
Understanding SCAP Through a Simple Use Case
Alexandre D’Hondt
Université Catholique
de Louvain-la-Neuve

Email: alexandre.dhondt@student.uclouvain.be

Hussein Bahmad
Université Catholique
de Louvain-la-Neuve

Email: hussein.bahmad@student.uclouvain.be

Abstract—Nowadays, one of the main concerns of IT personnel
is security. Indeed, systems composed of various software pro-
ducts must be configured, patched and monitored in compliance
with organization’s security requirements. As complying with
these requirements is a very expensive task, security engineers
need a way to automate as much as possible security activities and
therefore need to rely on external sources for feeding their tools.
That’s why the National Institute of Standards and Technology
(NIST) developed the Security Content Automation Protocol
(SCAP) in order to standardize security information and to fill
a gap in interoperability across the security tools. In this review,
we try to give an overview of SCAP and more particularly some
of its main components and illustrate its purpose with a simple
use case focused on system security settings compliance checking.

General Terms: Security, Assessment, Testing, Reporting.
Keywords: SCAP, OVAL, XCCDF.

I. INTRODUCTION

Today, complying with organization’s security requirements
is not a soft job for security engineers due to the large
variety of systems and software products. Beyond efficiently
configuring, patching and monitoring IT assets, compliance
with organization’s security requirements has to be guaranteed
without overwhelming the IT security personnel. Moreover,
these last years, with the emergence of new security vendors,
often spending efforts in creating their own nomenclatures for
vulnerabilities, various solutions and tools were developed. In
order to gain in efficiency, resulting security items have to be
shared among industries to save costs and therefore a solution
is needed to exchange these items in a standardized fashion.
That’s why the National Institute of Standards and Technology
undertook in the early 2000s to specify the Security Content
Automation Protocol in order to standardize security activities
and overcome the lack of interoperability between existing
solutions. Furthermore, SCAP also provides a simple way to
perform security reporting and to demonstrate compliance.

The remainder of this review is structured as follows. In
section II, SCAP is presented. It is explained starting with
its origin and purpose, then explaining its specification. Two
of its main components are presented in a little bit more
details and some use cases are mentioned. In section III,
a simple practical use case is discussed for illustrating the
content of section II through the use of a command line tool
from the OpenSCAP standard, especially for applying some
basic secure configuration compliance checking tests. Section
IV concludes this review of SCAP with some ways ahead.

II. WHAT IS SCAP ?

In fact, SCAP [1] is first of all an attempt from the US
Department of Commerce through NIST since the early 2000s
to standardize the format by which the security content is
communicated with the industry. The main purpose is to
give to everybody the same expression for compliance with
some main standards such as ISO/IEC 27001 (an international
standard specifying requirements in the field of information
security management), DoD Directive 8500 (Department of
Defense’s directive for information assurance requirements)
and the Federal Information System Controls Audit Manual
(FISCAM). But its purpose is broader and SCAP can also be
used for more specialized technical security activities such as
digital forensics. Providing such a standardization allows to
exchange information between the security experts but also
helps to achieve an underlying goal considered as the Holly
Grail for the information security management, that is, security
automation. [2] [3]

This section first explains the specification of SCAP and
its components. It then gives some interesting use cases and
success stories. It finally gives a few more details about two
of SCAP’s components, OVAL and XCCDF, which are the
languages targeted by the simple use case described in the
next section.

A. A suite of specifications

SCAP is a suite of specifications that standardizes the
format and nomenclature by which security software products
communicate information about software identification, soft-
ware flaws, and security configurations [4]. The SCAP spe-
cification, denoting the representation, must be distinguished
from the SCAP content, which denotes the data shared across
the information security community and hosted on various
databases across the world, e.g. the National Vulnerability
Database (NVD) [5].

SCAP specification can be dissected in three (disjoint and
complementary) categories :

1) Languages for checklists and tests specification and
reporting,

2) Enumerations (dictionaries) of security information,
3) Vulnerability measurement and scoring systems.

Note that enumerations, centralized in the SCAP content,
ensure that what is defined by the languages can be referred
to standardized data.

SCAP SURVEYD

1



Figure 1. SCAP standard

Figure 1 depicts an overview of the specification, starting
on the left vertical frame with the very first version, SCAP 1.0,
then representing on the middle frame the additional compo-
nents of the current version, SCAP 1.2 and then showing on
the right frame the components still to be developed in further
versions. The three categories encompass the components in
the horizontal frames.

Version 1.0 consists of the base components for automating
security controls. These components form together a set of
independent specifications in XML format for expressing in-
formation security knowledge in a standardized way. The lan-
guages are aimed to give a meaning to the whole information
in the context of the systems to be checked. The enumerations
contain the information about platforms, configurations and
vulnerabilities. The measurement and scoring systems allow
to give a ranking to the results of the tests and to prioritize
remediation. The base components are the following :

• XCCDF: Extensible Configuration Checklist Description
Format is a language for authoring security checklists/
benchmarks and for reporting results of their evaluation.

• OVAL: Open Vulnerability and Assessment Language is
a language for representing system configuration informa-
tion, assessing machine state, and reporting assessment
results.

• CPE: Common Platform Enumeration is a nomenclature
and dictionary of hardware, operating systems, and ap-
plications.

• CCE: Common Configuration Enumeration is a nomen-
clature and dictionary of software security configurations.

• CVE: Common Vulnerability and Exposures is a nomen-
clature and dictionary of security software flaws.

• CVSS: Common Vulnerability Scoring System is a sys-
tem for measuring the relative severity of software flaw
vulnerabilities.

Figure 2 depicts the work flow of SCAP 1.0 components
using a tool that implements the specification. Such a tool can
be an open-source solution such as OpenSCAP oscap [6]
or a commercial solution such as Arellia Security Analysis
[7]. Concretely, the tool takes an XML file as input written
in XCCDF with references to CPE, CCE, CVE and CVSS

Figure 2. SCAP 1.0 workflow

items and with eventually links to OVAL definitions. It then
outputs an XML file from which an HTML report or guide can
be generated with the same tool. The resulting HTML report
is aimed to highlight the compliance checking results whereas
the HTML guide fully describes the compliance checking rules
with the related metadata (without performing any test).

Version 1.2 essentially consists of an extension of the
languages to provide standardized reporting. It also extends
the scoring systems to the configuration items. The additional
components are the following :

• OCIL: Open Checklist Interactive Language is a lan-
guage for representing checks that collect information
from people or from existing data stores made by other
data collection efforts.

• ARF: Asset Reporting Format is a format for expressing
the transport format of information about assets and the
relationships between assets and report.

• AI: Asset Identification is a format for uniquely iden-
tifying assets based on known identifiers and/or known
information about the assets.

• CCSS: Common Configuration Scoring System is a sys-
tem for measuring the relative severity of system security
configuration issues.

Future versions of SCAP will extend version 1.2 with some
emerging specifications aimed to provide synergy with the
already-covered ones in order to achieve more automation
tasks such as remediation (note that, at this moment, the
data related to remediation exists but is not exploited yet
for automation because it’s not ready for production). These
specifications will soon become part of the NIST validation
program and should be made available after this process. Some
emerging specifications are the following :

• OCRL: Open Checklist Reporting Language is a lan-
guage for writing XML definitions gathering systems in-
formation in standardized reports for policy compliance.

• CRE: Common Remediation Enumeration is a nomen-
clature for remediation activities.

• ERI: Extended Remediation Information is a collection
of information in addition to the CRE to make this
support organizations’ remediation activities.

• CMSS: Common Misuse Scoring System a system for
measuring the characteristics of software feature misuse
vulnerabilities.

APPENDIX D. SCAP SURVEY 2



B. A solution for many usages
SCAP was developed to address a large part of the infor-

mation security management concerns in an automated way.
These concerns relate to the main activities providing control
on the information technologies. The interested reader can
refer to the CIS Security Controls to get a complete list [8].
The main use cases with their related security control questions
are the following :

• Asset inventory: What are the assets in my network ?
• Vulnerability assessment: Is my system vulnerable to

any exploit ?
• Patch management: Can my system cope with the latest

flaw findings ?
• Configuration management: Is my system configured

based on the best practices ?
• Policy compliance: Can my system comply with the

given policies ?
Up to now, several studies have been led in the field

of automating these use cases. From building a service-
oriented architecture for vulnerability assessment systems [9]
or modelling network attacks using vulnerability information
[10] to developing configuration check tools [11] [12] or
designing security in mobile devices [13], SCAP is more and
more adopted. Moreover, as information technologies security
becomes the banner call for most organizations, audit and
monitoring [14] [15] increasingly rely on SCAP.

C. A composition of XCCDF and OVAL
As stated in section II-A, XCCDF is a specification lan-

guage that allows us to define checklists. Together, these form
a benchmark for a given platform. Each checklist consists of
a set of rules logically grouped. XCCDF syntax is based on
XML and is then structured according to an XML schema. An
XCCDF rule is a high-level definition which will be translated
to a check on the related system (identified by its platform
identifier referring to a CPE). In fact, the rules are not specified
directly inside the XML file, instead they point to other XML
documents referred as OVAL definition files.

benchmark
status, title, descr.
platform, version
models
profiles

title, descr.
selects

groups
title, descr.
rules

oval definitions
generator
definitions
tests
objects
states
variables

Figure 3. XCCDF (left) and OVAL (right) XML trees (not exhaustive).

In Figure 3, the left tree represents the main part of the XML
tree for an XCCDF benchmark. We notice the benchmark root
with multiple group child nodes with themselves multiple rule
child nodes. These last ones may contain references to OVAL
definitions.

XCCDF can also deal with Script Check Engine (SCE), a
small and simple check engine that allow to use old home-
made check script content written in another language and
these old scripts can be mixed with OVAL definitions as
illustrated in Figure 4. The currently supported languages are
Bash, Python, Perl and Ruby.

Figure 4. Mix of an OVAL definition and a Python script in an XCCDF file.

Note that XCCDF rules definition also includes fix items
which are simple and straightforward remediations to miscon-
figuration against the tested configuration items. The aware
reader may have noticed that remediations should be handled
in a future version of SCAP as stated in Figure 1, that is,
CRE should provide a specific definition in a dictionary of
remediations and could be referred in the XCCDF rules instead
of hard-coding them.

As also stated in section II-A, OVAL is a specification
language that allows us to define tests. An OVAL definition
consists of multiple tests referring to objects (i.e. a file name,
a registry key) and states (i.e. file’s md5 hash, registry key’s
value).

Figure 5. OVAL definition logical structure.

In Figure 3, the right tree represents the main part of
the XML tree for an OVAL definition. We notice the
oval definitions root with multiple definition, test, object and
state child nodes. These are logically structured as depicted in
Figure 5, that is, they point to each other to provide a meaning
that matches this representation.

Both XCCDF and OVAL have their own online reposito-
ries [5] [16] with shared SCAP content in order to provide
community-developed benchmarks, vulnerability, compliance,
inventory and patch definitions for a set of supported operating
systems.

APPENDIX D. SCAP SURVEY 3



III. A SIMPLE USE CASE

This section presents a simple use case for the sake of better
understanding SCAP. First, we state the problem and the scope
of the use case. Then, we discuss a solution without SCAP
and its caveats. Afterwards, we discuss a solution with SCAP,
explaining the workflow of its involved components. Finally,
we argue the added value of such a solution.

A. Problem setting

In information security management, meeting the security
requirements is a challenging task, especially for checking
compliance with organization’s policies. For example, pass-
words can be required to respect some criteria in order to
ensure a minimum security level on the systems. Given a
chosen platform, Ubuntu Server 14.04, the objective of the
present use case is to fulfil the security requirements of the
following password policy :

1) Password Files
a) Only root can own /etc/shadow
b) Only root can own /etc/gshadow
c) Only root can own /etc/passwd
d) Only root group can own /etc/passwd
e) /etc/passwd must have permissions 0644

2) Proper Storage & Password Existence
a) Prevent login accounts with an empty password
b) All account passwords must be shadowed (hashes)

3) Expiration Parameters
a) Password minimum age must be set
b) Password maiximum age must be set
c) Password warning age must be set

B. Manual solution

We can imagine that such assessments without SCAP should
be done manually. Using other resources, i.e. a company may
hire employees to fulfil these needs. However, there could
exist some internal implementations with specific languages,
enumerations and metrics in order to automate the testing
activities, requiring just a few experts to manage the auto-
mated execution. This is precisely a case mentioned in the
introduction of this review, showing a lack of interoperability
that SCAP can overcome.

More concretely, let us suppose that an organisation has
to check whether the current installed infrastructure complies
with some internal policies such as to forbid an empty pass-
word. This verification is a piece of cake for an administrator,
checking on each system whether there exists any instance
of the nullok option in /etc/pam.d/system-auth
which prevents login with empty passwords. However, the
complexity of assessment will increase rapidly depending on
the number of rules to test and the number of hosts to be
assessed. Sometimes, it requires some knowledge and security
experts to conduct assessments of organization policies. This
can quickly become too costly.

C. Automated solution with SCAP

As mentioned in section II-B, an interesting use case of
SCAP is the policy compliance checking. In order to illustrate
this, we test the previously-defined password policy against a
checklist in XCCDF language with an open-source tool. Thus,
in order to check for empty passwords like in section III-B,
we just need to download the corresponding rule from the
NVD and to install a tool on the target system. The check can
even be performed remotely from a central system by using a
specific tool via the SSH protocol (i.e. with oscap-ssh). In
the present case, we test a local solution in a virtual machine.

The settings of this experiment are the following :

• Platform : Ubuntu Server 14.04
• Tool : oscap (from the OpenSCAP project)
• Checklist : XCCDF file available from a project [17]

In order to execute the test with the given tool, we adapt
the password policy into an XCCDF file downloaded from
the NVD by defining a profile containing the rules referring to
OVAL definitions also downloaded, then forming a benchmark
for the given platform. Afterwards, we execute on the targeted
system the following simple command :

oscap xccdf eval
--profile xccdf_password_policy
--cpe ubuntu-cpe.xml
--oval-results
--results results.xml
--report results.html
ubuntu-xccdf.xml

The anatomy of this command is the following :

• oscap xccdf eval ubuntu-xccdf.xml tests
the system against the given benchmark

• --profile selects the right profile, that is, this of
Ubuntu Server 14.04, defined for our specific policy

• --cpe selects the right platform enumeration (for pro-
viding metadata)

• --oval-results enables inclusion of additional
OVAL information in the XCCDF report

• --results generates the given XML file with the
XCCDF results

• --report generates a human-readable HTML report
with very detailed information

Figure 6. SCAP workflow applied to the simple use case.

APPENDIX D. SCAP SURVEY 4



Figure 6 presents the workflow for the simple use case.
XCCDF checks the CPE item against some OVAL tests based
on CCE items from a password policy rules, then generating
an XML file with the results and the corresponding HTML
report.

The hardest work is certainly to create our own benchmark,
requiring some knowledge concerning the standard and the
controls related to the tested password policy. Fortunately,
SCAP content from some main available sources such as
the NVD or Database Exploits contain a broad database of
benchmarks and the one we need can be easily found and
tailored to the policy.

Figure 7. List of password policy rules with pass/fail status.

The final report contains a lot of metadata about the confi-
guration items and their potential misconfiguration and also the
remediations that can be performed. A nice feature of SCAP
is that its ARF specification provides a standardized reporting
structure that can be used to generate a user-friendly report
in the form of a guidance documentation. Figure 7 shows the
summary list of the check status for each tested rule, as an
introduction of the generated report. Each rule in the shown
table links to a section with detailed information.

D. Added value
From the explanations of subsections III-B and III-C on the

simple use case, we can see that it’s very simple to perform a
quick compliance checking test on a common system relying
on some public resources thanks to SCAP, far more easier than
by applying a manual solution.

By using a standard such as SCAP, security information
sharing and security automation are made convenient. As
current SCAP content gathers a large quantity of knowledge,
security experts can simply behave as content consumers and
thus spare a significant amount of time.

By contrast, security experts can also contribute as content
producers and dealing with the XML schemas quickly be-
comes complex and costly. So, SCAP content is of course de-
pendent on the available manpower for feeding the repositories
and the content is not necessarily complete. However, SCAP
community enjoy many contributing organizations making the
SCAP content a reliable source for security automation.

As a proof of efficiency, we can mention a few already-
released SCAP-validated products from main software compa-
nies such as Microsoft SCAP extensions for Microsoft System
Center Configuration Manager 3.0, Tenable Security Center 5
or also Qualys SCAP Auditor 1.2 [18].

IV. CONCLUSION

We presented SCAP and its specification as a composition
of several categories of sub-specifications. We discussed the
various use cases it covers through a couple of references to re-
search projects. We gave a few more details about how its two
main languages look like and how to formulate checklists and
tests. We showed a simple use case of compliance checking
based on a simple password policy to illustrate how easy to use
SCAP is in comparison to a manual solution. We commented
its added value to assess its usefulness and concluded it’s a
very interesting tool for many usages.

SCAP is an evolutionary effort of the information security
community. It will continue to progress from its current
version 1.2 with emerging specifications such as CRE for
automating remediations. As its usage seems to continuously
grow, SCAP will certainly remain a reliable and efficient
source for supporting security experts’ work.

REFERENCES

[1] NIST, The Technical Specification for the Security Content Automation
Protocol (SCAP): SCAP Version 1.2, Sept 2011, rev. 2.

[2] P. Kampanakis, “Security automation and threat information-sharing
options,” Security Privacy, IEEE, vol. 12, no. 5, pp. 42–51, Sept 2014.

[3] R. Montesino and S. Fenz, “Automation possibilities in information se-
curity management,” in Intelligence and Security Informatics Conference
(EISIC), 2011 European, Sept 2011, pp. 259–262.

[4] S. Radack and R. Kuhn, “Managing security: The security content
automation protocol,” IT Professional, vol. 13, no. 1, pp. 9–11, Jan 2011.

[5] National vulnerability database. [Online]. Available: https://nvd.nist.gov/
[6] OpenSCAP. Oscap tool. [Online]. Available: http://www.open-scap.org/
[7] Arellia. Security analysis solution. [Online]. Available: http://www.

arellia.com/products/security-analysis-solution/
[8] Cis critical security controls. [Online]. Available: http://www.cisecurity.

org/critical-controls/
[9] A. Nakamura, “Towards unified vulnerability assessment with open

data,” in Computer Software and Applications Conference Workshops
(COMPSACW), 2013 IEEE 37th Annual, July 2013, pp. 248–253.

[10] K. Ingols, M. Chu, R. Lippmann, S. Webster, and S. Boyer, “Modeling
modern network attacks and countermeasures using attack graphs,” in
Computer Security Applications Conference, 2009. ACSAC ’09. Annual,
Dec 2009, pp. 117–126.

[11] E. Al-Shaer and M. Alsaleh, “Configchecker: A tool for comprehen-
sive security configuration analytics,” in Configuration Analytics and
Automation (SAFECONFIG), 2011 4th Symposium, Oct 2011, pp. 1–2.

[12] M. Alsaleh and E. Al-Shaer, “Scap based configuration analytics for
comprehensive compliance checking,” in Configuration Analytics and
Automation (SAFECONFIG), 2011 4th Symposium, Oct 2011, pp. 1–8.

[13] C.-L. Kuo and C.-H. Yang, “Security design for configuration man-
agement of android devices,” in Computer Software and Applications
Conference (COMPSAC), 2015 IEEE 39th Annual, vol. 3, July 2015,
pp. 249–254.

[14] M. Aslam, C. Gehrmann, and M. Björkman, “Continuous security
evaluation and auditing of remote platforms by combining trusted
computing and security automation techniques,” in Proceedings of the
6th International Conference on Security of Information and Networks,
ser. SIN ’13. New York, NY, USA: ACM, 2013, pp. 136–143.
[Online]. Available: http://doi.acm.org/10.1145/2523514.2523537

[15] R. Savola and P. Heinonen, “Security-measurability-enhancing mecha-
nisms for a distributed adaptive security monitoring system,” in Emerg-
ing Security Information Systems and Technologies (SECURWARE),
2010 Fourth International Conference on, July 2010, pp. 25–34.

[16] Oval repository. [Online]. Available: https://oval.mitre.org/repository/
[17] GovReady. Ubuntuscap project. [Online]. Available: https://github.com/

GovReady/ubuntu-scap
[18] Scap validated products. [Online]. Available: https://nvd.nist.gov/

SCAP-Validated-Tools/

APPENDIX D. SCAP SURVEY 5


