques propres aux participants, telles que l’âge, l’alternance et la maîtrise des langues, l’âge d’acquisition de la L2, ou encore la pratique d’activités mobilisant les fonctions cognitives.