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overall OpenStack network performance.

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)


Acknowledgements

I would first and foremost like to express my deepest gratitude to my supervisor, Profes-

sor Marco Canini, for his precious guidance and invaluable suggestions, for sharing his

knowledge and professional experience with me, and beyond all, for being so inspirational

and sympathetic to me.

Also, I would love to send my special words of thanks to Professor Ramin Sadre, and

Viet-Hoang Tran, who spend their valuable time reading my work and provide me with

highly constructive feedbacks.

I am much obliged to my dear friend, Quynh Le, who sticks by me through the thick

and thin, giving me countless support in my personal life. My gratefulness also goes

to my other two friends Nhung Nguyen and Alice Egan, whose proofreading effort is

profoundly essential to my work. And I wholeheartedly appreciate all other friends for

their inspirational ideas and discussions, as well as for the time spent with me.

Last but not least, I owe extreme indebtedness to my beloved family who always en-

courage me and help me get through difficult times.

ii



Contents

Abstract i

Acknowledgements ii

Contents iii

List of Figures vi

List of Tables viii

Abbreviations ix

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 4

2.1 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Cloud Computing models . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 OpenStack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 The OpenStack Project . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 OpenStack Software Components . . . . . . . . . . . . . . . . . . . 7

2.2.2.1 Compute service . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2.2 Storage service . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2.3 Networking service . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2.4 Dashboard service . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2.5 Shared services . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Service Communication and Integration . . . . . . . . . . . . . . . 10

2.2.3.1 RESTful API . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3.2 Remote Procedure Call . . . . . . . . . . . . . . . . . . . 11

2.2.3.3 RabbitMQ . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.4 KVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 OpenStack Networking: Neutron . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 The Neutron Project . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2.1 Neutron Server . . . . . . . . . . . . . . . . . . . . . . . . 13

iii



Contents iv

2.3.2.2 Plug-in Architecture . . . . . . . . . . . . . . . . . . . . . 14

2.3.2.3 Message queue . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2.4 L2 Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2.5 L3 Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2.6 DHCP Agent . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2.7 Virtual bridges . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.4 Neutron Network Traffic Types . . . . . . . . . . . . . . . . . . . . 20

2.3.5 Traffic Flow In Neutron Networking . . . . . . . . . . . . . . . . . 21

2.3.5.1 Neutron network with legacy routing . . . . . . . . . . . 22

2.3.5.2 Network with distributed routing . . . . . . . . . . . . . 23

2.4 Open vSwitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Network Tunnelling With VXLAN . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 VXLAN Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.2 VXLAN Tunnel End Point (VTEP) . . . . . . . . . . . . . . . . . 26

2.5.3 VXLAN Tunnel In OpenStack . . . . . . . . . . . . . . . . . . . . 26

3 Methodology 27

3.1 Network Performance Measurements And Evaluations . . . . . . . . . . . 27

3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Throughput Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.3 Latency Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.4 CPU Statistic And Profiling . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Experimental Scenarios Based On Traffic Flow . . . . . . . . . . . . . . . 29

3.2.1 Network Architecture With Legacy Router . . . . . . . . . . . . . 30

3.2.1.1 Intra-node Intra-subnet . . . . . . . . . . . . . . . . . . . 30

3.2.1.2 Intra-node Inter-subnet . . . . . . . . . . . . . . . . . . . 31

3.2.1.3 Inter-node Intra-subnet . . . . . . . . . . . . . . . . . . . 32

3.2.1.4 Inter-node Inter-subnet . . . . . . . . . . . . . . . . . . . 32

3.2.2 Network with DVR router . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2.1 Intra-node Inter-subnet (with DVR router) . . . . . . . . 33

3.2.2.2 Inter-node Inter-subnet (with DVR router) . . . . . . . . 34

4 Experimental Setup 35

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Single-host Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Amazon AWS Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Local Cluster Test-bed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Other Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5.1 KVM And VHostNet . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5.2 MTU Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5.3 Security Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 Logical Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Experiment Result 44

5.1 Amazon AWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.1 Thoroughput Measurement . . . . . . . . . . . . . . . . . . . . . . 44



Contents v

5.1.2 Latency measurement . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Local Test-bed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Tenant Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1.1 Throughput measurement . . . . . . . . . . . . . . . . . . 47

5.2.1.2 Latency measurement . . . . . . . . . . . . . . . . . . . . 48

5.2.1.3 Performance comparison: DVR versus non-DVR . . . . . 50

5.2.1.4 Performance comparision: KVM/VHostNet . . . . . . . . 51

5.2.2 External Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.2.1 Throughput measurement . . . . . . . . . . . . . . . . . . 52

5.2.2.2 Latency measurement . . . . . . . . . . . . . . . . . . . . 52

5.2.3 Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Further System Analysis 55

6.1 CPU Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 CPU Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2.1 Receiving Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.2 Sending Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Conclusion 60

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.2 A Final Thought . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Bibliography 63



List of Figures

2.1 OpenStack conceptual architecture . . . . . . . . . . . . . . . . . . . . . . 7

2.2 OpenStack Dashboard: Network Topology . . . . . . . . . . . . . . . . . . 9

2.3 Neutron architecture overview . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 The Modular Layer 2 plug-in . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Neutron ML2 Plugin start-up diagram . . . . . . . . . . . . . . . . . . . . 15

2.6 Neutron-server communication with OVS agents using RPC . . . . . . . . 17

2.7 OpenStack Neutron L3 Agents [1] . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 OpenStack Network with centralised (legacy) router . . . . . . . . . . . . 22

2.9 OpenStack Network with DVR router . . . . . . . . . . . . . . . . . . . . 23

2.10 VXLAN packet header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Intra-node Intra-subnet VM traffic flow (HNR) . . . . . . . . . . . . . . . 31

3.2 Intra-node Inter-subnet VM traffic flow (H-NR) . . . . . . . . . . . . . . . 31

3.3 Inter-node intra-subnet VM traffic flow (-HNR) . . . . . . . . . . . . . . . 32

3.4 Inter-node inter-subnet VM traffic flow (-H-NR) . . . . . . . . . . . . . . 33

3.5 Inter-node inter-subnet VM traffic flow (with DVR router) . . . . . . . . . 33

3.6 Inter-node inter-subnet VM traffic flow (with DVR router) . . . . . . . . . 34

4.1 Basic component of OpenStack . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Amazon AWS Network architecture . . . . . . . . . . . . . . . . . . . . . 37

4.3 Test-bed Network architecture . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 KVM and VHostNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Logical network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 AWS throughput measurement . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 AWS latency measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Network throughput with legacy router (TCP) . . . . . . . . . . . . . . . 47

5.4 Network throughput with distributed router (TCP) . . . . . . . . . . . . . 47

5.5 Network throughput with DVR router (UDP) . . . . . . . . . . . . . . . . 48

5.6 Network latency with legacy router . . . . . . . . . . . . . . . . . . . . . . 49

5.7 Network Latency with distributed router . . . . . . . . . . . . . . . . . . . 49

5.8 Comparison: Network throughput with and without DVR . . . . . . . . . 50

5.9 Comparison: Network Latency with and without DVR . . . . . . . . . . . 50

5.10 Comparison: Network throughput with and without VHostNet/KVM . . 51

5.11 Comparison: Network latency with and without VHostNet/KVM . . . . . 51

5.12 Network throughput with distributed router (inter-node traffic) . . . . . . 52

5.13 Network latency with distributed router . . . . . . . . . . . . . . . . . . . 53

6.1 CPU usage of Compute node for data sending of host and guest machine 55

vi



List of Figures vii

6.2 CPU usage of Compute node for data receving of host and guest machine 56



List of Tables

2.1 Scenarios under which VM traffic needs to pass through Network node . . 21

4.1 AWS Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Test-bed server configurations . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Local testbed VM Configuration . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 VM distribution to virtual networks and Compute nodes . . . . . . . . . . 42

4.5 VM IP addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

viii



Abbreviations

API Application Programming Interface

CC Cloud Computing

CLI Command-Line Interface

OVS OpenVSwitch

DVR Distributed Virtual Routing

VM Virtual Machine

VN Virtual Network

VNI Virtual Networking

VXLAN Virtual EXtensible Local Area

NAT Network Aaddress Translation

VTEP VXLAN Tunnel End Point

AMQP Advanced Message Queue Protocol

PM Physical Machine

ix



Chapter 1

Introduction

During the last few years, Cloud computing has become one of the hottest trends in

the ICT domain that attracts lots of attention from researchers in both industrial and

academic fields. The computing model is considered to evolve the way in which different

technologies collaborate to change organisation’s approach to build and manage their IT

infrastructure as well as computing services. Similar to other scientific and technological

advancement, especially those evolving from existing technologies, the value of Cloud

Computing does not lie in the technology itself, but rather in the operational changes

upon its deployment and application.

1.1 Motivation

So far there have been several platforms that attempt to popularise cloud environment to

the market. These include both software solutions like Apache CloudStack or OpenStack,

and service providers like Amazon (EC2) or Google (Google Cloud Platform). In meeting

with the fast-growing demand for cloud computing, OpenStack has come up as a software

stack that can help to quickly deploy a cloud cluster at low cost and overheads.

In order to provide the services with best Quality-of-Service (QoS) possible, guaranteeing

high performance of the operating cloud cluster is always among the main concerns

of cloud service providers. As such, achieving a thorough comprehension and detailed

analysis of OpenStack architecture, its core technologies and operation is a necessary step

prior to any enhancement made to improve the overall OpenStack performance. This

1



Chapter 1. Introduction 2

thesis work aims to achieve a thorough understanding of the OpenStack architecture,

especially its Netwoking module, and to study the network performance of a OpenStack-

based cloud cluster.

1.2 Problem Statement

In the academic literature, to the best of author’s knowledge, there has been no recent

publication that deals with an in-depth performance analysis of OpenStack with a special

interest given to its networking module - Neutron. Under OpenStack’s renown 6-month

release cycle, Neutron has been under massive redesign and improvement lately. In the

10th OpenStack release (codename Juno), Neutron comes up with, among other new

features, the implementation of Distributed Virtual Routing (DVR) that primarily aims

at enhancing network performance and mitigating the single-point-of-failure issue as in

the architecture with centralised router. OpenStack Juno is expected to be more efficient

than previous releases, both overall and network performance. In a nutshell, this thesis

comes up with the following goals:

1. Deployment of OpenStack cloud software into different environments consisting of

Amazon AWS and local test-bed

2. A methodological approach to analyse OpenStack network performance with differ-

ent operational settings, including Distributed Virtual Routing (DVR)

3. In-depth system analysis, based on the CPU profiling, to explain the impact of

Neutron on OpenStack network performance

In general, we are able to run and experience a fully functional OpenStack cluster and

evaluate the Neutron’s impacts on the underlying operating system and hardware in-

frastructure, which accordingly affects the network performance of OpenStack. We also

see how different settings and environment influence behaviours of the designated VMs.

As the experiment goes on, it can be observed that network performance is considerably

impacted by the encapsulation mechanism that is used to isolate tenant networks. This

results in bandwidth utilisation of less than 30% of the measured VM traffic and heavily

consumed CPU usage of the host machines.
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The work is divided into 7 chapters: The introductory one briefs the problem state-

ments and motivations behind the work. Chapter 2 provides background of OpenStack

and related technologies which construct the software stack. Chapter 3 outlines the

methodologies with which experiments are conducted. Chapter 4 describes the instal-

lation processes carried out with different platforms including the Amazon Web Service

(AWS) EC2 and local cluster test-bed . Chapter 5 presents the results collected from

the various tests and chapter 6 gives an in-depth analysis based on system profiling,

which helps to explain result from chapter 5. The last section concludes the work and

suggests some ideas as potential future work.

The thesis only mentions the most critical configurations and scripts. A full resources

related to the deployment, evaluation scripts and experiment results of the work can be

found at https://github.com/tab87vn/sinf_master_thesis.git

https://github.com/tab87vn/sinf_master_thesis.git


Chapter 2

Background

2.1 Cloud Computing

2.1.1 Definition

Cloud computing (CC) has been in the market for a while and is praised by consumers

and enterprises for its provision of on-demand access to scalable computing resources,

to meet the need services and applications with growing complex. Yet there has not

been any standardised definition of what Cloud computing is and as a matter of fact,

different companies and institutions tend to have their own definitions for this new

technology/business model [2–4].

Among many ways in the literature of how the term Cloud Computing is defined, the

one in the published work of the U.S. National Institute of Standards and Technology

(NIST)[4] has been taken as the de-facto definition:

”Cloud computing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers, stor-

age, applications and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction.”.

CC introduces a new way of optimally utilising and computing power (CPU, memory,

storage), in which cloud resources are not only shared among multiple users, but also

able to be dynamically supplied (on demand). Provisioned to users on a pay-for-use

4
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basis, CC offers an attractive environment for users and enterprises to develop and/or

run Internet-based applications and services, with little concerns over upfront costs as

well as infrastructure maintenance costs.

2.1.2 Cloud Computing models

The ICT industry has defined the three main forms of Cloud Computing including

Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service

(IaaS). These three models are commonly referred to as SPI model.

SaaS

SaaS, short for Software-as-a-Service, is the most basic form of cloud service where

users are able to run their favourite applications and services (such as emails, office, or

even video games and so on) in the cloud. As such, users use the resources effectively

regardless of constraints on IT implementation problems. This model also helps to

minimise upfront cost in operation as well as maintenance. Typical examples of SaaS

are Google apps, Salesforce, Cisco WebEx, and so on.

PaaS

PaaS, short for Platform-as-a-Service, provides a development platform (i.e. develop-

ment kits and a number of supported programming languages, database or other software

components) on which cloud users can leverage to develop, manage and run their own

applications and services. With PaaS, cloud users are given more control over the envi-

ronments for managing applications. Typical examples of PaaS include Windows Azure,

Heroku, Google App Engine, and so on.

IaaS

IaaS, short for Infrastructure-as-a-Service, provides cloud users with physical resources

or virtual machines in terms of CPU, storage, load balancers or operating system. Some

IaaS service providers also provide disk image library and file-based storage.

Typical examples of IaaS include Amazon EC2, Google Compute Engine, and so on.

XaaS

SaaS, PaaS and IaaS as listed above are the most common forms of XaaS with the pro-

visioned resources being referred to software, platform and infrastructure, respectively.
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Everything-as-a-Service (also known as Anything-as-a-Service), or XaaS, refers to the

growing diversity of services provided over the Internet rather than locally or on-premise.

2.2 OpenStack

This section gives a brief overview of the OpenStack project, its core components and

some of the key enabling technologies.

2.2.1 The OpenStack Project

OpenStack[5] is a free and open-source cloud computing software platform that enables

rapid deployment, management and development of a cloud infrastructure in a data

centre. OpenStack was jointly launched by NASA[6] and Rackspace Hosting[7] in July

2010 and is managed by the OpenStack Foundation. OpeStack Foundation is a non-

profit organisation formed in September 2012 to promote the development, distribution

and adoption of the software stack. Currently, the OpenStack project is supported by

more than 500 companies.

OpenStack platform provides cloud computing services running on standard commodity

hardware and is primarily deployed as an Infrastructure-as-a-Service (IaaS) model. The

software stack consists of a group of interrelated projects that control pools of process-

ing (Nova), storage (Swift, Cinder) and networking (Neutron) resources throughout a

data centre. Management and control over these pools are exposed to users through

a web-based dashboard (Horizon), command-line tools, or a RESTful API. By utilis-

ing a massive collection of popular enterprises and open-source technologies, OpenStack

becomes an ideal solution for heterogeneous infrastructure.

The OpenStack project currently has a 6-month release cycle. Up to the point of writing

this thesis, there have been 11 stable releases, among which the latest one (code name

Kilo), was released in April 2015 while the soon-to-be-released version (code name Lib-

erty) is planned to come out on 15 Oct 2015 [8]. Having been the most recent stable

release and had a reasonable time-on-market when this thesis is started, Juno is consid-

ered the most suitable for the deployment and experiment purposes of the thesis.
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2.2.2 OpenStack Software Components

The OpenStack project consists of several interrelated sub-projects that help to manage

different aspects of hardware resources including computing, storage, networking and

other related services, each of which offers its own set of APIs to facilitate the integration

of the whole software stack. Figure 2.1 illustrates the OpenStack conceptual architecture

with interactions among its software components[9]. As an IaaS-focused cloud platform,

OpenStack has VMs at its centre, provisioned by the Nova module. VMs are surrounded

by other services including network connectivity handled by Neutron; operating system

images stored by Glance; storage services provided by Swift and Cinder. Keystone is

responsible for the authentication of the whole OpenStack system while, at a high level,

Horizon provides a web-based management interface to all the other services.

Figure 2.1: OpenStack conceptual architecture
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2.2.2.1 Compute service

OpenStack Compute (Nova) is designed to manage pools of computing resources and

provide access to these pools via either graphical user interface tools (dashboard) or

command-line tools or the rich native API sets. Nova works with most popular virtu-

alisation technologies such as KVM (default) [10], VMware[11], Xen[12] or Hyper-V[13]

as well as Linux Container technologies like LXC[14].

Nova can be considered the main part of an IaaS system, in which cloud users have access

to VMs hosted by nodes running Nova service. Within OpenStack platform, Compute

nodes can be added and integrated with the existing nodes, making the resource pool

horizontally scalable on standard hardware.

2.2.2.2 Storage service

Besides traditional storage technology (that comes along with computing resources man-

aged by Nova), OpenStack also supports two additional types of storage, namely Object

Storage and Block Storage.

Object storage (Swift) is a scalable redundant storage system in which objects and

files are stored, replicated, and distributed throughout multiple servers in the cluster.

As an example, Amazon runs its storage service S3 via its public cloud platform at

massive scale.

Block storage (cinder) manages (creates/attaches/detaches) virtualised block storage

pools and provide OpenStack users with access to these pools. Block storage is fully

integrated into compute (Nova) and dashboard (Horizon) services via APIs, enabling

users to consume these storage resources even without any knowledge of the technology

of the underlying storage devices.

2.2.2.3 Networking service

The Networking service (Neutron, formerly Quantum) provides an abstraction of Virtual

Network Infrastructure (e.g: network, subnets, ports, routers, etc.) and services (e.g.:

firewall, load balancer, virtual private network, etc.) within OpenStack-based cluster.
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Neutron essentially provides VMs (created and managed by Nova) with networking ser-

vice which, prior to the existence of Neutron, used to be handled by nova-network.

Being capable of providing only basic networking service, development and deployment

of nova-network became gradually lessened in later releases, with a long-term plan to

remove this module from OpenStack code base [15, p. 317]. While nova-network still

was not deprecated in Juno release, Neutron has stepped up as the default networking

module for OpenStack with more flexible and full-fledged abstractions of network infras-

tructure and services. Section 2.3 gives a more insightful discussion on Neutron network

module.

2.2.2.4 Dashboard service

OpenStack dashboard (Horizon) enables users to access and manage VMs, VNs and

other OpenStack resources via a web-based graphical users interface (written in Python

using Django). Figure 2.2 exemplifies the Dashboard service, presenting different virtual

machines, the virtual networks they belong to and virtual routers that connect these net-

works. Besides dashboard, users (particularly developers) can also interact and perform

administrative tasks by using sets of native OpenStack APIs or the EC2 compatibility

APIs.

Figure 2.2: OpenStack Dashboard: Network Topology
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2.2.2.5 Shared services

OpenStack has several other services that are commonly used by the above core projects,

making it easier to implement and operate your cloud. These services — including

identity, image management and a web interface - integrate the OpenStack components

with each other as well as external systems to provide a unified experience for users as

they interact with different cloud resources.

Identity service

OpenStack Identity service (Keystone) provides a central authentication and authori-

sation mechanism for other OpenStack services. Keystone also provides a catalog of

endpoints for all OpenStack services.

Image service

The OpenStack Image service (Glance) enables creating, storing and retrieving disk

images for VMs, which is used by Compute service during the provisioning of VM

instances.

Telemetry service

The OpenStack Telemetry service (Ceilometer) can measure and track the services used

by OpenStack users and provide billing accordingly.

Orchestration service

OpenStack Orchestration (Heat) provides the ability to define and automate the deploy-

ment of infrastructure, services and applications using flexible templates. It can scale

up or scale down the OpenStack cluster.

2.2.3 Service Communication and Integration

OpenStack is a fully distributed system, consisting of multiple smaller projects, or mod-

ules, as discussed in the previous section. Each module is designed with the ”Share

Nothing Architecture” principle in mind, and is functionally independent from the oth-

ers. A module like Nova or Neutron is comprised of multiple components that together

bring on its functionalities. As with any other distributed systems, the functionality of

OpenStack as a whole depends heavily on how its inner services are integrated, which

in turn relies on the capability of its modules and components to communicate between
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them. There are 3 main mechanisms that enable the communication and service inte-

gration of OpenStack: RESTful API, Remote Procedure Call and RabbitMQ.

2.2.3.1 RESTful API

REST (REpresentational State Transfer) is an architectural style, and an approach

to communications that is often used in the development of Web services. Each of

the OpenStack core modules exposes one or more RESTful interfaces to interact with

the outside world. By using RESTful APIs, OpenStack provides access to users in

different ways, either by Command-Line Interface (CLI), cURL or via REST client.

Each of these major projects has an API service as endpoint for client to access (e.g.

openstack-nova-api, openstack-glance-api) so it can accept REST request from its

clients, either users or other modules. As such, RESTful API is an effective way to let

different OpenStack modules communicate.

2.2.3.2 Remote Procedure Call

Remote Procedure Call, or RPC, enables inter-process communication that allows its

clients to trigger the execution of subroutines in a remote location. OpenStack mod-

ules like Nova (nova-compute, nova-api, nova-scheduler), Neutron (neutron-server,

neutron-openvswith-agent) or Cinder (cinder-scheduler, cinder-volume) make

heavy use of RPC for its intra-module communication, to the extent that almost every-

thing happening in these modules is triggered by RPC calls. For example, after Neu-

tron’s neutron-server receives a (RESTful) request to create a new network, it asks

the available plug-in (e.g ml2plugin) to in turn send an RPC call to the corresponding

agent (e.g. neutron-openvswith-agent).

2.2.3.3 RabbitMQ

RPC calls rely on a channel, or a messaging mechanism through which they are delivered

to the consuming processes (i.e. consumers). RPC requests are packaged into messages

that are sent to a message broker which then forwards them to the consumers. This

is where a messaging broker like RabbitMQ fits into the picture. RabbitMQ [16] is

an open-source implementation of the Advanced Message Queue Protocol (AMQP)[17]
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standard. AMQP is designed to facilitate the brokering of messages between different

processes, applications of the same system, or even between systems that communicate

by message passing. In OpenStack platform, AMQP is utilised to establish an efficient

internal communication mechanism between components of the same OpenStack module,

for instance, Nova, Neutron or Cinder.

2.2.4 KVM

Kernel-based Virtual Machine, or KVM, is a full virtualisation solution for Linux and

has been shipped with Linux kernel since kernel version 2.6.20. KVM enabled by run-

ning QEMU-based hardware emulation with KVM-acceleration mode enabled. KVM is

a special operating mode of QEMU that utilises processor’s hardware-assisted virtualisa-

tion capability (Hardware Virtual Machine, or HVM) to perform hardware virtualisation

via its processor-specific kernel modules. KVM is among several hypervisor platforms

compatible with OpenStack.

2.3 OpenStack Networking: Neutron

This section discusses in detail the OpenStack Networking module - Neutron - and

the relevant software packages that altogether construct the Neutron-based network

infrastructure.

2.3.1 The Neutron Project

The OpenStack Neutron project, having its premiere in Havana release (October 2013),

replaces nova-network to provide OpenStack with a full-featured abstractions of the

Virtual Network Infrastructure as well as basic and advanced network services. Thanks

to Neutron, cloud users have access to essential networking infrastructure and resources

like network, subnet and router objects. The elements simulate functionalities of real-

world corresponding physical components: network consists of subnets connected to

routers, which route traffic between different subnets and networks. Besides the provision

of such basic network services as NAT, DHCP or routing, Neutron also enables users to



Chapter 2. Background 13

create advanced virtual network topologies including services such as firewalls (Firewall-

as-a-Service, or FWaaS), load balancers (LoadBalancer-as-a-Service, or LBaaS), and

virtual private networks (VPN-as-a-Service, or VPNaaS).

2.3.2 Architecture Overview

Figure 2.3: Neutron architecture overview

Neutron Networking is a standalone component in the whole OpenStack architecture,

working closely with other components (Identity, Compute, Storage, etc.) to provide

networking connectivity and services to VMs. At a high level, the Neutron Networking

consists of a central server daemon which exposes, receives and dispatches API requests.

Neutron clients uses these APIs for building flexible policies and sophisticated network-

ing topologies. The Neutron server administers several agents responsible for host and

network configuration. Communication between Neutron server and these agents relies

on RPC (over RabbitMQ) or through the standard Networking API. This section pro-

vides an overview on the architecture and main components of Neutron, as illustrated

in Figure 2.3.

2.3.2.1 Neutron Server

The Neutron server daemon (neutron-server) starts up, reads the configuration files

then loads all configured plug-ins and extensions. It also exposes APIs to Neutron clients
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(via Dashboard, CLI or API calls), and forwards requests from the clients to configured

plug-ins. In particular, these client requests are placed into a message queue (using the

RabbitMQ messaging system) and dispatched to corresponding agents (L2, L3, DHCP

or other agents for advanced services).

2.3.2.2 Plug-in Architecture

Neutron’s ability to integrate with different underlying infrastructure and other net-

working services is implemented by a variety of plug-ins. In other words, while Neutron

server provides its users with sets of resourceful APIs to manage and customise networks,

it is the plug-ins that do the actual configuration tasks and enable Neutron to support

fast-changing network technologies from various vendors as well as to efficiently deploy

the Software-Defined Networking paradigm. With plug-ins, advanced networking capa-

bilities such as L2-in-L3 tunnelling, load balancing, virtual private networks or firewalls

can be supported and plugged into Neutron stack. As such, the plug-in architecture

brings a powerful and flexible way of customising a network’s capabilities. There is only

one Neutron plug-in running at a time and it is configured as followed:

core_plug-in = neutron.plug-ins.ml2.plug-in.Ml2Plugin

Modular Layer 2

Modular Layer 2 (ML2) plug-in provides a framework to simultaneously manage a variety

of Layer-2 technologies, each with an individual mechanism driver. ML2 helps to address

the problem of implementation redundancy in which different switching technologies and

vendors (e.g. OpenvSwitch, Linux bridge or Cisco) bring in their own monolithic plug-ins

and associated agents while still providing similar features and getting plugged into the

same environment (Neutron stack). This results in duplication of database, code base,

and so on, along with development and maintenance efforts. ML2 is intended to eliminate

these duplication issues and to simplify the scalability potential (e.g. development of

new plug-in/agent for new switch vendor). Besides, with ML2, there is still only one

single plug-in allowed but multiple switching technologies can be run simultaneously

thanks to ML2’s mechanism driver. Figure 2.4 provides a high-level view of the ML2

framework in association with the Neutron server.

The ML2 plug-in essentially consists of Type Manager and Mechanism Manager:
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Figure 2.4: The Modular Layer 2 plug-in

• Type manager: A type driver manages network state of a specific type and also

performs provider and tenant network validation. OpenStack Juno’s supported

type drivers includes: local, flat, vlan, gre and vxlan. Within the scope of this

thesis, VXLAN will be discussed in detail as the overlay technology for manage-

ment of tenant networks.

• Mechanism manager: The mechanism manager manages drivers for different

underlying technologies (from different vendors) used to manipulate the underlying

infrastructure and makes sure that they are applied in accordance with available

type drivers.

ML2 startup procedure

Figure 2.5: Neutron ML2 Plugin start-up diagram
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The sequence diagram from Figure 2.5 describes how the ML2 plug-in starts and enables

the available type drivers and mechanism drivers. The start-up procedure consists of

the following steps:

1. When Neutron server starts, it loads its only plug-in, which in this case is the ML2

2. When loaded, ML2 requests its type manager (TypeManager) class to read its

configuration file(s) (ml2.ini) and load all supported network types specified

3. For each of the loaded network types, TypeManager creates an instance of driver

(TypeDriver) class to handle that specific type. In doing so, there can be different

types of network running simultaneously

4. Once all the drivers for all network types have been loaded and initialised, a request

is sent to the mechanism manager (MechanismManager) class to load all supported

networking mechanisms specified in the configuration file (ml2.ini)

5. For each of the configured mechanisms, the MechanismManager creates a driver

(MechanismDriver) instance to handle. This enables multiple networking mecha-

nisms for underlying technologies from different vendors (i.e. Open vSwitch, Cisco,

etc.) to run simultaneously

6. After all configurations have been loaded and necessary handling processes are

created, the ML2Plugin sets up and RPC requests to communicate with the agents

for according host configuration

2.3.2.3 Message queue

Similar to other OpenStack modules, Neutron uses RabbitMQ as a messaging broker for

communication between its internal components by exchanging Remote Procedure Call

(RPC) over RabbitMQ message queueing mechanism. Figure 2.6 illustrates the commu-

nication between Neutron components including neutron-server, the OVS agent and

the OVS (already exemplified in section 2.2.3.2).
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Figure 2.6: Neutron-server communication with OVS agents using RPC

2.3.2.4 L2 Agent

L2 agents run on hypervisors (Compute nodes) and communicate with Neutron server

using RPC. An L2 agent is responsible for monitoring its hosting hypervisor and inform-

ing the neutron-server of events occurring with the new or removed devices

In OpenStack, L2 connectivity can be provided using various mechanism drivers. L2

agents need to be present in all compute/network nodes to make sure that L3 services

are reachable by tenant VMs and subnets.

Open vSwitch Agent

As discussed above, Neutron requires plug-in agents (neutron-openvswitch-agent in

this case) to be present in all hypervisor and networking nodes to provide local Open-

vSwitch configuration.

An OVS agent receives requests from neutron-server and acts accordingly to configure

OVS. This mainly involves setting up the integration bridge (br-int), to which all inter-

nal network services and tenant VMs are attached. The neutron-openvswitch-agent

particularly relies on an OVS-specific API (ovs lib) to configure OVS and manipulate

flow entries via two utilities ovs-vsctl and ovs-ofctl, respectively. Despite being an

OpenFlow-compatible switch, OVS operates within Neutron networking as a regular L2

switch with both normal and flow modes.
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2.3.2.5 L3 Agent

Figure 2.7 captures an overview on L3 services in collaboration with virtual components

configured by L2 agents. The L3 agent creates different internal ports with prefix tap

for DNS service, qr- for virtual router or prefix qg- for gateway to the External (public)

network.

Figure 2.7: OpenStack Neutron L3 Agents [1]

As its name suggests, the Neutron L3 agent (neutron-l3-agent) configures its hosting

node with different Layer-3 networking services including routing, NAT, and Floating IP.

Traditionally, such L3 services run on Network node and rely on the L2 agent to provide

layer-2 connectivity to VM instances running on Compute nodes. Neutron L3 agents use

the Linux IP stack and iptables[18] to perform L3 forwarding and NAT. In order to

support multiple routers with potentially overlapping IP addresses, neutron-l3-agent

defaults to using Linux network namespaces to provide isolated forwarding contexts.

Routing

Similar to conventional networking, routing is required if packets are sent from one

subnet to another, including traffic between VMs belonging to different subnets, or

between VMs and hosts reachable via the External network. Assume that there are

multiple tenant networks and one shared external network and each of the former is

connected to the latter via a Neutron-based virtual router. Such a router will be:
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• Connected to the internal (tenant) network via “qg-“ (gateway) interface on br-ex

• Connected to the external network via port via “qr-“ (router) interface on br-int

integration bridge

• Having a namespace (“qrouter-“ prefix) associated with router name to avoid IP

conflicting between networks

Section 2.3.5 will discuss Neutron routing in more detail, with particular attention given

to the distributed virtual routing capability.

NAT

The neutron-l3-agent implements its router’s NAT, or Network Address Translation,

functionality using Linux kernel iptables, enabling packets from internal (tenant) net-

works to reach external network before going out to the Internet. Similar to routing,

NAT rules of a router need to be executed under a specific router’s namespace to isolate

them from host’s network and other tenants’ networks.

Floating IP

Virtual router provides Floating IP by NAT and iptables. This L3 service allocates and

associates IP addresses from external network to internal tenant VMs to make them

directly reachable from external network. The neutron-l3-agent implements Floating IP

association also by using iptables to perform NAT as described above.

2.3.2.6 DHCP Agent

Neutron relies on its DHCP Agent, neutron-dhcp-agent, located in the Network node

to provide Dynamic Host Configuration Protocol (DHCP) services to tenant networks,

thus allocating IP addresses to VMs. In particular, dnsmasq [19] is used as back-end

service for this purpose. For each subnet created, there is a running dnsmasq daemon

attached to the int-br via port with “tap-” prefix under a DHCP namespace.

2.3.2.7 Virtual bridges

A basic architecture of OpenStack Network requires the setup of the following virtual

bridges:
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• br-int : The Integration bridge connects VMs and other virtual devices/services

(DHCP, Routing, etc.) with host machines

• br-ex : The External bridge acts as a gateway, mapping traffic between internal

tenant VNs and the External physical network. br-ex is connected to virtual

routers via ports with qg- prefix

• br-tun: The Tunnelling bridge (de-)encapsulates traffic sent (received) by VMs via

the Tunnel network

2.3.3 Network Architecture

There are three types of network in a standard OpenStack configuration: Management,

Tunnel (or Tenant) and External networks.

• Management : Is used for administrative communications and OpenStack inter-

nal operations such as authentication, access to internal databases (on Controller

node), configurations, and so on. When the cluster is being set up, all configura-

tions that require multi-node connectivity use the Management network.

• Tunnel/Tenant : Is reserved for communications of tenant networks, specifically

traffic data exchanged between VM instances. This is where the network overlay

standard like VXLAN is applied, to essentially isolate tenant’s virtual networks

and create a multi-tenancy network environment (i.e. multiple users can have

their network run on a shared physical network). As such packets sent through

this network is encapsulated. This is also referred to as private network.

• External : Is essentially the gateway that allows traffic from VM instances to

reach physical networks; As such, VM traffic must go through the node or nodes

that have routing capability. This is also referred to as public network.

2.3.4 Neutron Network Traffic Types

With regard to the flow pattern of network traffic in Neutron networking, there are 4

different types: intra-subnet, inter-subnet, SNAT and DNAT.
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• Intra-subnet : Intra-subnet type refers to traffic between VM instances belonging

to the same subnet of a tenant network. As each subnet is an L2 network segment

configured by OVS, traffic within subnet does not need any routing mechanism.

It is instead handled by OVS and forwarded with the MAC learning capability.

• Inter-subnet : Inter-subnet type refers to traffic between VM instances belonging

to different networks/subnets of the same tenant given that all subnets are con-

nected to the same router. In this case, routing mechanism is required, thus traffic

need to pass through the Network node if DVR is not enabled.

• SNAT : SNAT, or Source Network Address Translation, type refers to traffic orig-

inating from VMs, reaching external network via a centralised router. This traffic

type requires sent packets to go through Network node where the virtual router in

SNAT mode is placed.

• DNAT : DNAT, or Destination Network Address Transation, type, refers to traffic

originating from VMs and reaching external network via a distributed router. This

routing mechanism allows packets to be sent directly from the Compute node to

the outside world with a dedicated floating IP associated to each VM. This traffic

type is only available if DVR is enabled (since OpenStack Juno release).

Table 2.1 summarises different scenarios when traffic between VMs needs to pass through

the Network node.

DVR router Legacy router
Intra-subnet No No
Inter-subnet No Yes

DNAT No Yes
SNAT Yes Yes

Table 2.1: Scenarios under which VM traffic needs to pass through Network node

2.3.5 Traffic Flow In Neutron Networking

In a Neutron-based architecture, packets sent by VMs need to adhere the routing rules

configured by Neutron agents and virtual devices. Traffic routing in OpenStack is im-

plemented with two different of network architecture: legacy router and distributed

router.
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2.3.5.1 Neutron network with legacy routing

The architecture with legacy router places the Network node at its centre: All packet

flows, as long as routing is required (i.e. inter-subnet, SNAT, DNAT traffic types), need

to go through the Network node where there are specific Neutron agents handling routing

and other Layer-3 services. This architecture potentially turns the Network node into

a single-point-of-failure: Should Network node become unreachable, routing service will

be unavailable for all VMs. Additionally, the fact that VM traffic always needs to visit

Network node for routing information worsens the network performance.

Figure 2.8: OpenStack Network with centralised (legacy) router

As can been seen in Figure 2.8, an L3 agent is installed on the Network node and

configures a router. This virtual router is responsible for forwarding packets coming

from and to the tenant networks with which the router is interfaced. L2 agents are

present on the Network node and all Compute nodes where OVS daemons are running.

If the two VMs are in the same subnet then it is the job of L2 agent and OVS to handle

the packet exchange between two VMs. Traffic leaving one VM simply enters the tunnel

bridge of the sending host machine and arrives at the tunnel bridge of the receiving host

before being delivered to the other VM. No routing is required here.

On the other hand, if the two VMs are from different subnets that are reachable to each

other via a virtual router, traffic sent by a VM has to go through the router in order

to arrive at the other VM. As packets leave the sending VM, they enter br-int and,
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since receiving VM is not in the same Compute node, are passed to br-tun and start

their journey in the tunnel network. Those packets are destined to the virtual router

located inside the Network node before being forwarded either to the External network

via br-ex, or to the br-tun bridge of the Compute node where the receiving VM reside.

2.3.5.2 Network with distributed routing

As one of the key features in OpenStack Juno release, DVR, or Distributed Virtual

Routing, redesigns the network architecture by placing routers into Compute nodes in

addition to the Network node. As such, the burden of routing is shared among all

participating Compute and Network nodes, which helps not only to avoid a single point

of failure as in legacy (centralised) architecture, but also to significantly improve network

performance and scalability.

Figure 2.9: OpenStack Network with DVR router

What DVR brings to Neutron Networking, from an implementation-wise point of view,

is that each Compute node has its own neutron-l3-agent running. This enables a

Compute node to handle routing requests locally instead of offloading traffic over the

central Network node as with legacy router.

In distributed mode, a virtual router makes its appearance in all participating Com-

pute/Network nodes: every node has the same router identity and same interfaces as

well as MAC address. Now that a virtual router is present in Compute nodes, it can
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route traffic originating from local VM instances to either Tenant network (via the Tun-

nelling bridge br-tun) or External one (via the External bridge br-ex). It is of crucial

importance that br-ex needs to be properly configured in Compute node for DVR to

be operable.

2.4 Open vSwitch

Open vSwitch (OVS)[20] is a production-quality open-source implementation of a dis-

tributed virtual multi-layer switch. OVS relies on virtual network bridges and flow rules

to forward packets between hosts.

OVS has three main components including the server module (ovsdb-server), the

main daemon (ovs-vswitchd) and a kernel module. OVS provides high-level inter-

faces including, among the others, ovs-vsctl and ovs-vsctl that allow OpenStack to

configure and use it as the underlying L2 switch. Specifically, Neutron’s OVS agents

(neutron-ovs-agent) store switch-level configurations into the OVS server module.

The ovs-vswitchd daemon will read these configurations and set up virtual networks

accordingly.

The kernel module of OVS, also known as ”fast-path”, plays an important role in packet

forwarding. While the forwarding decisions are mostly made by the OVS daemon, it

is the kernel modules that handle the majority of the traffic. When OVS experiences

a new traffic flow, the first packet of the flow, considered a cache miss, is handled in

user space by the OVS daemon. Subsequent packets of the flow are forwarded by kernel

module for better performance. As user-space processing is much slower than kernel-

space processing, we would normally experience some delay with the first few packets.

The network performance evaluation is carried out with this in mind.

2.5 Network Tunnelling With VXLAN

OpenStack Neutron effectively creates and manages a multi-tenancy environment in

which many cloud users share the same physical network infrastructure but their indi-

vidual VNs and VMs data remain isolated from each other. There are different stan-

dards that facilitates virtual networks and tenant isolation, among which VLAN, GRE,
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VXLAN are the examples. Throughout this study, the VXLAN protocol (RFC7348) [21]

is chosen to be deployed in the tunnel network. This section gives a brief introduction

on VXLAN and how it is integrated into Neutron infrastructure.

2.5.1 VXLAN Overview

Traditionally, data centres use VLANs to facilitate virtual networks, essentially isolating

layer-2 traffic from physical network. As data centres may scale, the number of virtual

networks increases, and the limit of 4096 VLANs (with some reserved ones) becomes

insufficient. Virtual eXtensible Local Area Network, or VXLAN, is a network overlay

technology that encapsulates MAC frame at layer 2 into a UDP header. In general,

VXLAN allows users to create logical networks for VMs across different networks via

packet encapsulation. In other words, it is able to create layer-2 network on top of a

lay-3 connection.

Within a host machine, packets sent by VMs are tagged with the local VLAN ID. These

tags are stripped off as traffic heads out of that host machine, when it is encapsulated

with VXLAN header. Traffic between VM instances is sent through VXLAN-based

tunnels set up between participating Compute/Network nodes. For different tenant net-

works, OpenvSwitch implements different tunnel ID header field in the VXLAN header.

Figure 2.10: VXLAN packet header

Figure 2.10 illustrates the header of a VXLAN packet: The original Ethernet frame

is encapsulated a VXLAN ID (recognised as VNI), UDP header and other fields to

become a VXLAN-encapsulated frame. When this frame arrives at the receiving host

machine, it needs to go up the network stack for the first time to extract the original

frame. This original frame is then fed to the network stack for the second time in

order to be delivered to the its intended recipient (inner MAC DA). According to [22],
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a software implementation of this packet processing may result in an overhead of 30%

CPU resources.

According to VXLAN protocol design, different from other types of overlay network like

VPN, the VXLAN-based tunnelling does not provide any encryption mechanism, causing

the tunnelled traffic to be exposed insecurely while travelling through the network.

2.5.2 VXLAN Tunnel End Point (VTEP)

With the introduction on VXLAN protocol, the RFC7348 also defines a new entity

named VXLAN Tunnel End Point (VTEP), which connects an access switch to the IP

network. A VTEP is located in a hypervisor where guest machines (VMs) are hosted,

such that it will be able to encapsulate packets sent out by VMs within IP header and

deliver them across the IP network. This encapsulation is transparent to the VMs.

2.5.3 VXLAN Tunnel In OpenStack

OpenStack establishes a full mesh of VXLAN tunnels between the all nodes running

OVS agent (neutron-openvswitch-agent), namely, the Network node and Compute

nodes. Systematically, every time an OVS agent starts up (i.e. a Compute node has

finished its installation), it uses the AMQP-based message queue to notify the Neutron

server about its presence. The controller then informs all pre-existing Compute and

Network nodes of the new node, causing new VXLAN tunnels to be formed between the

former and the latter. As a host-to-host tunnel might be shared among several tenant

networks, a tunnel ID header field in the VXLAN header is used to distinguish packets

belonging to different tenant networks.

A VTEP is responsible for encapsulation and de-encapsulation of VXLAN-based packets

before they enter and after they leave the tunnel, respectively. In the studied OpenStack

environment, VTEP is implemented as the OVS’s tunnelling bridge (br-tun). This im-

plementation, known as soft VTEP, utilises OVS kernel module’s tunnelling capability.
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Methodology

Since this thesis puts its focus into the network performance analysis of OpenStack,

a fully functional OpenStack software first needs to be deployed. To experience its

deployment and operation in different environments, OpenStack is going to be installed

on both an Amazon EC2 test-bed and a local server test-bed. Installation scripts are

adapted in accordance with configuration details provided by each environment so as

the deployment process can be automated. As discussed above, the 10th OpenStack

release - Juno - is selected for the experimental deployment and evaluation.

3.1 Network Performance Measurements And Evaluations

3.1.1 Overview

This section discusses how experiments are carried out in the constructed OpenStack

test-beds under different scenarios. In general, there are numerous tests conducted

to measure bi-directional traffic, in terms of network throughput and latency, between

provisioned VM instances. These cover all different scenarios discussed in Section 3.2.

Tests are automated to run with various bash scripts designed for different experiment

types and scenarios. Their results are stored into plain-text file for further processing

(filtering, graph generating and so on). The final graphs are generated based on tests

that are conducted over 10 days, calculated as average value. Result of each day is

derived from the median value of 3 rounds measurement.
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In order to perform planned performance evaluation, all evaluated networks are con-

figured with security policies that allows ssh traffic (default to port 22) for connection

to VMs. The rules also need to allow ICMP packets and traffic targeting port 5001, to

which iperf in server mode listens. Tools used for system, network monitoring and

traffic evaluation include:

• ping: Used to exchange ICMP packets between two designated VMs

• iperf[23]: Used to generate data exchanged between two designated VMs

• perf[24]: Used to perform system profiling

• top, atop, atopsar: Used to track system usage and provide activity report

• tcpdump[25], wireshark[26]: Used to monitor and capture network traffic for fur-

ther analysis

3.1.2 Throughput Evaluation

To evaluate traffic throughput, iperf is used as the data generation tool. Each VM

instance in a pair is configured to in turn run iperf in server and client mode, respec-

tively, so it can receive/send data to/from its peer. iperf in server mode listens for TCP

connection on port 5001, awaiting for client request. In client mode, the configured VM

continuously sends data to the VM running iperf in server mode. To better observe

variability, the iperf client outputs throughput value every 1 second.

To mitigate the impact of initial packet transfer delay (due to OVS’s flow entry missing),

we run iperf in 60 seconds and discard results from the first 10 seconds. Thus, the result

is generated by observing throughput values within 50 seconds.

3.1.3 Latency Evaluation

The latency measurement is conducted using the ping tool. Similar to the throughput

test, each VM in a pair in turn pings the other VM in 60 seconds. To achieve better

consistency of the overall measurement, we strip out 10 first pings and only consider the

remaining 50 ones. The latency measurement simply considers the packet delay time

between two VMs within these 50 ICMP packets.
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3.1.4 CPU Statistic And Profiling

By running some system monitoring tools like top or atop, we can easily observe system

processes associated to OpenStack operations and their resource consumption. In order

to understand better what happens with the underlying infrastructure, we will be doing

system profiling with the perf tool. Being part of the Linux kernel that runs underlying

operating system, perf is able to provide us with accurate event counting with respect

to the function level.

In order to collect detailed CPU statistic of the taken measurements, we run perf in

recording mode in 60 seconds, with focus on the ’cpu-cycles’ event. The command is as

followed:

/usr/bin/perf record -e cpu-cycles -c 100000 -ag -- sleep 60

In order to view the report of collected statistic, following command is used:

/usr/bin/perf report -n --sort comm --stdi

This allows us to see threads/processes with their CPU consumption details and to trace

them down to the invoked functions.

3.2 Experimental Scenarios Based On Traffic Flow

Designated experiments consider various types of traffic with regards to the placement

of VMs on Compute host, the (virtual) network they belong to and the (virtual) router

they are connected to. Throughout the study, the following terms are used to refer to

different types of evaluated network traffic:

• Intra-node refers to the traffic exchanged between two VMs that reside in the same

Compute host

• Inter-node refers to the traffic exchanged between two VMs that reside in different

Compute host
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• Intra-subnet refers to the traffic exchanged between two VMs that belong to the

same (virtual) subnet

• Inter-subnet refers to the traffic exchanged between two VMs that belong to dif-

ferent (virtual) subnet, of either the same or different tenant.

• DVR-based refers to traffic in a network based on distributed virtual router

• Non-DVR/legacy/centralised router refers to traffic in a virtual network that op-

erate with conventional centralised (virtual) router

In order to accurately specify the flow of VM traffic, we need to track how packets

are sent and received by different ports and bridges within physical hosts. On one

hand, a VM of the observed pair is set to continuously ping its peer. On the other

hand, we observe the traffic flowing through all available network interfaces (displayed

using netstat -i command) and decide those participating in sending and/or receiving

packets. After that tcpdump is run to capture the transferred packets so that the packet

headers and patterns can be learnt.

tcpdump -i <interface> -n icmp -e -v

Based on the analysis of monitored traffic, this section specifies various experimental

scenarios based on the observed traffic flow patterns. Two architecture options are

considered according to the implementation of Neutron-based virtual routing feature:

Legacy router and distributed router.

3.2.1 Network Architecture With Legacy Router

3.2.1.1 Intra-node Intra-subnet

This scenario examines the traffic passing between two VMs (denoted A1 and A3) resid-

ing in the same Compute node and belonging to the same subnet. Under this scenario,

traffic simply goes from one VM to the other VM through Compute node’s internal

br-int. As such, exchanged traffic remains inside the Compute host and no tunnelling

is required.

Let HNR denote the VM pair exchanging this traffic category (Figure 3.1).
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Figure 3.1: Intra-node Intra-subnet VM traffic flow (HNR)

3.2.1.2 Intra-node Inter-subnet

This scenario examines the traffic passing between two VMs (denoted A1 and B1) resid-

ing in the same Compute node but belonging to different networks. Under this scenario,

as the two VMs reside in different subnets, traffic from A1 is firstly sent to a virtual

router (denoted R) located in Network node. R then forwards this traffic to B1’s subnet

before sending it back to the same Compute node where it is received by B1. This

scenario requires VXLAN-based tunnelled connection between Compute Node and Net-

work node. As A1 and B1 belong to two different tenant networks, there would be two

packet flows, each with a unique VXLAN ID.

Let H-NR denote the VM pair exchanging this traffic category (Figure 3.2).

Figure 3.2: Intra-node Inter-subnet VM traffic flow (H-NR)
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3.2.1.3 Inter-node Intra-subnet

This scenario examines the traffic passing between two VMs (denoted A1 and A2) resid-

ing in different Compute nodes and belonging to the same subnet. Packets leave A1, get

transferred via br-int, then br-tun and packaged with VXLAN encapsulation before

entering the tunnel network. After being received and de-encapsulated by br-tun on

node Compute-02, packets are forwarded to br-int before being arriving at VM A2.

No routing is required here.

Let -HNR denote the VM pair exchanging this traffic category (Figure 3.3).

Figure 3.3: Inter-node intra-subnet VM traffic flow (-HNR)

3.2.1.4 Inter-node Inter-subnet

This scenario examines the traffic passing between two VMs residing in different Com-

pute nodes and belonging to different networks. Under this scenario, traffic from one

VM is passed to the virtual router located on Network node which then forwards it to

the other VM located on another Compute node.

Let -H-NR denote the VM pair exchanging this traffic category (Figure 3.4).

3.2.2 Network with DVR router

DVR router equips each configured Compute node with routing capability, thus allowing

VM traffic to be passed directly between different virtual networks without the need to
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Figure 3.4: Inter-node inter-subnet VM traffic flow (-H-NR)

flow through Network node. With the DVR enabled, while the flow patterns for intra-

subnet traffic (HNR, -HNR) remain the same, the two inter-subnet traffic scenarios, H-NR

and -H-NR, experience some changes and are accordingly re-illustrated in 3.2.2.1 and

3.2.2.2, respectively.

3.2.2.1 Intra-node Inter-subnet (with DVR router)

With the presence of a router, traffic between VMs is simply forwarded by the router

and remains inside the Compute host. As such there is no impact from the VXLAN

encapsulation.

Figure 3.5: Inter-node inter-subnet VM traffic flow (with DVR router)
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3.2.2.2 Inter-node Inter-subnet (with DVR router)

As in Figure 3.6, traffic between VMs are sent directly from one Compute node to the

other one, with each virtual router being responsible for its own local subnet.

Figure 3.6: Inter-node inter-subnet VM traffic flow (with DVR router)
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Experimental Setup

4.1 Overview

Within the scope of this thesis project, an OpenStack cluster is deployed and consists

of 4 nodes: 1 Controller, 1 Network and 2 Compute nodes. Each node runs specific

software packages in order to perform its designated role, as illustrated in Figure 4.1.

Figure 4.1 also depicts a simplified architecture of the cluster where there are four nodes,

namely 1 Controller, 1 Network and 2 Compute nodes, connected through their three

network interfaces, forming three distinct networks: Management, Tunnel (Tenant) and

External networks. Each node comes up with certain software packages in order to

perform expected functionalities.

Figure 4.1: Basic component of OpenStack

The installation of OpenStack is carried out in three different platforms: Local virtual

environment using VirtualBox, remote virtual environment in Amazon’s AWS platform

and the local Test-bed located in server room of our department.

35
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4.2 Single-host Installation

OpenStack is installed on a personal computer running Mac OSX operating system and

VirtualBox is used to create Virtual Machine as guest OS. The installation is based on the

Devstack[27] script in its all-in-one mode. This single-host installation brings an initial

hands-on experience with OpenStack functionalities while simplifying the installation

process and remaining suitable for a computer with limited hardware resources. Under

all-in-one mode of Devstack, basic OpenStack modules and services (Identity, Nova,

Neutron, Compute, Dashboard) are installed and run on the same host machine.

While Devstack effectively provides an instant and effortless way of experiencing Open-

Stack, it does not fully expose the installation process and is less customisable. This

unfortunately makes it harder to understand the system, as well as to debug its compo-

nents should any problems occur during either installation or operation stage. Moreover,

DevStack is considered more suitable for starters rather than an ideal solution for a full-

featured OpenStack cluster.

4.3 Amazon AWS Testbed

To overcome the limitations discussed in section 4.2, a multi-node setup of OpenStack

is approached, essentially involving deployment of required software components into

different nodes within a cluster (consisting ideally of 4 servers). As a personal com-

puter does not provide sufficient resources, while the local cluster test-bed (of 4 physical

servers) is yet to be ready, Amazon Web Service (AWS)[28] Elastic Cloud Computing

(EC2) platform is utilised to facilitate this multi-node OpenStack installation. Table 4.1

depicts the configurations to initialise EC2 instances in AWS.

Cloud image type ami-3d50120d/Ubuntu 14.04

Instance type T2.Medium

Availability region / zone us-west-2 / us-west-2a

Private IP addresses Controller: 172.31.28.200
Network: 172.31.28.201
Compute-01: 172.31.28.202
Compute-02: 172.31.28.203

Table 4.1: AWS Configuration
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Since AWS does not support associating IP addresses with EC2 instances’ virtual bridges,

OpenStack cluster on AWS is installed with basic configuration using a single eth0 in-

terface for both Management and Tunnel networks. This interface has a throughput of

approximately 1 Gbps (as measured with iperf). Experiment with External network

is not covered in AWS test-bed. Network architecture of AWS test-bed is depicted in

Figure 4.2. The deployment of OpenStack on AWS necessitates four t2.medium[29] EC2

instances corresponding two four OpenStack nodes: Controller, Compute (x2) and Net-

work. The t2.medium instances are considered sufficient in providing computing and

network resources required by the experiments. For software part, the OpenStack Juno

release is used in the experiment as being a stable version in the market.

Figure 4.2: Amazon AWS Network architecture

The experimental cluster consists of 3 virtual networks A, B and C, among which A and

B are connected to Virtual Router 1 (R1) while C is connected to Virtual Router 2 (R2).

7 VMs are created such that for every virtual network, there is at least 1 VM located

on each of the two Compute nodes 01 and 02. Figure 4.2 illustrates the distribution of

VMs into virtual networks and compute nodes.

To avoid potential hassles from manual installation, a bash script, derived and adapted

from the OpenStack Cookbook[30], is used to facilitate the setting up of the OpenStack

cluster. Furthermore, we decided to use Vagrant[31] as an automation tool for building

complete development environments. The AWS API [32] adds an AWS provider, al-

lowing Vagrant to synchronise all local installation and configuration files to the newly

instantiated EC instances and execute them at boot time. In so doing,we can automate

the installation process that takes place remotely between the client computer and the

EC2 instances hosted on Amazon cloud. As AWS API provided for Vagrant is relatively

limited, the installation process is not fully automated: Additional network interfaces
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can only be manually attached into VMs after they have been instantiated. This short-

coming causes any configuration related to the second (Tunnel) and third (External)

network interfaces unavailable at the time of installation. Alternatively, Amazon pro-

vides a python API, boto[33], that supports better remote instantiation of EC2 instances

including configuring additional network interfaces.

4.4 Local Cluster Test-bed

Compared to the AWS platform, an OpenStack testbed consisting of multiple physical

servers provides more privileged control over the hardware resources and operating sys-

tem, thus makes it more accessible to the setup of the cluster. With this deployment,

Juno release is selected due to its better stability and extended features, including partic-

ularly Distributed Virtual Routing (DVR), compared to its predecessors. The installa-

tion script is upgraded and adapted to match with Juno and new test-bed environment.

Figure 4.3 depicts the architecture of the OpenStack cluster deployed on the local Test-

bed, consisting of 4 servers connecting to each other via 3 network interfaces with dif-

ferent bandwidth capacities.

Figure 4.3: Test-bed Network architecture

Table 4.2 summarises general server configurations used to deploy the Test-bed.

A standard OpenStack deployment requires 3 distinct network interfaces. In terms of

underlying infrastructure, the test-bed has its Management network run on a dedicated
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CPU 16x physical cores with HyperThreading enabled

Memory 128 GBs

Hard disk 1 TB

Image Ubuntu Cloud 14.04

Network interfaces em1 (10 Gbps), em3 (1 Gbps), em4 (1 Gbps)

Network OpenFlow switch controlled by Ryu

Table 4.2: Test-bed server configurations

physical switch with 10 Gbps interface while the Tunnel (Tenant) and External network

interfaces run on OpenFlow [34] switch controlled by Ryu [35].

As illustrated in Figure 4.3, VNs and VMs are created and distributed in a way similar to

two the AWS cluster setup discussed in section 4.3. Each VM is configured as specified

in Table 4.3.

Memory 512 MB

Hard disk 2.2 GB

Image Ubuntu Cloud 14.04

Hypervisor KVM (QEMU with KVM acceleration)

Network Neutron + OpenvSwitch + VXLAN Tunnel

Network Public/private key

Table 4.3: Local testbed VM Configuration

The deployment of OpenStack cluster on the local test-bed requires extra caution. As

a matter of fact, the test-bed is part of our faculty’s infrastructure, and is thus less

capable of tolerating faulty operations than virtual servers (i.e. if anything goes wrong

they cannot be instantly cleaned out like with a VM). With that in mind, although the

installation script has been well tested on virtual environment, the cluster is deployed

with separate bash commands rather than by a straightforward run of the whole script

files.

4.5 Other Configurations

The section discusses certain important configurations made before the installation is

finalised to make sure that OpenStack can be smoothly integrated into the host machine

environments.
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4.5.1 KVM And VHostNet

Both KVM and VHost-Net are Linux kernel modules that, when enabled, can signifi-

cantly boost up the performance of guest machines in a host environment. Figure 4.4

illustrates how KVM and VHostNet modules interact, as well as how the latter acts as

a userspace interface for QEMU-based guests.

As the QEMU-based guest machines’ access to memory is very expensive due to context

switches between kernel space and user space. The VHostNet module runs in kernel as

a kernel thread and interrupts the guest with much less overhead. As such it provides

near native performance.

Figure 4.4: KVM and VHostNet

Since KVM and VHostNet are not enabled by default when OpenStack is installed,

this section discusses some configurations that can help VMs benefit from those two

modules. To explicitly enable KVM for OpenStack Nova, following is configured on

Compute nodes:

compute_driver = libvirt.LibvirtDriver

[libvirt]

virt_type = kvm

As the Compute nodes are running Intel processors, their KVM module can be enabled

as follows:

modprobe -a kvm-intel
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VHostNet (vhost-net) is another kernel module that needs to be loaded in order to

improve network performance of VMs. This provides better latency and much greater

throughput for network. In all Compute nodes where VMs will be instantiated, VHost-

Net can be enabled as follows:

modprobe vhost_net

There is a huge different in terms of network performance before and after the vhost-net

module is enabled. A close comparison in Chapter 5 will show us the gap in performance

that the duo bring to OpenStack VMs.

4.5.2 MTU Size

The maximum transmission unit (MTU) of VMs is set at 1450 bytes, taking into consid-

eration the additional 50 bytes of VXLAN header (added by br-tun) when transmitted

via VXLAN tunnels. As such, frames leaving VMs and getting transferred in physical

network will have the standard MTU size of 1500 bytes and thus will not cause any

further frame decomposition, which might worsen the network performance.

4.5.3 Security Group

In order to allow ssh, ICMP and iperf traffic types within OpenStack tenant networks,

these following security rules are added to the system:

nova secgroup-add-rule default tcp 22 22 0.0.0.0/0

nova secgroup-add-rule default icmp -1 -1 0.0.0.0/0

nova secgroup-add-rule default tcp 5001 5001 0.0.0.0/0

4.6 Logical Network Architecture

This section depicts the logical network architecture and the distributions of VMs into

VNs and Compute nodes.

As can be seen in Figure 4.5, there are 3 virtual networks, in which A (11.0.0.0/8) and

B (12.0.0.0/8) are attached to virtual router 1 (R1) while C (13.0.0.0/8) is attached to
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Figure 4.5: Logical network

virtual router 2 (R2). For the conducted experiments, R1 and its attaching VNs (A,

B) and VMs (A1, A2, A3, B1, B2) belong to tenant 1 while R2 and its attaching VN

(C) and VMs (C1, C2) belong to tenant 2. R1 and R2 are connected via the External

network, belonging to the same physical subnet address (10.0.100.0/24) of all servers in

the cluster via em1 interface.

Compute-01 Compute-02
Network A A1, A3 A2
Network B B1 B2
Network C C1 C2

Table 4.4: VM distribution to virtual networks and Compute nodes

Table 4.4 summarises how 7 VMs are distributed among 3 designated VNs and 2 Com-

pute nodes such that different types of traffic can be observed from the experiments. In

general, one VN has two VMs, each of which is scheduled on of the two Compute nodes.

Network A exceptionally has 3 VMs, among which A1 and A3 reside in the same node.

Details of these traffic categories will be discussed in Section 3.2.
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Denotation VM name Private IP Floating IP

A1 VM1 11.0.0.17 10.0.100.111

A2 VM2 11.0.0.18 10.0.100.102

A3 VM3 11.0.0.21 10.0.100.103

B1 VM4 12.0.0.5 10.0.100.104

B2 VM5 12.0.0.6 10.0.100.105

C1 VM6 13.0.0.7 10.0.100.116

C2 VM7 13.0.0.10 10.0.100.117

Table 4.5: VM IP addresses

List of 7 instantiated VMs with their name and public (floating) IP and private (tenant

network) IP addresses are given in Table 4.5.
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Experiment Result

5.1 Amazon AWS

This section briefly presents the results of the experiments conducted on Amazon AWS

test-bed. Since the EC2 instance’s network interfaces only work with their default ports,

additional networks are not available for a dedicated Tunnel and External networks.

Consequently, the results only concern evaluation taken through a Tunnel network which

is shared with the Management network.

5.1.1 Thoroughput Measurement

Figure 5.1: AWS throughput measurement

Figure 5.1 illustrates the results of throughput measurement conducted with different

VM pairs without DVR enabled. The case of HNR, undoubtedly has the highest through-

put, reaching 400 Mbps. Meanwhile, two cases in which VMs are in different Compute

44
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nodes experience the data rate of around 150 Mbps, lowest among the 4 cases. H-NR

implies that two VMs are in the same node but their traffic needs to visit the Network-

ing for routing service. Under this circumstances, the achievable network throughput is

roughly 200 Mbps. In general, the network performance in all cases are relatively poor

(no ore than 200 Mbps throughput in most cases), even if traffic only stays inside the

same host and does not suffer from distance or packet encapsulation overheads.

5.1.2 Latency measurement

Figure 5.2: AWS latency measurement

Figure 5.2 shows the packet delay of the designated VM pairs. As can be seen from the

result, the inter-node inter-subnet traffic type (HNR) is the most stable and achieves the

lowest latency at around 0.75 ms. It is of no surprise that -H-NR might have the highest

packet delay due to the overheads from both packet encapsulation and routing. In two

cases where the VM traffic has to visit the Network node from one Compute node, if

it comes back to Compute node (H-NR), the measured latency is higher than if traffic

is forwarded to the other Comptute node (-HNR). Again, except for the HNR case, all 3

other cases have their packet delay significantly higher than the host-to-host delay (less

than 0.5 ms).

5.1.3 Conclusion

In short, deploying a cloud platform onto an already-a-cloud environment like Amazon

AWS is obviously not efficient. In particular, an EC2 instance is virtualised hardware,

so it does not provide an ideal infrastructure to run a proper hypervisor. Running
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a hardware emulator like QEMU surely results in a poor system performance because

direct access to underlying hardware is not allowed (performance-critical kernel modules

like kvm or vhost-net are not supported).

On the bright side, though, we can experiment how bad it is to run a run a cloud inside

another cloud. More importantly, this deployment on AWS provides a preliminary

experience with OpenStack, in order to study its features, operation, architecture, and

observe its traffic pattern.

5.2 Local Test-bed

The experiment scheme carried out on the local Test-bed is similar to the one on the

Amazon AWS but there are different settings applied. As experiments are to be con-

ducted in dedicated servers and networking environment, it is reasonable to assume that

a more stable network performance could be achieved. Moreover, the full control of the

network infrastructure allows the deployment of a full-featured OpenStack Juno with

Distributed Virtual Routing, the virtue of which allows direct traffic exchange between

Compute nodes that hosts VM instances (instead of indirect traffic exchange via the

Network node when routing is required). As a consequence, Juno on local test-bed is

expected to offer higher throughput and lower latency in tenant’s network traffic com-

pared to the AWS.

Results are presented with regards firstly to the designated network interfaces, namely,

Tenant Network (private address) and External Network (public address). With each

type of interface, we will consider the throughput and latency measurement with and

without the use of DVR router.

5.2.1 Tenant Network

This section presents the result of network performance evaluation when tests are con-

ducted using VM’s private networks. This means traffic flows through the Tenant net-

work that has the theoretical bandwidth of 10 Gbps.
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5.2.1.1 Throughput measurement

Network throughput with legacy router

Figure 5.3 and Figure 5.5 illustrate the data transfer throughput between two VMs via

tenant network when traditional centralised router is used.

Figure 5.3: Network throughput with legacy router (TCP)

In Figure 5.3, it is obvious that VM pair being in both the same physical host and the

same subnet can achieve very high throughput (16 Gbps), much higher than any other 3

pairs whose performance gets stuck at around 2 Gbps. It is understandable that in the

former case (HNR) traffic simply travels inside the same Compute node and is subjected

to a very high data rate (around 25 Gbps). Meanwhile, in all latter cases (H-NR, -HNR

and -H-NR), sent packets need to pass through the Tenant network to reach the recipient

VM, be it in the same or different Compute host.

Network throughput with distributed router

Figure 5.4: Network throughput with distributed router (TCP)
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Figure 5.4 illustrates the network throughput when distributed router is used in Neutron

network. Similar to the case without distributed router, intra-node intra-subnet (HNR)

VMs are able to achieve a very high data transfer rate of more than 25 Gbps. Meanwhile

the data transfer rate of VM pairs that are in different Compute nodes, -HNR and -H-NR,

is limited at approximately 2.5 Gbps or less. VMs residing in the same host but in

different network are able to achive a throughput of 15 Gbps. This implies that there

are certain impacts of network routing even in the same physical node, especially when

a large amount of data is handled.

Figure 5.5: Network throughput with DVR router (UDP)

Figure 5.5 shows the data throughput between VMs if UDP is used. In general, the

receiving rate is proportional, and roughly equivalent, to the sending rate up until the

former reaches 800 Mbps. This means even if the sending VM tries to send UDP at

higher rate than 800 Mbps, the receiving data rate will not be able to cross its limit.

This holds for all participating VM pairs. As this issue is caused by the host machines

that involves data generation capability, further research is not in the scope of this study.

5.2.1.2 Latency measurement

Network latency with legacy router

Figure 5.6 represents the network latency measured in legacy network with non-DVR

router. We can easily observe the difference in how traffic is delayed when VMs are placed

in different physical servers as well as when they belong to different virtual networks. It

is not surprising to see VMs in the same network and same subnet experience the lowest

latency (below 0.4 ms). On the contrary, VMs belonging to neither the same compute
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Figure 5.6: Network latency with legacy router

host, nor the same subnet, endure twice as much of the latency (at 0.8 ms). There is a

subtle difference (about 0.05 ms) in latency if the VMs belong to either same subnet or

same Compute host. In these two cases, H-NR and -HNR, the latter’s latency is roughly

0.6 ms while the former’s latency fluctuates around 0.65 - 0.7 ms.

Network latency with distributed router

Figure 5.7: Network Latency with distributed router

Figure 5.7 depicts network latency measurement when DVR is enabled. From the first

glance, we can see there is a certain performance gap between VM pairs exchanging

intra-node traffic (HNR, H-NR) and pairs exchanging inter-node traffic (-HNR, -H-NR).

Similar to the case with legacy router, inter-node VM pairs tend to have higher (at

roughly 50% or 0.2 ms) latency compared to intra-node VM pairs. As the Compute

node can now perform routing capability itself, whether VMs are in the same network

or not does not cause any significant overhead. Meanwhile, packets travelling between

two Compute host suffer a delay of 0.6 ms.

In both cases, legacy and distributed router, traffic is received without any packet loss.
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5.2.1.3 Performance comparison: DVR versus non-DVR

Figure 5.8 and 5.9 give, respectively, comparative views of the network throughput and

latency with regards to the utilisation of DVR under 4 different discussed scenarios.

Figure 5.8: Comparison: Network throughput with and without DVR

Figure 5.8 shows that while there are no considerable gaps in achievable throughput with

most of the considered scenarios, the H-NR VM pair experience a huge difference brought

in by DVR: 15.36 Gbps vs. 1.54 Gbps. This shows the difference when the traffic is

limited by the Tenant network interface which also runs the VXLAN encapsulation.

As can be seen from Figure 5.9, in most cases the network latency is not significantly

different with and without DVR being used, except when two VMs reside in physical

node but belong to two different networks. This particular scenario witnesses almost

twice as much (0.66 ms and 0.36 ms) in latency that the non-DVR network has compared

to that of DVR-based network.

Figure 5.9: Comparison: Network Latency with and without DVR
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5.2.1.4 Performance comparision: KVM/VHostNet

Figure 5.10 and 5.11 illustrate the difference in network throughput and latency before

and after the KVM, and particularly VHostNet modules are enabled.

Figure 5.10: Comparison: Network throughput with and without VHostNet/KVM

Figure 5.11: Comparison: Network latency with and without VHostNet/KVM

As can be seen from the two figures, without KVM acceleration and vhost-net driver

enabled, all VMs have a very very poor performance. With KVM/VHostNet both

enabled. While the latency is more than twice better, the performance gap that these

two bring to the measured throughput is insanely big. We can simple say that is a

Megabit-vs-Gigabit difference.

5.2.2 External Network

To exchange experimental traffic via External interface, VM instances use their floating

or public IP addresses for the connection. It needs to take into account that, in legacy
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routing mode, the VMs that want to use their public IP addresses for connection have to

send data to the Network node via the Tunnel network (as explained in section 2.3.5.1).

If this is the case then it becomes unnecessary to take the experiment because the data

will not flow through the External network interfaces of Compute nodes. Consequently,

we only consider in this section the experiment with VM pairs running in distributed

routing mode where each of the VMs has its traffic sent directly for its hosting Compute

node (as discussed in section 2.3.5.2). Eventually this enables us to see how much (of

the 1 Gbps) bandwidth of the External network interface is utilised, compared to the

Tunnel/Tenant network.

5.2.2.1 Throughput measurement

Network throughput with distributed router

For the purpose of measuring the External network throughput, we only consider cases

where two VMs are placed in two different Compute nodes, regardless of their virtual

networks or routers. Compared to Tunnel network traffic, the throughput measured via

the External interface (em3) are relatively stable and comparable between 3 types. As

these VMs are connected via a physical bandwidth of 1 Gbps, the achieved throughput

of around 940 Mbps results in a pretty high bandwidth utilisation (94%).

Figure 5.12: Network throughput with distributed router (inter-node traffic)

5.2.2.2 Latency measurement

Similar to throughput measurement, only VM pairs which are in DVR mode and have

their peers in different Compute nodes are required to take part in the evaluation.
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Network latency with distributed router

Figure 5.13: Network latency with distributed router

Figure 5.13 depicts the network latency with distributed router enabled. As can be seen

from the figure, if two VMs are in the same network and same router, it is straightforward

for the packets to be sent from one VM to another. It is thus reasonable to see -HNR

(different hosts, same network, same router) has the lowest delay with the ping. On

the other hand, when VMs fall into different networks and/or get plugged into different

routers then a routing effort is needed. This makes two latter cases (-H-NR and -H-N-R)

have slightly longer packet delay.

5.2.3 Observation

At this point when we have gone through the results of all the conducted experiments,

the following points can be drawn:

• The highest achievable throughput belongs to VMs who are residing in the same

Compute node and same tenant network. A data rate of 25 Gbps is beyond both

the External and Tunnel network interface theoretical bandwidth (1 Gbps and 10

Gbps, respectively). This data rate is only second to the data rate of a VM when

it sends data to itself (51 Gbps).

• The kernel module pair KVM/VHostNet make a huge difference in network per-

formance once they are enabled thanks to the direct kernel access
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• Enabling distributed virtual routing helps to significantly improve network perfor-

mance when traffic routing is required.

• When VMs are to send data via the Tunnel network, the achievable throughput

is between 1.6 Gbps and 2.7 Gbps, which is less than 30% of the theoretical

bandwidth. If we use the External interface, the utilisation percentage is, as

discussed in previous section, 94%. It can be inferred that VXLAN encapsulation

has certain impacts on the network performance of OpenStack.

• It is the physical distance and on which host a VM is placed that highly likely

influences the network performance between VMs
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Further System Analysis

As Neutron heavily influences the network performance of OpenStack, it is worth analysing

its performance and properly understanding what actually happens with the system

CPUs under the hood. This section expands the discussion on the results from previous

chapter, with further analysis based on CPU profiling.

6.1 CPU Usage

Figure 6.1 illustrates a Compute node’s CPU usage measured when the node itself runs

iperf in client and when one guest machine runs iperf in client mode. As an iperf

client, the Compute node continuously generates a large amount of data to send out

and consumes approximately 25% CPU usage. Meanwhile, a VM doing similar things

consumes 170% CPU usage.

Figure 6.1: CPU usage of Compute node for data sending of host and guest machine
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Figure 6.2: CPU usage of Compute node for data receving of host and guest machine

Similarly, Figure 6.2 compares CPU usage of a Compute node between when the node

itself receives data and when a guest machine receives data (as running iperf in server

mode). As presented in the figure, the host spends roughly 70% of CPU usage while

the guest machine’s consumption is almost 5 times higher, at approximately 350% CPU

usage. At this point, it can safely be assumed that it costs significantly more computing

resources to receive data than to send them, especially with VMs.

Given that the host system has 16 physical cores with hyperthreading enabled, making

a total of 32 virtual CPUs (or 3200%, to be quantified as CPU usage) and total CPU

consumption of other irrelevant processes being negligible (less than 5%), it takes full

computing resources of almost 2 CPUs to send data, and of more than 3 CPUs to receive

data.

6.2 CPU Profiling

This section uses the perf tool to analyse the CPU utilisation with regards to the

number of CPU cycles rather than the usage percentage (of total 32 CPUs) as in section

6.1. perf essentially bases its CPU profiling on the counting of events that occurred

when functions are invoked. As such CPU consumption is calculated based on the CPU

cycles one process consumes over the total CPU cycles of the host system as a whole

during the designated network performance evaluation.



Chapter 6. Further System Analysis 57

6.2.1 Receiving Data

CPU statistic for data sending is calculated from 1,000,000 samples of ”cpu-cycles”

event, with an event count of approximately 140,869,100,000.

When the host machine receives the stream of data, it can be observed, from cpu statistic,

that three most resource-intensive threads include ksoftirqd, vhost-xxxxx (with xxxxx

being a particular process ID for the vhostnet module) and qemu-system-x86. While

the qemu-system-x86 (with KVM acceleration enabled) is the hypervisor platform and

already consumes a lot of CPU usage, it is not the most resource-intensive and accounts

for only 3% of total CPU cycles . Instead, it is the ksoftirqd and the vhost-net that

account for 50.59% and 39.79% of the total CPU cycles. These two are the main reasons

behind the surprisingly high CPU usage as discussed in the previous section.

ksoftirqd is a per-CPU kernel thread that runs when the machine is under heavy

software-interrupt load. In OVS-based networking, the process of delivering a VXLAN-

encapsulated packets to recipient guest machines takes several steps, including two times

of injecting the packet into the host’s network stack. As a software interrupt is scheduled

right when a packet is fed into network stack, for each and every received VXLAN-

encapsulated packet there are at least two times software interrupt occurs. In fact,

according to the profiling results, it can be seen that the function run ksoftirqd which

triggers a soft interrupt is called many times, especially when the iptables is consulted

(function ipt do table with 14.28%) or when data is copied into memory (function

memcpy with 5.45%).

The second most resource-hungry thread is created by the kernel module vhost-net,

which can enhance the guest networking performance by moving packets between the

host and the guest environments (i.e. VM and Computer node) using Linux kernel

rather than QEMU. This helps to avoid context switches between user-space and kernel

space, which can improve overall performance including higher throughput and lower

latency. As the VM is in data receiving mode, it is not surprising to see the vhost-net

thread has to spend considerable processing power to handle a terribly large amount

of data. In particular, vhost-net makes call to functions that perform copying re-

ceived data (copy user enhanced fast string with 10.61%) or iptables policy look-up

(ipt do table with 10.32%).
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As the hypervisor platform for OpenStack, the qemu-system-x86 surely gets invoked

every time a VM performs an operation. As the Compute node has Intel processor

with Intel VT-x architecture, it allows the use of Linux kvm.o module as an interface

for QEMU to access CPU to run the virtualised resources. As such, the main job

of qemu-system-x86 is to invoke KVM module functions like vcpu enter guest or

vmx vcpu run.

6.2.2 Sending Data

CPU statistic for data sending is calculated from 755,000 samples of ”cpu-cycles” event,

with an event count of approximately 75,523,300,000.

When a VM is dedicated to data sending, CPU consumption seems less than when it is in

receiving mode (according to section 6.1). From the profiling result, the thread created

by vhost-net module accounts for 75,91% of total CPU cycles consumed. Going down

the calling stack, we would see that kernel-level functions like copy skb header or

copy user enhanced fast string are the hottest points (most commonly invoked).

6.2.3 Discussion

From the previously observed results and profiling details, we come up with the following

points:

• Firstly, as already seen in the experiment results from the Chapter 5, the VMs

network performance measured in cases with (1) VXLAN encapsulation (VM’s

Tunnel network traffic) is far worse than (2) those without encapsulation (VM’s

External network traffic) or (3) those with neither virtualisation nor encapsulation

(host-to-host traffic). Specifically, while (2) and (3) can utilise approximately

95% of the physical bandwidth, that of (1) remains below 30%. As such we can

assume that (VXLAN) encapsulation potentially contributes to the degradation

of network.

• Secondly, as discussed in Section 6.2.1, each time a VXLAN packet arrives at the

Compute host, it needs to be fed into the network stack of the host system two

times. This implies that the processing effort (iptables look-up, memory-copy,
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etc.) is doubled. The Linux’s soft-interrupt is scheduled each time the packet is

about to go up the network stack, which means that host system is under really

heavy load. Having to process a large volume of data sent by iperf, the host CPU

soon gets saturated. Thus, it is the VXLAN processing, especially when receiving

encapsulated packets, that makes host system spend a considerably high amount

of CPU resource.

• Thirdly, besides packet processing, CPU throttling is also contributed by the

vhost-net module that copies a large stream of data from user-space into kernel-

space. This is what mainly happens to a sending VM, but it is clear that without

VXLAN packet processing, it would take much less CPU resource (as seen from

the difference between sending and receiving data of VM, presented in Figure 6.1

and Figure 6.2)

From the 3 above mentioned points, we argue that VXLAN packet processing greatly

contributes to the surprisingly high CPU usage experienced during the network perfor-

mance evaluation. Since a network-related operation is normally single-threaded (we

can actually see that there is only one thread for each of the invoked modules like

vhost-net, or ksoftirqd), once a single CPU is saturated, the network performance

would be undoubtedly throttled. It is also reported in other studies [22] that using

VXLAN would add certain overhead to CPU, especially when the VXLAN Tunnelling

EndPoint is completely software-based implementation.

To sum up, VXLAN could be an an effective solution for Neutron to implement network

virtualisation, owing to its ability to isolate tenant networks within OpenStack envi-

ronment. However this tunnelling standard in fact holds back the network performance

with the burden of packet encapsulation/de-encapsulation suffered by the host system.

Furthermore, the nature of the experiments, generating a stream of data using iperf,

has forced the host system to saturate its processing resource. Without any support

from hardware (e.g. Network Interface Card) to aid the specific-type (e.g. VXLAN)

packet processing, the overheads will heavily influence system’s CPUs. Consequently

the network performance will be degraded.
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Conclusion

The OpenStack project has been on the market for more than 5 years, delivering one

of the most successful open-source software platforms to deploy Cloud Computing. The

software itself has been gradually accommodated with increasing development efforts

from the community to be more stable and to have more features so as to satisfy growing

needs from Cloud providers and users. As OpenStack is a relatively new and still growing

cloud computing solution, it is of utmost importance to learn and evaluate its core

technologies and performance so that a correct understanding over the platform can be

achieved before we reach further improvement and/or deployment at a larger scale.

This thesis work aims at providing a big picture of OpenStack in general and placing its

focus on the networking module - Neutron - in particular. This study comes up with,

beyond a high-level understanding of the software architecture, a detailed deployment

strategy along with a properly planned experimental and evaluative methodology in or-

der to give an insightful observation on OpenStack operation. We are able to present

the traffic patterns and the correspondingly measured network performance (in terms of

throughput and latency) under the Neutron-based architecture. According to the exper-

iment results, while packet encapsulation guarantees network isolation in the OpenStack

Cloud environment, its bandwidth utilisation is limited to below 30% of the underlying

physical channel. Further system analysis based on CPU profiling indicates that the

use of VXLAN encapsulation potentially causes CPUs to throttle and thus degrade the

network performance.
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7.1 Future Work

As a growing open-source platform, OpenStack leaves rooms for a plenty of improve-

ments, be they feature-wise or performance-wise. Although the lists of development

issues are maintained by the OpenStack community itself, we recognise from this study

that certain potential enhancements could be made to aid OpenStack generally and

Neutron particularly function better.

One of the performance issues observed from the study rises from the fact that VMs

belonging to the same tenant network are placed in different physical hosts. Current

OpenStack schedulers (which is out of this thesis’s scope) mostly consider the balance of

hardware resources (CPU, memory, disk space) when selecting which Compute node to

initialise a new VM. A potential network-aware scheduler would take into account the

physical distance and connection such that VMs provisioned to the same Cloud tenant

(thus belong normally to the same virtual network) can benefit from the intra-host

traffic.

Besides, reducing the overheads of encapsulation is another issue worth considering.

Current OpenStack relies on network overlay standards like VXLAN, which consumes

significant processing power and thus reduces system performance as discussed in section

6. Offloading such encapsulated packet processing effort to a hardware-assisted module

would help a great deal.

7.2 A Final Thought

OpenStack is on its way to potentially be a leading open-source Cloud platform. From

the technological point of view, the value of OpenStack does not lie in any new technolo-

gies that it brings, just as the Cloud Computing paradigm itself. Instead, OpenStack

is able to gather a variety of existing standards and technologies into a single software

system that ease the headaches of Cloud service providers in deployment and manage-

ment of a full-featured Cloud Computing cluster or data centre. This thesis provides

the author with an opportunity to learn about a variety of technologies and standards

prior to the understanding of OpenStack’s philosophy itself.
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As a collection of various technologies collaborating to create a Cloud platform alto-

gether, OpenStack has made itself is a very complex system. Over time, it has been

learnt that OpenStack is susceptible to various sources of performance problems that

are hard to diagnose. From the measurements, we have experienced that performance

is heavily affected by many different factors and that, while our study contributes to

explore performance in some conditions, the study is not exhaustive and applies to the

configuration that we used. Repeating the experiments after the servers had experienced

some software and configuration changes showed performance variations. However, the

methodology is a general contribution and a similar analysis of performance in different

settings can then be repeated.
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