
Université Catholique de Louvain

École Polytechnique de Louvain

Multipath TCP

with real

Smartphone applications

Advisor : Pr. Olivier Bonaventure
Readers: Patrick Delcoigne

Benjamin Hesmans
Pr. Ramin Sadre

Authors:
Matthieu Baerts

Quentin De Coninck

Thesis submitted for the Master’s degrees in Computer Science and Computer Engineering

Academic Year 2014-2015 — June session

There are many people we would like to thank.

Our advisor of course, Professor Bonaventure, for his patience, availability and great help to
push us moving forward.

Benjamin Hesmans, Viet-Hoang Tran, Fabien Duchêne and Gregory Detal for their kind
support all along this year.

Gregory Detal and Sébastien Barré for their huge work in backporting latest version of
Multipath TCP for the Nexus 5.

Proximus, and in particular Patrick Delcoigne and his team, for the Nexus 5 devices and the
cellular network to perform our measurements.

We also would like to thanks our families and friends for their precious support and advices.

Also, special thanks to our friends at Clinch team, to keep continuously an excellent mood
in Parnas room.

Contents

1 Introduction 1

2 Multipath TCP 3
2.1 Overview . 3
2.2 Control plane . 5

2.2.1 Initial handshake . 5
2.2.2 Handshake of the additional subflows 6
2.2.3 Removing a subflow . 7
2.2.4 Backup subflows . 7
2.2.5 Path manager . 7

2.3 Data plane . 8
2.3.1 A second sequence number space . 8
2.3.2 Congestion control . 9

3 Measurement infrastructure 11
3.1 High level view . 11
3.2 Infrastructure . 12

3.2.1 Smartphones . 12
3.2.2 Server . 13
3.2.3 Routers . 13

3.3 Android’s Multipath TCP kernel . 13
3.4 SOCKS proxy-like with ShadowSocks . 15

3.4.1 How SOCKS works . 15
3.4.2 Characteristics of ShadowSocks’s traffic 16
3.4.3 How all traffic is redirected to the proxy 16

3.5 Developed tools . 18
3.5.1 Analysis scripts . 18
3.5.2 An Android application to control Multipath TCP 22

4 Automated measurements 25
4.1 Automated test framework . 26

4.1.1 Android’s UI tests . 27
4.1.2 Controlling execution of UI tests . 27

4.2 Methodology . 28
4.3 Application studied . 28

4.3.1 Upload intensive scenarios . 29

iii

CONTENTS

4.3.2 Download intensive scenarios . 29
4.4 About loopback interface . 30
4.5 Multipath TCP on smartphone . 30
4.6 Single-path measurements . 31

4.6.1 Behaviour of TCP connections with WiFi 31
4.6.2 Characterisation of interfaces . 33

4.7 Multiple-paths measurements . 34
4.7.1 Distribution of traffic on both interfaces 34
4.7.2 Multipath TCP’s behaviour with shaped networks 37
4.7.3 Analysis of the delay seen by applications 38
4.7.4 Efficiency of Multipath TCP . 40

4.8 Conclusion . 40

5 A closer look at real traffic 43
5.1 Description of the datasets . 44

5.1.1 multipath-tcp.org traces . 44
5.1.2 Smartphones traces . 44

5.2 Analysis . 45
5.2.1 Middlebox interferences . 47
5.2.2 Establishment of the subflows . 48
5.2.3 Subflows round-trip-times . 48
5.2.4 Multipath TCP acknowledgements . 49
5.2.5 Utilisation of the subflows . 51

5.3 Multipath TCP imperfections . 52
5.3.1 Unused subflows . 52
5.3.2 Reinjections . 53
5.3.3 Receive window limitations . 56

5.4 Conclusion . 59

6 Streaming applications 61
6.1 Methodology . 62
6.2 Overview . 64

6.2.1 Handover at application level . 64
6.2.2 Mobility . 65
6.2.3 Streaming over Multipath TCP . 67

6.3 Analysis . 68
6.3.1 Traffic distribution . 68
6.3.2 Multipath TCP’s backup mode . 71

6.4 Conclusion . 72

7 Conclusion 73
7.1 Future work . 74

A Tools used I

iv

CONTENTS

A.1 tcptrace . I
A.2 mptcptrace . II
A.3 tcpdump . III
A.4 tcpcsm . III
A.5 Linux containers with Docker . IV

B Running services on server VII
B.1 Proxy services . VII
B.2 Sharing services . VIII
B.3 Custom services . VIII
B.4 Streaming services . VIII
B.5 Miscellaneous services . IX

C IPv6 and smartphones XI

v

Abstract

Multipath TCP is a new TCP extension that allows spreading data across several paths.
Smartphone are multi-homed devices that can take advantage of such ability. Compared to
regular TCP, Multipath TCP is able to keep connections alive across different networks.

This work explores three measurement campaigns. The first one analyses how Multipath
TCP reacts on smartphones relative to TCP with predefined scenarios on real applications
and partial control of the environment. We propose and implement an automated measure-
ment framework and observe that Multipath TCP works on smartphones without requiring
any change on the application. With the default scheduler, quite long connections are bal-
anced on both interfaces depending of their performance, but behaviour of short connections
mainly depends on the initial interface. The second one extends our analysis to real users
and compare the traffic with the one seen by a Multipath TCP server. We show the het-
erogeneity of the subflows and observe that most of the subflows created by smartphones
are not used. Multipath TCP’s reinjections are quite rare, but can happen in burst, partic-
ularly in mobility scenarios. The third one studies the performance of Multipath TCP with
the streaming use case. We notice that Multipath TCP offers a better service than TCP to
its handover mechanisms. However, the current behaviour of Multipath TCP is not always
what smartphone users expect and we propose several possible improvements for the current
implementation.

Chapter 1

Introduction

In the past decade, smartphones and tablets became the most popular mobile devices. They
contribute to a growing fraction of the Internet traffic, and this growth is planned to be
exponential [14]. This kind of devices is usually able to be connected via WiFi and cellular
networks. Then, the end-users expect to have their mobile devices capable to benefit seam-
lessly from all available interfaces. However, this coexistence between WiFi and cellular is
much more complex and suffers from early design decisions of popular protocols.

In particular, the Transmission Control Protocol (TCP) is the dominant transport protocol
in today’s networks and is used by most applications running on smartphones. Though, its
design is from the 1970s, and doesn’t take into account the multihomed hosts like smart-
phones.

To address this last point, several technologies have been proposed during the last years [43]
and some have be deployed. Multipath TCP is one of them and seems to be the more
promising one. Indeed, this solution received a lot of attention when it was selected by Apple
to support its voice recognition (Siri) application. Siri leverages Multipath TCP to send voice
samples over both WiFi and cellular interfaces to cope with various failure scenarios. To
our knowledge, Siri is the only widely deployed smartphone application that uses Multipath
TCP. Despite this large deployed base, there is no public information about the performance
benefits of using Multipath TCP with Siri.

Through this master thesis, we fill this gap by providing various measurements and analyses
in different environments with smartphones using the Android operating system, the most
deployed one on mobile devices1. After presenting a background about Multipath TCP in

1See http://www.businessinsider.com/iphone-v-android-market-share-2014-5?IR=T

1

http://www.businessinsider.com/iphone-v-android-market-share-2014-5?IR=T

chapter 2 and presenting required infrastructure in chapter 3, the next three chapters will be
dedicated to our results. The first one will describe the behaviour of Multipath TCP with
predefined application scenarios. A Multipath TCP capable SOCKS proxy is installed and
the network traffic between the smartphone and the proxy will be examined. In particular,
we analyse how is it balanced between the WiFi and the cellular interfaces and observe the
situation from both sides, i.e. the smartphone and the proxy. The second one will extend
our analyses to the traffic generated by a dozen of real users. Throughout this chapter, it
will be compared with the traffic seen by a deployed Multipath TCP capable server. The
overhead of Multipath TCP will also be studied. The third one will focus on the streaming
use case. In particular, the benefits of Multipath TCP in mobility scenarios are observed, such
as the support of handovers. Finally, the chapter 7 will concludes this thesis and will propose
possible evolutions.

2

Chapter 2

Multipath TCP

Before going in details in our measurements, let us have some background information about
Multipath TCP. More details can be found in [29, 51, 53]. This section assumes a basic
understanding of TCP’s principles. For more information about that, one can read [26].

2.1 Overview

Multipath TCP is an effort towards enabling the simultaneous use of several IP-addresses
and interfaces. This is implemented thanks to a modification of TCP that presents a regular
TCP [60] socket interface to applications while spreading data across several subflows. As
stated in [63], the main design goals are the following ones:

• It must work with applications using regular TCP without requiring any changes to
them.

• It must work in all scenarios where regular TCP currently works.

• It must be able to use the network at least as well as regular TCP, but without starving
TCP.

• It must be implementable in operating systems without using excessive memory or
processing.

Since Multipath TCP must be as usable as regular TCP for existing applications, it has to
provide a reliable and in-order byte transmission service. This need of reliability comes with
an acknowledgement mechanism. Although Multipath TCP allows to achieve a more efficient

3

2.1. OVERVIEW

use of the network, it can not overwhelm the receiver. To do so, it also provides a way for
the receiver to perform flow control on the connection.

Figure 2.1: Architecture of Multipath TCP (Source: [51])

The architecture of the Multipath TCP implementation in the Linux kernel is shown on the
figure 2.1. To the application, a standard stream socket interface is presented. At the trans-
port layer, Multipath TCP is negotiated via new TCP options in the SYN packets of the TCP
connections. To allow data transmissions across different paths, a TCP subflow is created
along each of these paths. They look like regular TCP connections on the wire, including
a 3-way handshake for the setup, a proper sequence number space with retransmissions and
a 4-way handshake for their termination. These subflows are linked together to form the
Multipath TCP connection and are used to carry the data between the end hosts. Note that
those subflows will be also called Multipath TCP subflows later on in this thesis.

The Multipath TCP scheduler [55] is in charge of the distribition of the data across the
different subflows — allowing to pool the resources of each subflow’s path. This algorithm
is used every time that a data segment needs to be sent. It selects, among the active
subflows that have an open congestion window, the subflow that will be used to send the
data. The default scheduler tries to send data over the subflow having the lowest round-
trip-time. Note that another packet scheduler that selects the subflows in a round-robin
fashion also exists [52]. Both of them allows the user to use a path as backup as explained
in section 2.2.4 on page 7.

Each subflow uses its own sequence number space to detect losses and drive retransmis-
sions. Multipath TCP adds connection-level sequence numbers to allow reordering at the
receiver side. Finally, connection-level acknowledgements are used to implement proper flow
controls.

4

2.2. CONTROL PLANE

In the remaining sections, we provide additional details about both parts of Multipath TCP:
the control plane — responsible to create and destroy subflows and to signal other connection-
level control information —, and the data plane — transmitting the data between the end
hosts.

2.2 Control plane

This section describes the control information used by Multipath TCP. Those are sent within
the TCP option space. Indeed, Multipath TCP uses a single TCP option type (30) and
differentiates the control information using subtypes.

2.2.1 Initial handshake

The TCP three-way handshake is used to segment states between the client and the server. In
particular, initial sequence numbers are exchanged and acknowledged and TCP options carried
in the SYN and SYN/ACK are used to negotiate optional functionalities. During Multipath
TCP’s handshake, the end hosts detect whether the peer actually supports Multipath TCP or
not. Three state variables of the connection are also exchanged during this initial handshake:
the token to identify the Multipath TCP connection subflows belong to, the Initial Data
Sequence Number to define the position of a segment inside the data stream, and two keys
used as shared secret to authenticate the end hosts.

Client Server

SYN + MP_CAPABLE
 Ka

SYN/ACK + MP_CAPABLE
 Kb

ACK + MP_CAPABLE
 Ka, Kb

Figure 2.2: Handshake of the initial Multipath TCP subflow

Multipath TCP starts the connection by establishing an initial TCP subflow with a standard
TCP 3-way handshake as shown on figure 2.2. It uses TCP options to specify that Multipath
TCP is supported by the peer and to negotiate the above described three elements. Such
detection of the Multipath TCP support is done by adding the MP_CAPABLE option inside the
SYN packets. Exchanging the keys is achieved by sending them in clear inside the MP_CAPABLE
option. Keys are echoed back in the third ACK of the 3-way handshake to let the servers handle
stateless TCP handshakes [24]. To cope with middleboxes that could remove the MP_CAPABLE
option from the SYN+ACK segment, an MP_CAPABLE option containing the two keys is also

5

2.2. CONTROL PLANE

placed in the third acknowledgement returned by the client. If one MP_CAPABLE option is
missing in the three first messages, the connection falls back to TCP.

2.2.2 Handshake of the additional subflows

When adding a new subflow to a Multipath TCP connection, two problems must be solved.
First, the new subflow needs to be associated with an existing Multipath TCP connection.
The classical 5-tuple1 cannot be used as a connection identifier, as it may change due to NATs.
Secondly, Multipath TCP must be robust enough to avoid attackers to add his own subflow
to an existing connection. Multipath TCP solves these two problems, first by using the locally
unique token, and secondly by computing and verifying an Hmac, using the exchanged keys
within the 3-way handshake of the initial subflow.

Client Server

SYN + MP_JOIN
 token, Ra

SYN/ACK + MP_JOIN
 HMACb, Rb

ACK + MP_JOIN
 HMACa

ACK

Figure 2.3: Handshake of additional Multipath TCP subflows

To open a new subflow, Multipath TCP performs a SYN exchange using the addresses and
ports it wishes to use. The handshake is illustrated in figure 2.3. A TCP option, MP_JOIN,
is added to the SYN. The token included inside the SYN allows to identify the Multipath
TCP connection this subflow belongs to, while the 32 random bits (Ra) will be part of the
input for the Hmac computation. The server computes the Hmacb , based on two random
numbers Ra and Rb and the keys exchanged in the initial handshake. Upon reception of the
SYN/ACK, the client can verify the correctness of the Hmacb , which proves that the server
has knowledge of the keys Ka and Kb and thus participated in the initial handshake. Then,
the client generates a different Hmaca which is included inside the third ACK. This one allows
the server to verify that the client is the same as the one involved in the initial handshake.
Finally, the server sends a duplicate acknowledgement to the client, signaling the reception
of this third ACK. The client will only start sending data to the server once it has received the
fourth ACK. Once this is done, this subflow can be used to transmit data.

1The five elements are the following: protocol, IPsrc, IPdst, portsrc, portdst.

6

2.2. CONTROL PLANE

2.2.3 Removing a subflow

For each address is assigned an address-ID. This is an 8-bit integer that locally identifies the IP
address. It is being used within the MP_JOIN option to let a host know which pair of address-
IDs is associated to each subflow. The address-ID is mainly into the REMOVE_ADDR option to
inform the peer when one of its addresses has become unavailable (e.g. the smartphone lost
the connectivity to the WiFi access point). It specifies the address-ID that is associated to
the IP address that should be removed. Upon reception of this option, the destination closes
all TCP subflows that are using this address. The address-ID allows the host to identify which
subflows to close, even if these ones have their public IP address changed due to a NAT. Such
modification of the public IP address will not affect the address-ID and allows the ID to be
used as an end-to-end identifier of the IP address.

2.2.4 Backup subflows

On smartphones, users might want to avoid sending traffic over the cellular interface to reduce
the monetary cost of using the cellular network. Paasch et al. [54] added a mechanism inside
Multipath TCP that allows to specify priorities on a subflow. The MP_JOIN option includes
a backup bit that signals to the peer that it should not send any data on this subflow.
This requirement can be violated by the peer if there is no other subflow available for data
transmission. The MP_PRIO option allows to signal this kind of subflow priority after the
3-way handshake.

Specifying a backup bit on the cellular interface should reduce the traffic on that interface
while still taking advantage of Multipath TCP’s handover mechanism. Indeed, Multipath
TCP opens TCP subflows over all interfaces, but the scheduler uses only a subset of these to
transport data packets: non backup ones if available, else backup ones. Notice that Multipath
TCP in backup mode recovers slower than in full mesh mode, because the congestion window
on backup paths still have their initial value, whereas in full mesh mode, if paths were already
used, their congestion window will be larger [54].

2.2.5 Path manager

The path manager defines the strategy that is used by the Multipath TCP stack to create
subflows. Two path managers are included in the Linux kernel dedicated to Android smart-
phones: full-mesh and ndiffports. Their role is to decide when and how subflows are
created. As of this writing, subflows are only created by the clients. The server does not
attempt to create subflows as the clients are often behind NATs or firewalls that would block
these subflows anyway [23].

The full-mesh path manager creates a subflow from each address owned by the client to
each address advertised by the server. These subflows are created at the beginning of the
connection, i.e. as soon as the initial subflow has been validated. If the client (or the server)

7

2.3. DATA PLANE

learns a new address, e.g. a smartphone attaches to a new WiFi access point, the full-mesh
path manager automatically creates a new subflow over this interface.

The ndiffports path manager was designed for single-homed hosts in datacenters [61].
With this path manager, a Multipath TCP connection is composed of n subflows that use
different source ports.

The full-mesh path manager is the default path manager in the Linux implementation.

2.3 Data plane

In this section, the data plane of Multipath TCP, responsible of the actual transmission of
the byte stream sent and received by the application, is detailed.

2.3.1 A second sequence number space

A first dedicated sequence number space is required to provide a reliable and in-order delivery
service to each TCP subflow. However, as Multipath TCP provides the same guarantees,
it is necessary to allow the receiver to reorder the possibly out-of-order data segments. To
illustrate this problem, consider the situation illustrated on figure 2.4. The smartphone wants
to send four data packets to the server. Let us assume that the first packet is sent on the
cellular interface (having a delay of 50 ms) and the three following on the WiFi interface
(having a delay of 10 ms). The bandwidth is assumed to be large enough on both paths.
In that case, the three last packets will arrive first on the server, while the first packet is
still being transferred. With only sequence number space at the TCP subflows level, the
server can manage reordering on a same path, but not between different ones. To cope with
such cases, a second sequence number space at Multipath TCP connection level is added. It
maps each byte to its position within the continuous data stream that is being sent by the
application.

Figure 2.4: Example to show the need for a second sequence number space

8

2.3. DATA PLANE

The data sequence number space starts at the initial data sequence number. It is 64-bit long
to prevent any issues with wrapped sequence numbers. With only 32 bits, if one path takes
so much time to transfer a packet so that meanwhile another path could send 4 GBytes, the
receiver will not be able to distinguish the packet with the old sequence number, from up-to-
date data on the low-delay path. With 64 bits, the low-delay path must send 264 bytes to have
the same problem, which is unlikely to happen. This second sequence number, called Data
Sequence Number (DSN), is contained in the Data Sequence Signal (DSS) option which is
discussed in details in [29, 51]. The DSN corresponds to the bytestream. When data is sent
over a subflow, its DSN is mapped to the regular sequence numbers with the DSS option.
Note that the DSS option also contains DSN acknowledgements. Thanks to this option, the
same data can be transmitted over more than one subflow. This is called a reinjection [63].
A reinjection can occur if data transmitted over one subflow has not been acknowledged
quickly enough. For example, a smartphone could send some data over its WiFi interface
while moving out of reach of the access point. This data will have to be retransmitted over
the cellular interface to reach the server.

2.3.2 Congestion control

Figure 2.5: Multipath TCP with standard TCP congestion control (Source: [51])

Using several paths creates new problems from a congestion control point of view. With
regular TCP, congestion occurs on one path between the client and the server. Multipath
TCP uses several paths. Two paths will typically experience different levels of congestion.
A naive solution to the congestion problem in Multipath TCP would be to use the standard
TCP congestion control scheme on each subflow. This can be easily implemented but leads
to unfairness with regular TCP. In the network illustrated in figure 2.5, two clients share
the same bottleneck link. If the Multipath TCP-enabled client uses two subflows, then it
will obtain two-thirds of the shared bottleneck. This is unfair because if this client used
regular TCP, it would obtain only half of the shared bottleneck. This happens because each
subflow increases its congestion window independently of the other subflows. This is called
an uncoupled congestion control.

Specific Multipath TCP congestion control schemes have been designed to solve this problem.
Four of them are included in the Linux kernel implementation: the Linked Increase Algorithm
(LIA) [76], the Opportunistic Linked Increase Algorithm (OLIA) [40], the Balanced Linked
Increase Algorithm (BALIA) [58] and the wVegas delay based congestion control algorithm
[11]. LIA is the default congestion control scheme, but users can opt for other congestion

9

2.3. DATA PLANE

control schemes. They measure congestion on each subflow and try to move traffic away
from those with the highest congestion. To do so, they modify the congestion window during
the congestion avoidance phase. The congestion information of all the subflows belonging
to a connection is taken into account to control the increase rate of a subflow’s congestion
window during the congestion avoidance phase. They are so coupling the increase phase to
the subflow’s congestion control. This kind of congestion control schemes preserves fairness
with regular TCP across the shared bottleneck.

10

Chapter 3

Measurement infrastructure

Before going in depth in our measurements and the results obtained, it is useful to have first a
look at our available resources to perform them. This chapter is divided in five parts. The first
one provides an high level overview of our measurement testbed. The second one is dedicated
to the different available hardware used. The third one presents the Multipath TCP kernel
that was installed on the Android devices. The fourth one gives additional details about our
SOCKS proxy which is the core of our measurement testbed. The last one describes some
tools that we specifically developed for custom measurements.

3.1 High level view

An overview of our measurement testbed with smartphones is presented here with the help of
the figure 3.1 on the following page. In order to make smartphones Multipath TCP capable,
we bring some modifications into the Android kernel. Those are explained more in details in
the following sections. Smartphones have two different network interfaces: the cellular one
and the WiFi one. The cellular network is provided by Proximus and supports 4G. Except in
chapter 5 (measurement at medium scale), we have the control of the WiFi router. More
details about them are given in section 3.2.3 on page 13.

Since only very few real servers are Multipath TCP capable, we set up a SOCKS proxy between
smartphones and remote servers. This allows smartphones to transfer data using Multipath
TCP to the proxy, which can then send the same data using TCP to the real servers. This
proxy runs on a server which is described subsequently in details. Although the connection
is labelled as TCP on figure 3.1 on the following page, it can be a Multipath TCP one if

11

3.2. INFRASTRUCTURE

Figure 3.1: Our measurement testbed

the remote server is able to use it. Each Multipath TCP connection between smartphones
and proxy is associated to one (possibly Multipath) TCP connection between proxy and real
servers. The SOCKS proxy is explained in section 3.4 on page 15.

To analyse the network traffic, we capture network traces on the proxy thanks to tcpdump
described in appendix A.3 on page III. For the automated measurements shown in chapter 4,
we do the same on the smartphone. We then use analysis scripts (explained in section 3.5.1
on page 18) which take advantage of two main tools, tcptrace [50] and mptcptrace [32],
to extract information from those traces. More details about these tools are given in ap-
pendixes A.1 on page I and A.2 on page II.

3.2 Infrastructure

To complete successfully our measurements, we had to set up various kind of hardwares.

3.2.1 Smartphones

Our smartphones were legacy Nexus 5 co-developed by LG Electronics and Google. These
were the best ones on the market at the beginning of this study and certainly the most popular
Nexus product1. The CPU is a Qualcomm Snapdragon 800 (2.26 GHz quad-core), 2 GB of
RAM are available and it supports 2G/3G/4G LTE networks2.

During all our tests, these smartphones were running Android KitKat 4.4 as operating system.
We tried to not modify so much the smartphones. The main changes were made on the

1See The Verge’s article: http://is.gd/GoFzN2
2See https://en.wikipedia.org/wiki/Nexus_5

12

http://is.gd/GoFzN2
https://en.wikipedia.org/wiki/Nexus_5

3.3. ANDROID’S MULTIPATH TCP KERNEL

kernel to support Multipath TCP as described in section 3.3. Two Android applications were
required for our measurements to support Multipath TCP feature on all TCP connections
on both cellular and WiFi interfaces for any servers: ShadowSocks and MultipathControl as
respectively detailed in sections 3.4 on page 15 and 3.5.2 on page 22.

We used three Nexus 5 for the first part of our measurements described in chapter 4 on
page 25: two for the tests and development and one dedicated to record the tests. For the
second part detailed in chapter 5 on page 43, most smartphones have been set up to support
Multipath TCP and given to people from INGI staff to generate real traffic. For the third and
last part mentioned in chapter 6 on page 61, one Nexus 5 with Multipath TCP support and
one without it have been used.

3.2.2 Server

During the entire period covered by the measurements, we had access to a dedicated server at
OVH located in Roubaix (France). The selected product was a Kimsufi KS-2 with an Intel R○

AtomTM CPU N2800 running at maximum 1.86 GHz on two multithreaded cores (4 threads).
It has 4 GB of RAM and has access to a 100 Mbits network with one IPv4 and one IPv6
dedicated addresses. The mean round-trip-time obtained with the ping tool from the UCL’s
wired network was about 7 ms. On this server, we ran different services isolated in different
containers as explained in the appendix A.5 on page IV. The GNU/Linux operating system
was a Debian Stable (Wheezy 7) with the latest stable version of Multipath TCP (0.89.5).
The kernel version was 3.14.33-mptcp.

3.2.3 Routers

Because it can be interesting to launch our automated tests when controlling the network
by adding delay, losses and shaping and being sure that no other people were using our
WiFi access point, we set up a WiFi router between the university wired network and our
smartphone dedicated to the recorded tests. This router, a TPLink WDR4900, has latest
version of OpenWRT as operating system and WiFi was only used on 5 GHz frequency, since
no other access point was using this frequency range in the neighborhood.

When studying in details the traffic when switching from wireless networks to cellular ones, we
decided to set up several routers in the ICTeam buildings. We used routers running OpenWRT
with WiFi 2.4 GHz and connected to the university wired network.

3.3 Android’s Multipath TCP kernel

A Multipath TCP kernel for Android devices was of course needed for our measurements. It
was not so easy to have this kernel for two main reasons:

13

3.3. ANDROID’S MULTIPATH TCP KERNEL

• Android kernel is still based on the 3.4 version of the Linux kernel, but patches for
enabling support of the latest stable version (0.89) of Multipath TCP are based on
Linux Kernel Longterm Support release v3.14. Many changes have been applied in the
TCP/IP stack between the two versions.

• Google kernel developers have also integrated many specific changes in this Android
kernel and many modifications in the TCP/IP stack.

A previous port for the Nexus 5 mainly made by Gregory Detal was publicly available on
Github3. Unfortunately, it was based on Multipath TCP 0.86 version. Many improvements
were made since this old version. To get valuable results, a new port was needed. This
complex job has been realised by Gregory Detal and Sebastien Barré last summer.

When experimenting this kernel at the beginning, we found that switching off a network
interface on the smartphone were causing a reboot. Our debugging analyses allowed us to
find the reason: it was due to the use of the tcp_nuke_addr() function. This function has
been added by the Android kernel developers in order to destroy all TCP sockets on the given
local address. This cleaning was automatically made when an interface was disconnected.
It seems that this function has been added to save memory which is understandable on this
kind of devices. But in our case, with Multipath TCP, this behaviour is not acceptable as we
cannot kill all sockets linked to an interface. Indeed, on the Multipath TCP Linux implemen-
tation [52], a socket in the TCP/IP stack can be a regular TCP socket, a MPTCP sub-flow
socket or a MPTCP meta socket. This function should be adapted to only destroy regular
TCP sockets. Even if we lose both WiFi and cellular connections during a few milliseconds,
it is still possible to create new subflows after having new IPs addresses in order to keep the
connection alive. As the memory optimisation choice performed by the Android developers is
less relevant with the Nexus 5 (thanks to its 2 GB of RAM), we decided to simply bypass the
use of tcp_nuke_addr() function.

Since last summer, a few micro versions of Multipath TCP have been released. We backported
all patches from version 0.89.0 to 0.89.5 except the modifications due to other changes in
upstream TCP stack of recent Linux versions. We also backported one patch from Christian
Pinedo from the 0.90 branch in order to improve active and backup subflow selection in the
scheduler4. In total, we backported 24 patches (24 files changed, 434 lines insertions, 196
deletions).

We used Gregory’s instructions5 to compile our Android kernel. We kept all default options
dedicated to Nexus 5 devices (aka hammerhead). The only exception was to enable the
Multipath TCP support with all TCP congestion control algorithms and the Multipath TCP’s
path managers and schedulers available. Note that by default with the latest version of our
kernel, we used LIA as TCP congestion control algorithm, full-mesh for the path manager
and default (prefer path with lowest round-trip-time) as scheduler.

3See https://github.com/gdetal/mptcp_nexus5
4See https://github.com/multipath-tcp/mptcp/commit/f9ca33d
5See https://github.com/gdetal/mptcp_nexus5/wiki

14

https://github.com/gdetal/mptcp_nexus5
https://github.com/multipath-tcp/mptcp/commit/f9ca33d
https://github.com/gdetal/mptcp_nexus5/wiki

3.4. SOCKS PROXY-LIKE WITH SHADOWSOCKS

3.4 SOCKS proxy-like with ShadowSocks

According to the Multipath TCP’s website[52], it seems there are only a few dozens of
Multipath TCP enabled public servers on Internet. Multipath TCP requires that both client
and server support it. For our tests it was not possible to convince maintainers of all visited
servers to support Multipath TCP.

To overcome this issue, we configured all smartphones to use a Multipath TCP capable
proxy server for all its TCP connections as represented on the figure 3.1 on page 12. With
this configuration, each TCP connection initiated by the smartphone is thus redirected to and
terminated at the proxy server. This proxy server then establishes a regular TCP connection to
the server. Thanks to this setup, the smartphone can use Multipath TCP over the cellular and
WiFi interfaces while interacting with legacy servers. Our setup is similar to the one proposed
in [62, 19] except that we use a SOCKS-like proxy called ShadowSocks: a light SOCKS-like
proxy with several implementations for both clients and server sides. Some tweaks on the
host machine have been applied as recommended by ShadowSocks developers6. Note that
our proxy only supports IPv4; more details about the IPv6 issues are given in appendix C on
page XI.

3.4.1 How SOCKS works

According to the SOCKSv5 specifications [44], the client has first to negotiate the authen-
tication method with the server. Then the client sends a request before exchanging data:
CONNECT, BIND or UDP. In our case, we will only focus on the CONNECT command because we
will only analyse TCP connections started by the client.

+----+-----+-------+------+----------+----------+
|VER | CMD | RSV | ATYP | DST.ADDR | DST.PORT |
+----+-----+-------+------+----------+----------+
| 1 | 1 | X’00’ | 1 | Variable | 2 |
+----+-----+-------+------+----------+----------+

Figure 3.2: Format of a SOCKS request as specified in the RFC1928 [44].

The format of a SOCKS request is shown on figure 3.2. This first data of a connection should
contain: one octet for the version of SOCKS used (e.g. 5), one octet for the command (e.g.
5 for CONNECT), one octet of reserved field, one octet to specify the type address (IPv4, IPv6),
some bytes indicating the destination address (4 octets for IPv4, 16 for IPv6) and two octets
for the destination port.

The client has first to initiate a new connection with this packet before being able to send
and receive data. An application which would communicate with a SOCKS proxy has to
be adapted to respect these specifications. As all the needed test applications were not

6See http://shadowsocks.org/en/config/advanced.html

15

http://shadowsocks.org/en/config/advanced.html

3.4. SOCKS PROXY-LIKE WITH SHADOWSOCKS

supporting a SOCKS proxy, we had to use ShadowSocks client on Android to redirect all
TCP connections to our ShadowSocks proxy.

3.4.2 Characteristics of ShadowSocks’s traffic

In order to open a new connection with a remote server using ShadowSocks, the smartphone
first opens a new Multipath TCP connection to our proxy with the classical exchange of SYN,
SYN/ACK and ACK. Then, the ShadowSocks client immediately sends to the proxy the CONNECT
SOCKS request containing information needed by the proxy to open a new connection from
itself to the remote server. Note that this last connection is either a Multipath TCP one if
the remote server is Multipath TCP capable, or a TCP one.

It’s interesting to also note that both ShadowSocks client and server do not seem to respect
the SOCKS specifications [44] as shown on figure 3.2 on the preceding page. Indeed, the
CONNECT requests only contain the command, the destination IPv4 address — IPv6 is not
supported, more details in appendix C on page XI — and the destination port for a total
of seven bytes instead of ten. Encryption is supported between ShadowSocks clients and
servers for all exchanged data, even the first one. We choose the simplest encryption scheme
to reduce overhead: a simple translation table is used which means that for each byte, a
corresponding one is sent. It also means that the number of bytes sent and received after
these seven bytes of CONNECT request is equivalent to the number of bytes sent and received
by the application. Moreover, unlike a SOCKS proxy through a SSH tunnel where only one
TCP connection is used between the client and the server, a new connection will be created
between the smartphone and the proxy for each TCP connection initiated by an application
on the smartphone.

3.4.3 How all traffic is redirected to the proxy

Let’s take a simple example of visiting example.org website with a basic web browser on
the smartphone as shown in the figure 3.3 on the facing page. There are two mains requests
initiated by the application in this process: a DNS request is needed to get the corresponding
IP (in red on the left of this figure), then a HTTP request is sent to retrieve the HTML
content (in blue on the right).

The DNS request

(a) First the application queries system’s DNS client for the IP address linked to the
example.org domain.

(b) This client sends a UDP DNS request to a DNS server. By default on Android it is one of
the Google’s public DNS servers (8.8.4.4). Thanks to some specific forwarding rules,

16

3.4. SOCKS PROXY-LIKE WITH SHADOWSOCKS

Figure 3.3: How all traffic is redirected to the proxy

all DNS requests are transparently redirected to a local DNS proxy called pdnsd [65]
and controlled by ShadowSocks.

(c) pdnsd is configured to send all DNS requests via TCP. If a DNS record is not already
cached, then a DNS request over TCP is sent to ShadowSocks’s ss-tunnel daemon.

(d) This daemon initiates a new TCP connection to our ShadowSocks proxy at OVH in
order to send this DNS request to another Google’s public DNS server (8.8.8.8)
specified by the ShadowSocks client.
Note that with the 2.5.8 version of ShadowSocks (used only for the automated tests in
chapter 4), this daemon does not send to the proxy a first packet of seven data bytes
with the already seen CONNECT command and an IP address. A special one with this
time eleven data bytes and a hostname is sent: one for the command (4 and not 1), one
for the length of the hostname (7), some bytes for the hostname ("8.8.8.8" which
contains seven characters) and two for the port number (53). Since the IP remains
constant, the hostname encoded in seven characters is not needed. Instead of sending

17

3.5. DEVELOPED TOOLS

the seven bytes for the hostname, ShadowSocks can directly use the IPv4 address
encoded in four bytes. Newer versions of this ShadowSocks client have reduced this
overhead by sending the first packet of seven data bytes with the CONNECT command
and the IPv4 address.

(e) Finally the proxy launches this DNS request over TCP and replies back the DNS answer
to the client.

The HTTP request

(i) The application initiates a TCP connection to a specific IP and port (e.g. 1.2.3.4
on port 80). Again, thanks to the forwarding’s rules, this request is forwarded to a
redsocks daemon.

(ii) redsocks [25] is a transparent SOCKS redirector. It uses the destination TCP port and
IP address of the original request in unauthenticated SOCKSv5 requests with Shadow-
Socks’s ss-local daemon as described in section 3.4.1 on page 15.

(iii) ss-local is now able to start a new TCP connection with the proxy and send the right
IP address and TCP port in the seven data bytes mentioned in the previous section 3.4.2
on page 16.

(iv) The proxy finally initiates a TCP connection to the given server (e.g. 1.2.3.4 on port
80) in order to let the client’s application exchange data with it via this proxy.

3.5 Developed tools

Since some of our requirements are very specific (and others new to our knowledge), we had
to develop specific software to fulfil them. In this section, we focus on our most important
contributions. Note that all our public repositories are available on this page.

3.5.1 Analysis scripts

In the next chapters, we present the results of our measurements. To obtain them, we had to
analyse the network traces to extract relevant information. This requirement was addressed
to our analysis scripts, publicly available at [16].

Figure 3.4 on the next page is used to explain the architecture of our analysis scripts in the
following paragraph. To start the analysis, we call the analyze.py script with the path to
our Multipath TCP traces. These traces are first processed by mptcptrace [32] (step 1
in the figure). The outputs of this tool (CSVs, graphs) are processed by mptcp.py which
collects all data we are interested in about Multipath TCP connections (2). Then, we give
the same traces as input of tcptrace [50] (3). Files generated by this tool are then processed

18

https://github.com/MPTCP-smartphone-thesis
https://github.com/MPTCP-smartphone-thesis/pcap-measurement/blob/thesis_version/analyze.py
https://github.com/MPTCP-smartphone-thesis/pcap-measurement/blob/thesis_version/mptcp.py

3.5. DEVELOPED TOOLS

Figure 3.4: High level view of the analysis scripts for Multipath TCP traces

by tcp.py which allows us to collect more specific information about subflows at the TCP
level (4). After that, still in tcp.py, we establish the match between TCP connections of
tcptrace and Multipath TCP subflows of mptcptrace to merge statistics from both tools
(5). All those data are then stored in statistics files (6) which allow us to produce quickly
various graphs with the remaining analysis scripts (7). To illustrate our choice to store
statistics in files, the analysis of all real smartphone traces studied in chapter 5 to generate
statistics files lasts for nearly two entire days whereas the graphs generation from the statistic
files takes less than 10 minutes. Note that our scripts are also able to process regular TCP
traces; in that case, the analysis is restricted to the steps 3, 4, 6 and 7 of the figure 3.4.

Our analysis scripts contain more than 7500 lines of code in Python (without counting blank
and comment lines) in 19 files7.

Merging information

Since we want to have the maximum of information about connections, it is useful to merge
statistics coming from mptcptrace with those coming from tcptrace. However, there is
a mismatch between both tools. In particular, for Multipath TCP traces, a subflow seen by
mptcptrace will be interpreted as a regular TCP connection by tcptrace.

To cope with that, we first analyse the traces with mptcptrace (in the file mptcp.py) and
collect the start time and the duration of the Multipath TCP connection as well as the
source IP address, the destination IP address, the source port and the destination port of the
subflows. Then, we provide the same traces as inputs to tcptrace and identify the subflow
the TCP connection belongs to thanks to the IP addresses, the ports and the start time. For
short traces (as studied in chapter 4), relying only on the IP addresses and ports is sufficient.
However, for very long traces (such as the ones analysed in chapter 5), it is not the case
anymore since the same quadruplet can be reused after some time. To manage that, we

7This number and the following ones were computed by cloc command line tool.

19

https://github.com/MPTCP-smartphone-thesis/pcap-measurement/blob/thesis_version/tcp.py
https://github.com/MPTCP-smartphone-thesis/pcap-measurement/blob/thesis_version/tcp.py#L576
https://github.com/MPTCP-smartphone-thesis/pcap-measurement/blob/thesis_version/mptcp.py#L696
http://cloc.sourceforge.net/

3.5. DEVELOPED TOOLS

also check if the starting time of the TCP connection (returned by tcptrace) fits with the
Multipath TCP start time and duration. Note that it is feasible to have TCP connections
detected by tcptrace which are not subflows of Multipath TCP connections. This is due
to the fact that tcptrace also returns connections that are not complete, for instance the
ones containing only a SYN followed by a RST. Additionally, it can be possible to intercept
real TCP connections, i.e. connections that does not use Multipath TCP at all.

Structure of the statistics

To generate graphs, it is useful to have a look at the structure of the statistic objects. Those
elements are either MPTCPConnection if the analysed trace is a Multipath TCP one (defined in
mptcp.py) or TCPConnection if it is a regular TCP one (defined in tcp.py). Since the main
protocol of interest is Multipath TCP, we will focus on the structure of MPTCPConnection but
design choices remains the same for both objects. MPTCPConnection has three attributes:
the ID of the connection, a dictionary of MPTCPSubFlow (or a single BasicFlow in the case
of TCPConnection) and a dictionary called attr containing global information about the
connection. To illustrate the content of the attr variable of MPTCPConnection, an example
is shown in the listing 3.1.

Listing 3.1: Example content of the attr variable of MPTCPConnection.
{
’destination2source’:
{
’bursts’: [(0, 14252, 0.160025, 1430498140.227634),

(1, 54636, 0.182170, 1430498140.387996),
(0, 1400, 0.0, 1430498140.604483),
(1, 525064, 28.565089, 1430498140.604528)],

’bytes’: {’cellular’: 537664, ’wifi’: 14252},
’bytes_mptcptrace’: 525317,
(...),
’rtt_median’: 48.602999999999994,
’rtt_min’: 2.0030000000000001,
’rtt_samples’: 436,
’rtt_stdev’: 60.449838352596807,
’throughput_mptcptrace’: 16234.924999999999

},
’duration’: 29.118333,
’source2destination’: {(...)},
’start_time’: 1430498140.051284

}

Typically, it contains information computed by mptcptrace, except the bytes attribute in
destination2source and source2destination, which comes from data computed by
tcptrace. Most of them are direction related, except the start time and the duration of
the Multipath TCP connection. destination2source refers to the exchange of data from
the server to the client, where the client is the host that initiates the connection. Among
others, we collect the number of bytes transferred at Multipath TCP level, various values for
the round-trip-time at the Multipath TCP level and, if the connection is data heavy enough,
the mean of the throughput at Multipath TCP level computed over 250 packets. This choice

20

https://github.com/MPTCP-smartphone-thesis/pcap-measurement/blob/thesis_version/mptcp.py#L80
https://github.com/MPTCP-smartphone-thesis/pcap-measurement/blob/thesis_version/tcp.py#L58

3.5. DEVELOPED TOOLS

of 250 packets is motivated to approximate as well as possible the actual throughput with
application shaping (the instantaneous throughput is too variable and the throughput com-
puted on the whole connection can be biased by application shaping). The bursts attribute
can be used to compute the number of subflow switches per second.

Listing 3.2: Example content of the attr variable of MPTCPSubFlow.
{
’daddr’: ’172.17.0.110’,
’destination2source’:
{
’bytes’: 14252,
’bytes_data’: 15652,
’bytes_frames_retrans’: 1486,
’bytes_retrans’: 1400,
’frames_retrans’: 1,
’missed_data’: 0,
’packets’: 15,
’packets_outoforder’: 0,
’packets_retrans’: 1,
’reinjected_orig’: {(755491846, 755490446): 2, (...)},
’reinjected_orig_bytes’: 25200,
’reinjected_orig_packets’: 18,
’reinjected_orig_timestamp’: [1430498140.604528, 1430498140.60454, (...)],
(...),
’rtt_99p’: 81.309999999999988,
’rtt_avg’: 47.9,
’rtt_from_3whs’: 13.1,
’rtt_max’: 82.7,
’rtt_median’: 47.5,
’rtt_min’: 13.1,
’rtt_samples’: 2,
’rtt_stdev’: 0.0,
’tcpcsm_retrans’: [(’1430498140.604483’, ’RTO’)],
’timestamp_retrans’: [1430498140.604483]

},
’dport’: ’8000’,
’duration’: 27.966849088668823,
’interface’: ’wifi’,
’saddr’: ’130.104.236.212’,
’source2destination’: {(...)},
’sport’: ’57598’,
’start_time’: 1430498140.038117,
’type’: ’IPv4’,
’wscaledst’: ’11’,
’wscalesrc’: ’6’

}

Some pieces of information are more specific to a subflow than to the entire connection. Those
are then stored in the attr variable of the MPTCPSubFlow. An example of such information
is given in listing 3.2. Except the start time and the duration, non direction related elements
comes from mptcptrace. Such elements include the 4-tuple formed of IP addresses and ports,
the version of IP used and the physical interface on which the flow was established. On the
contrary, except reinjections information from mptcptrace, frames information from tshark
and retransmissions seen by tcpcsm (described in appendix A.4 on page III), direction related
elements are outputs from tcptrace. Among information computed at TCP level, there are

21

3.5. DEVELOPED TOOLS

the number of bytes and packets (seen and retransmitted), the timestamp of retransmissions
and various percentiles of the round-trip-time. Note that information related to the reinjection
are not packets which are reinjections, but packets that were first send on this subflow and
then reinjected on another one. In particular, we collect the timestamp of their reinjections,
the number of bytes and packets those represent and the number of time a packet, identified
by the range of sequence numbers it covers, is reinjected.

Using those statistics, we can then generate graphs to agglomerate them. A large part of the
available scripts are dedicated to this usage, like summary.py, summary_imc.py or macro.py.
In addition to the previously described scripts, they mainly rely on two Python libraries called
numpy [21] for scientific computing and matplotlib [37] to generate graphs.

Optional processing

Additional features can be activated through options given to analyze.py. Among others,
there is the identification of the interface used by looking at a MongoDB database (more
details in section 3.5.2), rewriting the PCAP file to overcome some issues related to the loop-
back interface as explained in section 4.4 on page 30 or qualifying the type of retransmission.
Some of these options require additional tools, such as tshark [75] to filter PCAP files,
tcpreplay’s mergecap tool [41] to merge several PCAP files in one or tcpcsm [2] to give
more information about congestion events on a connection.

Other scripts specific to the chapter 6 related to Streaming applications have been created.
These scripts (200 lines in Python, 141 in Bash, without counting blank and comment lines)
don’t analyse PCAP files and are available in another public repository [7]. For instance,
the results show a waveform of the sound produced by a streaming application and a map
of the journey with indications about network changes. Those are also generated thanks to
numpy [21] and matplotlib [37] in addition with geotiler [71] to create maps using tiles
from a map provider like OpenStreetMap and waveform [38] to generate visuals for audio
files.

3.5.2 An Android application to control Multipath TCP

Simply installing a new Multipath TCP-ready kernel is not enough if you want to use multiple
network interfaces at the same time. Indeed, you need to configure routing tables as described
on the Multipath TCP’s website8.

Automatically set routing tables

Four different approaches have been compared: (i) modifying Android’s frameworks base
code, (ii) modifying this same code with the help of the Xposed framework, (iii) deploying

8See http://multipath-tcp.org/pmwiki.php/Users/ConfigureRouting

22

https://github.com/MPTCP-smartphone-thesis/pcap-measurement/blob/thesis_version/summary.py
https://github.com/MPTCP-smartphone-thesis/pcap-measurement/blob/thesis_version/summary_imc.py
https://github.com/MPTCP-smartphone-thesis/pcap-measurement/blob/thesis_version/macro.py
https://github.com/MPTCP-smartphone-thesis/pcap-measurement/blob/thesis_version/analyze.py#L65
http://multipath-tcp.org/pmwiki.php/Users/ConfigureRouting

3.5. DEVELOPED TOOLS

with the kernel image a new low level service that reacts to network changes and (iv) using an
Android application which is notified by the Android’s framework of network changes.

(i) Directly adapting Android source code should give better results as we will be able to
control the operating system’s behaviours. On the other hand this approach requires a
good study of the Android’s frameworks base code and the need to rebuild Android’s
images and reinstall them on all smartphones. Furthermore, this change will be specific
to one version of the AOSP Android’s framework.

(ii) Xposed9 is defined as a framework for modules that can change the behavior of the
system and apps without touching any APK. In theory, we could intercept call of
methods and modify their behaviour. Unfortunately, we didn’t have time to study in
details the Android’s frameworks base code and this Xposed framework.

(iii) Deploying a new low level service should give us sufficient control by being notified
before other by Linux’s netlink when a route or an IP has been added or deleted.
This service has to be shipped with the kernel image. It means it has to be adapted to
work with our kernel and to allow some controls by the user, etc.

(iv) Finally we chose the last approach: a dedicated Android application made by Gregory
Detal and called MultipathControl was available10. This application was already working
by modifying routing tables when IP addresses change and by sending requests to the
Android Framework in order to keep the cellular interface enabled. We used it for the
first part of our work without any problem but we had to adapt this application as this
one was not ready to be used by real users.

Improvements made on this application

Some features were required before giving this application to real users. To do so an Android
service has been added to keep this application on even if it is running in background. This
service is also automatically launched at startup. IPv6 support on Android has also been
disabled with this application as explained in appendix C on page XI. Thanks to these
modifications and the ShadowSocks proxy, users are able to use Multipath TCP via both
WiFi and cellular interfaces without doing anything else.

After having refactored a bit the code and fixed small bugs, a few options have also been added
such as changing the default route via the cellular interface, setting subflow using cellular
interface as a backup subflow and changing the default TCP congestion control algorithm.
But the most important change in terms of code was about various data collection. Indeed
collecting information on network changes can help us to analyse in more details how the
devices reacted on handovers11 such as what were the conditions during those actions, which

9See http://xposed.info
10See http://multipath-tcp.org/pmwiki.php/Users/Android
11Handover term is used here to specify the action when transparently switching from one to another

network.

23

http://xposed.info
http://multipath-tcp.org/pmwiki.php/Users/Android

3.5. DEVELOPED TOOLS

IPs were used at that time, etc. To collect all these data, we reused a part of the Carmen
Alvarez’s Network-Monitor project [4] released under the 2.0 Apache License. Each hour,
collected data were sent in JSON format to a custom HTTP/REST server [17] described in
appendix B.3 on page VIII.

Because this application collects many private data12 and has root privileges, we wanted to
release the code under an Open Source licence. With Gregory Detal’s agreement, this appli-
cation has been released under a GNU/GPLv3 license and is freely available on Github [9].
This MultipathControl application is composed of 2182 lines of code (without counting com-
ment lines). HIPRIKeeper application has also been created just to let the cellular interface
activated on any smartphone. It is made of 379 lines of code (without counting comment
lines).

Limitations of this application

By choosing this solution with an Android application, we were aware that it was not the
optimal solution despite of its advantages. The main drawback is that just after being attached
to a new WiFi access point, the Android framework believes that the kernel has stopped
all connections due to Android kernel’s tcp_nuke_addr() function previously described in
section 3.3 on page 13. As a result, this Android framework starts disabling the cellular
interface. It had to be done because by default Android has been configured to use only one
interface, preferring its WiFi one to the cellular one. This is justified as two interfaces cannot
be used at the same time for the same connection with regular TCP. Then it’s obvious that
only the WiFi interface is kept if attached to a WiFi access point mainly because it’s free of
cost (most of the time) and there is no need to keep the cellular radio on if this interface is
not used.

This behaviour implies that TCP connections could be stopped if the MultipathControl appli-
cation is not fast enough to stop the Android framework from disabling the cellular interface.
But even if this interface is disabled for a few milliseconds, it is absolutely not a problem for
Multipath TCP. Indeed, by closing this TCP connection, only one Multipath TCP subflow
will be stopped and not the entire connection. This is why a new Multipath TCP subflow will
be created just after having re-enabled the interface to keep the connection alive. In other
words we could have better results on handovers with a better integration of Multipath TCP
in Android framework but our objective was to obtain promising results related to handovers.
Then, a future work would be to implement this integration.

12Unfortunately as most popular applications do.

24

Chapter 4

Automated measurements

Before going in depth with experiments, a first step would be to see the behaviour of Multi-
path TCP in a controlled environment. By this, we mean that we would make experiments
relative to a reference case, and then voluntarily apply changes to see their impacts. Those
reference cases are implemented as scenarios with different applications, covering various
network activities. With our automated test framework, we can then control the protocol
used by the smartphone (either TCP or Multipath TCP), interfaces used and performances
of networks (in particular the WiFi access point).

Researchers have analysed various aspects of Multipath TCP on smartphones. While we used
real smartphone applications, the earlier studies mainly relied on bulk transfers that do not
represent real smartphone usage. Arzani et al. model the performance of Multipath TCP in
[5] and show some capture effects for the initial subflow. However, the capture effects that
they observed is different from the impact of the default route that we measured. Chen et
al. analyse in [12] the performance of Multipath TCP in WiFi/cellular networks by using bulk
transfer applications running on laptops. Deng et al. compare in [18] the performance of
single-path TCP over WiFi and LTE networks with the performance of Multipath TCP on
multi-homed devices by using active measurements and replaying HTTP traffic observed on
mobile applications. Their measurements show that Multipath TCP provides benefits for long
flows but not for short ones. For short flows, they show that selection of the interface for the
initial subflow is important from a performance point of view. Ferlin et al propose in [27] a
probing technique low performing paths and evaluate it in wireless networks.

Some previous works have also been done related to the use of proxies with smartphones.
Tachibana et al. [69] have developed a Multipath transfer solution based on SCTP with a proxy

25

4.1. AUTOMATED TEST FRAMEWORK

Figure 4.1: High-level view of the automated test framework

between the smartphones and the servers. Choffness et al. [13] analyse proxy behaviours and
how transparent web proxies interact with HTTP traffic in four major US cell carriers.

In the remaining of this chapter, we first present the methodology followed to perform our
measurements. Then, we describe the scenarios and the applications studied. After discussing
some issues with analysing the loopback interface and briefly giving some details on the
version of Multipath TCP on the smartphone, we show the performances of regular TCP
with smartphones. Afterwards, we measure the impact of using Multipath TCP on studied
applications. Finally, we conclude with the key lessons of those results.

4.1 Automated test framework

In this chapter, we describe results obtained by collecting a large amount of data in the
most reproducible way. To obtain them, we developed an automated test framework. An
overview of its operations is shown on figure 4.1. On a computer, we run scripts that monitor
our system. In particular, those control the smartphone to launch UI tests under various
conditions such as Multipath TCP mode, interfaces used by the smartphone, WiFi shaping
and much more. Once executed on the smartphone, our UI tests generate network traffic
between the smartphone and the proxy. This traffic is then captured both on the smartphone
and the server to allow further analyses. Overall, our automated framework contains 1602
lines of source code in Python, 1933 in Java and 585 in Bash (without counting comment
lines). This is publicly available at [8]. In the remaining of this section, we detail the two
main part of the framework: the UI tests and the control scripts.

26

4.1. AUTOMATED TEST FRAMEWORK

4.1.1 Android’s UI tests

The first one contains UI tests that mimic user interactions with the smartphone applications
to produce a given high-level scenario. Those scenarios can either be representative use cases
of the studied applications or be used as tools to configure the smartphone. In both cases,
those are implemented in Java using the MonkeyRunner Android UI testing tool [31]. Those
tests are designed to face unusual situations, such as the failure of the device, a loss of
connectivity or unusual behaviour of the application (application wanting the user to rate it,
etc.). In order to have coherent results along days mainly due to changes in the applications,
we stopped updating them on November 15th, 2014. The corresponding versions of studied
applications are detailed in [8]. Note that before launching any test, caches of all applications
are emptied. This prevents optimisation of applications based on previous runs (such as storing
files that need to be reloaded each time) and makes the tests more reproducible.

4.1.2 Controlling execution of UI tests

The second one contains Python and Bash scripts that allow a computer to control the
smartphone. It was designed to be reusable for other projects with smartphones but also to be
as modular as possible, i.e. parameters can be defined in order to easily change the behaviour
of the tests. Moreover, the framework is able to cope with multiple unexpected events, such
as UI test failures or situations caused by the unreliability of the smartphone.

All settings are defined in lt_settings.py file. It is possible to override some of them by
passing in argument another Python script file which contains all variables which will replace
default ones. For instance we can easily change settings related to Multipath TCP, e.g. path
manager, scheduler, backup mode, TCP Congestion Control algorithm ; to the router, e.g.
delay, losses, shaping ; to the smartphone, e.g. enable or disable interfaces, change default
route, change proxy method, etc.; to the environment, etc. A script to launch a Python
console is also available to get quickly data or to do some tests.

These scripts are also responsible for collecting data and starting network traffic captures on
both the smartphone and the proxy. Indeed, we used tcpdump [70] on both smartphone and
proxy to have a full view of what is going on. Like this, all sent packets are seen, and we can
observe, for instance, TCP retransmissions due to lost packets. On the smartphone, two files
are generated. The first one contains all traffic going on the loopback interface (lo) and has
its name suffixed by _lo. This is especially useful to easily see which servers the application
contacts and what is happening on it. It was also used for debugging purpose, as described
in section 4.4. The second one contains all traffic seen by the actual interfaces, i.e. the
WiFi one (wlan0) and the cellular one (rmnet0). Its name is either suffixed by _any (if both
interfaces are up) or by the name of the interface (if only one is up). This allows to see the
actual traffic exchanged between the smartphone and the server. On the server, only one file
is generated and captures traffic going on its actual interface. Note that although statistic
files return various values, an additional care must be taken when the trace was taken in the

27

https://github.com/MPTCP-smartphone-thesis/uitests/blob/master/lt_settings.py

4.2. METHODOLOGY

receiver direction of the data stream. Indeed, round-trip-times do not reflect the reality and
information about retransmissions are biased (losses are not seen, etc.).

4.2 Methodology

To perform our measurements, we mainly rely on our automated test framework as described
in section 4.1 on page 26. With it, this would be sufficient to perform regular TCP mea-
surements, since applications work under this protocol. However, since we are interested in
results with Multipath TCP, additional setup is required. Indeed, although our smartphone
is Multipath TCP capable, this is not the case for remote servers that will be contacted by
the studied applications. To cope with that, we installed a SOCKS proxy, and configured the
smartphone to enforce all connections to go through the proxy which is Multipath TCP capa-
ble as described on section 3.4 on page 15. For each Multipath TCP connection between the
smartphone and the proxy corresponds a TCP connection between the proxy and the remote
server. Like this, the smartphone can use Multipath TCP without any change on the server
side. The choice of SOCKS is motivated by its slight overhead, though it is not zero.

As shown on figure 3.1 on page 12, the smartphone has connectivity with two different
interfaces. The WiFi network is provided by a router with a 802.11n interface on the 5 GHz
frequency band with a bit rate of 65 to 72 Mbits. The router was connected with a 100 Mbits
link to the university network. In order to avoid possible interferences, we ensured that no
other WiFi network was emitting in the same range of frequency in the building. The cellular
network is a commercial one and is provided by Proximus, the biggest network communication
company in Belgium. The smartphone can either be connected using the 3G or the 4G. The
test scenarios were run in a random order on each day to prevent time correlation between
the results and the time tests were launched. Note that all the tests were performed during
the night to prevent interferences caused by other people on networks.

To obtain our results, we rely on our analysis scripts described in section 3.5.1 on page 18.

4.3 Application studied

This section describes the scenarios used to represent a relevant usage of smartphones. The
studied applications cover various usage, from cloud storage (Dropbox, Google Drive) to
web browsing (Firefox), passing through music (Spotify) and video streaming (Dailymotion,
Youtube) and social networking (Facebook, Messenger). Even if scenarios are based on
applications, the focus is not on applications themselves. The selection was first based on
the kind of traffic applications generate, then on their popularity on the Google Play Store
(in September 2014). Moreover, we also checked if our applications use TCP and not other
protocols like UDP.

28

4.3. APPLICATION STUDIED

Our scenarios can be split into two categories: upload intensive scenarios (the smartphone
mainly sends data to the server) and download intensive scenarios (the smartphone mainly
receives data from the server). Note that we limit the duration of tests to 120 seconds, in
order to have sufficient time to run tests during the night.

4.3.1 Upload intensive scenarios

We first consider two interactive applications : Facebook and Messenger. We expect these
applications to send small volumes of data. With the Facebook application, our test first
updates the news feed, it then writes a new status, takes and shares a new photo with a
description and finally performs a new check out status. This scenario is repeated three times
per test. Facebook only uses HTTPS during this test. With Messenger, it sends a text
message, then puts a smiley and finally sends a new photo. This scenario is also repeated 3
times for each test and all data are sent over HTTPS.

Then we consider two cloud storage applications : Dropbox and Google Drive. With Dropbox,
the test creates a fresh file containing 20 MB of purely random data and uploads it. It always
uses random data to prevent Dropbox from compressing it [22]. If the upload was fast, it
creates and sends a second one. All the data transfers are done above HTTPS. The same
high-level scenario is used with Google Drive.

4.3.2 Download intensive scenarios

Our second class of applications contains the ones that mainly receive data. Our first test
uses Firefox to browse the web always from a cleaned session. It simply retrieves the main
page of the top 12 Alexa web sites. Firefox uses mainly ports 80 (HTTP) and 443 (HTTPS).
The tested version was Firefox Beta 33.0.

Our second application is Spotify. This is a music delivery application. The test plays a
new music (shuffle play feature) for 75 seconds. The music files are retrieved over HTTP
but the application also uses HTTPS and TCP connections on port 4070 (used for Trivial IP
Encryption).

Finally, we consider two popular video streaming applications: Dailymotion and Youtube.
These applications are used to stream movies from cloud servers. They both measure the
available bandwidth and adapt the requested video bit rate accordingly [64, 1]. With Dailymo-
tion, the test plays three different videos in the same order and watches them for 25 seconds.
Those videos are available in HD and we configured the application to fetch the best possible
quality even when using cellular networks. Dailymotion uses HTTP and HTTPS. The same
kind of test is performed with the Youtube application. In this case, only HTTPS is used and
the video seems to be transferred using two TCP connections at the same time that evolve
quite similarly.

29

4.4. ABOUT LOOPBACK INTERFACE

4.4 About loopback interface

As explained in section 4.1 on page 26, our automated test framework is able to collect traces
on loopback interface (lo) and actual ones (rmnet0, wlan0) on the smartphone. The main
advantage of listening to the lo interface is that we can see the actual traffic sent by the
applications to the servers, without any SOCKS wrapping. This means, amongst others, that
we can know the IP address and the port of the remote servers. However, we face two main
issues in analysing this interface.

First, we observe only unidirectional connections in the collected PCAP files, i.e. packets
going either from the smartphone to the servers or from the servers to the smartphone. This
is a consequence of the use of the RedSocks proxy (included in the ShadowSocks client).
Indeed, all the upload traffic is directed to the local host on port 8123, whereas the download
traffic comes from actual IP addresses and ports of remote servers. To cope with that, we
leverage our analysis scripts by adding an option to rewrite the PCAP file with tshark [75] and
mergecap [41], such as the connections become bidirectional. The merge can be done based
on the ephemeral port number used by the application, since the number of the connections
and the time of the capture (less than 5 minutes) is small enough to assume that the ephemeral
port will not be used twice in the same PCAP file.

Second, we note that the IP address and the port indicated in the packets of this loopback
interface and received by the smartphone from the servers do not reflect the actual path
followed by the packet. Therefore, the loopback interface cannot be used to monitor the
use of the different interfaces. Moreover, events such as reinjections and retransmissions are
present on actual interfaces, but are hidden for the loopback one. This is why the remaining
of our analyses is made on the rmnet0 and wlan0 interfaces. Note that it is still possible to
collect the real IP addresses and ports of the remote server thanks to the SOCKS command
sent by the smartphone to the proxy. This is explained in details in section 3.4.2 on page 16.
However, those traces captured on the loopback interface were still useful to detect abnormal
behaviours of the smartphone. Indeed, we observed strange results with some traces captured
on wlan0 and rmnet0, and we noticed that their corresponding lo traces were empty. Thanks
to them, we were able to filter such traces.

4.5 Multipath TCP on smartphone

Several backports of the Multipath TCP kernel on Android smartphones have been released
in the last years. However, these ports were often based on old versions of the Multipath TCP
kernel. For this work, we rely on a backport of the latest version 0.89.5 of the Multipath TCP
Linux kernel [52] on a Nexus 5 running Android 4.4.4 with some modifications, as explained
in section 3.3 on page 13. The Multipath TCP kernel controls the establishment of subflows
on the available interfaces thanks to a path manager. We use the Full Mesh path manager
that creates a subflow over all network interfaces for each established TCP connection. The

30

4.6. SINGLE-PATH MEASUREMENTS

Multipath TCP scheduler studied is the default one, i.e. it sends data on the available subflow
having the lowest round-trip-time.

All the popular smartphone applications use TCP to interact with servers managed by the ap-
plication developers. As of this writing, it is impossible to convince them to install Multipath
TCP on their servers. To overcome this issue, we configured the smartphone to use a Multi-
path TCP capable SOCKS proxy server for all its connections, as explained in section 3.4 on
page 15. Each connection initiated by the smartphone is thus redirected to, and terminated
at, the proxy server. Thanks to this setup, the smartphone can use Multipath TCP over the
cellular and WiFi interfaces while interacting with legacy servers.

This setup allows us to capture all the packets sent by both the smartphone and the SOCKS
server. We captured more than 85,000 connections over about 1200 tests conducted in
February and March 2015 carrying more than 15 GBytes of data.

4.6 Single-path measurements

Before analysing the behaviour of Multipath TCP, we first take a look at classical single-path
measurements to see the traffic generated by the smartphone with a WiFi access point. We
also characterise the performances of both WiFi and cellular interfaces.

4.6.1 Behaviour of TCP connections with WiFi

In order to analyse Multipath TCP, it is interesting to take first a look at the behaviour
of the applications with classical TCP. Those are not homogeneous; they present various
different characteristics in terms of number of connections, duration of the connections or
exchanged bytes. Following results were obtained using only the WiFi interface (wlan) with
TCP without shaping. A first overview of the TCP connections established by applications is
shown on figure 4.2 on page 33. Each point on that figure corresponds to a TCP connection.
The x-axis (in logarithmic scale) shows the duration in seconds of the connection and the
y-axis indicates the total number of bytes exchanged (in both directions). Aggregated data
per application is also shown on table 4.1 on the next page. Clearly, we see that Firefox
is the application that uses the largest number of connections (those represent 63.9% of
all connections). This is quite expected since our scenario contacts the top 12 Alexa web
sites. Dropbox (31.75%), Youtube (29.7%), Drive (19.9%), Dailymotion (9.6%) and Spotify
(4.96%) are the applications that exchange the largest number of bytes (in any direction).
However, we observe that Facebook has some connections that last more than 100 seconds,
but those are quite light in terms of bytes (no connection exceeds the megabyte).

Although we expect to encounter various network profiles with the different applications, the
behaviour of Firefox is quite surprising. Indeed, at the bottom of the figure 4.2 on page 33, we
observe a line composed of hundreds of Firefox’s connections that last up to ten seconds but
that only carry seven bytes of data. After investigation, this behaviour can be explained by

31

4.6. SINGLE-PATH MEASUREMENTS

Application # connect. Bytes Bytes # tests
smart. to server server to smart.

Dailymotion 76.0 22,202.4 12,246,855.1 5
Drive 17.0 21,601,411.4 3,821,191.2 5

Dropbox 21.5 40,519,111.25 58,240.5 4
Facebook 30.8 503,166.4 331,780.2 5
Firefox 440.2 162,958.0 39,895,76.6 5

Messenger 22.33 168,250.33 32,039.33 3
Spotify 42.4 44,665.2 6,288,466.8 5
Youtube 38.8 247,342.6 37,726,634.2 5

Table 4.1: Means of high-level characteristics for each studied application.

two factors. The first one is that Firefox preventively opens new TCP connections, but these
are sometimes never used (i.e., the connection is open but no data bytes are exchanged). The
second one is the SOCKS proxy, and is related to the seven bytes needed to allow the proxy to
open the connection with the remote server, as explained in section 3.4 on page 15. Indeed,
when Firefox tries to connect to a web site (let say www.example.org), the smartphone
sends a DNS request over a TCP connection to the proxy. Upon reception of the answer,
the ShadowSocks client opens a new connection to the proxy and then sends the CONNECT
request (which is seven bytes long) needed to establish the connection between the proxy and
the remote server.

Still on figure 4.2 on the facing page, there is a fog of Firefox’s connections that last up
to one second and exchange hundreds of bytes. Observing the timing of those connections,
those correspond to DNS requests and responses on top of TCP: around 30-40 bytes from
the smartphone and around 150 bytes to the smartphone.

Considering all applications together, connections can be categorised into three groups: (i)
short connections (less than one second) carrying a relatively small amount of data, (ii) long
connections carrying most of the data, and (iii) long connections carrying a small amount of
data. Still taking the TCP connections with only wlan interface enabled without shaping,
we observe that 74.05% of the connections last less than one second, but they only carry
1.14% of all data bytes. In the remaining long connections, 32.19% carry more than 10 KB
of data and represents 98.58% of the overall data volume. The remaining 67.81% of the
long connections exchange less than 10 KB of data, which represents only 0.28% of data
exchanged. This tends to match many other measurement studies that have identified that
most TCP connections are short and most of the traffic is carried by a small fraction of all
TCP connections [30].

32

4.6. SINGLE-PATH MEASUREMENTS

0 100 101 102 103

Duration [s]
0

100

101

102

103

104

105

106

107

108

By
te

s
on

 c
on

ne
ct

io
n Dailymotion

Drive
Dropbox
Facebook
Firefox
Messenger
Spotify
Youtube

Figure 4.2: Smartphone applications present different network profiles.

4.6.2 Characterisation of interfaces

The round-trip-time (RTT) is one of the key factor that influences the performance of TCP
connections. We used tcptrace [50] to compute the average round-trip-time for each of
the captured TCP connections. Figure 4.3 on the next page provides the CDF of the round-
trip-times measures among all the TCP connections used in the upstream (data sent by
the smartphone) and downstream directions. The 4G network exhibits a round-trip-time in
upstream with a median of 42.6 msec and a mean of 50 msec. In the downstream direction,
the median round-trip-time increases up to 38.1 msec and a mean of 41 msec. On the
WiFi network, around 60% of the connections have a round-trip-time shorter than 15 msec.
Unsurprisingly, there is some bufferbloat1 on the cellular network, mainly in the upstream
direction, but the bufferbloat remains reasonable compared to other networks [28].

RTTs presented on figure 4.3 on the following page shows expected results, i.e. WiFi has
the shortest RTT, then 4G and finally 3G. To confirm those results, we also generate the
CDF of the RTT measures using Multipath TCP with only one interface up on figure 4.4 and
we expect to obtain same results. Although both 3G and 4G keep the same RTT (which is
expected), the results for the mean RTT of the WiFi interface are surprising. However, looking
at the perceived RTT using both WiFi and cellular (3G or 4G) interfaces with Multipath TCP
gives very similar results to the ones perceived with regular TCP with only one interface up
(like figure 4.3 on the next page). The reason of such results for Multipath TCP with only
wlan up is unclear for us and the academic staff.

1Bufferbloat: when too much packets are buffered on the network, it causes high latency, delay variation
and then can reduce the overall network throughput.

33

4.7. MULTIPLE-PATHS MEASUREMENTS

0 50 100 150 200 250 300 350 400
RTT (ms)

0.0

0.2

0.4

0.6

0.8

1.0

3G Up
3G Down
4G Up
4G Down
Wi-Fi Up
Wi-Fi Down

Figure 4.3: CDF of the mean Round-Trip-Time of TCP connections with one interface up.

Interfaces also present different bandwidths. During the night, we observe for 3G a upload
bandwidth of around 2 Mbits and a download one of around 20 Mbits. Those number increases
up to 15 Mbits in upload and around 60 to 80 Mbits in download for 4G. For WiFi, we obtain
around 60 Mbits in both directions.

4.7 Multiple-paths measurements

The previous section has shown that our scenarios cover various utilisation of TCP. In this
section, we now enable Multipath TCP (with both interfaces up) and rerun the tests to
understand how our eight applications interact with Multipath TCP. Note that we didn’t
encounter any incompatibility with the applications and Multipath TCP, i.e. if remote servers
were Multipath TCP capable, no changes would be needed on the applications.

Multipath TCP can be used in different modes [54] on smartphones. For our measurements,
we focus on a configuration where Multipath TCP tries to pool the resources of the cellular
and the WiFi interfaces simultaneously since the handover and backup performance have
already been studied in [54].

4.7.1 Distribution of traffic on both interfaces

When a 4G and a WiFi interface are pooled together it is interesting to analyse which fraction
of the traffic is sent over which interface. With the Multipath TCP implementation in the
Linux kernel [52], this fraction depends on the interactions between the congestion control
scheme, the packet scheduler, the underlying networks and the application.

34

4.7. MULTIPLE-PATHS MEASUREMENTS

0 50 100 150 200 250 300 350 400
RTT (ms)

0.0

0.2

0.4

0.6

0.8

1.0

3G Up
3G Down
4G Up
4G Down
Wi-Fi Up
Wi-Fi Down

Figure 4.4: CDF of the mean Round-Trip-Time of Multipath TCP connections with one interface up.

On figure 4.5 on the following page, each point corresponds to one Multipath TCP connec-
tion, and the x axis indicates the number of bytes transferred by this connection from the
smartphone to servers. We observe that 92.4% of all the connections only use the WiFi
interface, but these connections only carry 1.1% of all data bytes.

There are several factors that explain why Multipath TCP does not use the cellular network
for these connections. The first factor is the configured default route. When an application
initiates a connection, Multipath TCP sends the SYN over the interface with the default
route, in our case the WiFi interface. This is the standard configuration of Android smart-
phones that prefers the WiFi interface when it is active. If the Multipath TCP connection
is short and only transfers a few KBytes or less, then most of the data fits inside the ini-
tial congestion window and can be sent over the WiFi interface while the second subflow is
established over the cellular interface.

An example of application pushing data as fast as possible while opening a new subflow on
the other interface is shown on figure 4.6 on page 37. The opening of a new subflow is a
4-way handshake. The smartphone first sends a SYN with the MP_JOIN option containing the
identifier of the Multipath TCP connection we want to attach this subflow. A process similar
to opening a regular TCP connection occurs, at the difference it needs a fourth packet (the
last ACK between the proxy and the smartphone) and no data can be sent before reception of
this last ACK. This is needed to authenticate the end-hosts, as explained in section 2.2.2 on
page 6. If the application pushes data as fast as possible, it can send two congestion windows
before the establishment of the other subflow (since it takes two RTTs on the other interface),
which can be sufficient to transfer all data for small connections. Furthermore, the round-trip-
time over the WiFi interface is shorter than over the cellular interface. This implies that, as
long as the congestion window is open over the WiFi interface, Multipath TCP’s RTT-based

35

4.7. MULTIPLE-PATHS MEASUREMENTS

0 100 101 102 103 104 105 106 107 108

Bytes on connection
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 b

yt
es

 o
n

ce
llu

la
r

Dailymotion
Drive
Dropbox
Facebook
Firefox
Messenger
Spotify
Youtube

Figure 4.5: When the default route points to the WiFi interface, Multipath TCP mainly uses this
interface for the short connections.

scheduler [55] prefers to send packets over the WiFi interface. Indeed, 94.88% of connections
in that case have a better average RTT on WiFi than 4G (this percentage is 75.44% if the
maximal RTT seen is considered).

Those factors explain why data on the short connections is exchanged only over the WiFi
interface. We experimentally verified this by performing the same set of measurements with
the default route pointed to the 4G interface. Figure 4.7 on page 38 shows that when the
default route points to the cellular interface, most of short connections still use this one (as
annotated as 1), but it concerns only 53.22% of all connections. It seems that even if cellular
is the default interface, connections still mainly use WiFi, even for connections exchanging
less than 1 KB. This occurs for connections that do not push data as fast as possible data.
If the connection lasts more than two RTTs of the original flow, Multipath TCP has enough
time to establish the second subflow. The packet scheduler will then select the flow with the
lowest RTT — 82.74% of all connections have a WiFi flow with a lower maximal RTT than
the cellular one.

This explains the bottom of figure 4.7 on page 38 (annotated as 2): a set of Firefox con-
nections transfer fewer than 10,000 bytes always nearly exclusively on the WiFi interface. A
closer look at the packet traces reveals that these connections are part of the connection pool
managed by Firefox. This behaviour does not happen with other applications. When Firefox
creates a connection in the pool, the initial handshake and the SOCKS command to our
SOCKS server are sent. These packets are exchanged over the cellular interface and Firefox
does not send immediately data over the established connection. This leaves enough time to

36

4.7. MULTIPLE-PATHS MEASUREMENTS

Smartphone default interface Proxy Smartphone other interface

SYN

SYN/ACK

ACK + data SYN + MP_JOIN

ACK SYN/ACK + MP_JOIN

ACK + data ACK + MP_JOIN

ACK ACK

data

Figure 4.6: Time sequence diagram showing the smartphone opening a new subflow (assuming both
interfaces have the same RTT).

Multipath TCP to create the subflow over the WiFi interface and to measure its round-trip-
time. When Firefox starts to transmit data over such a connection, the RTT-based scheduler
used by Multipath TCP prefers the WiFi subflow and no data (except the initial SOCKS
command) is sent over the cellular subflow.

When the applications push more data over the Multipath TCP connection, the distribution
of the traffic between the cellular and the WiFi interface also depends on the evolution of the
congestion windows over both subflows. If the application pushes data at a low rate, then
the packet scheduler will send it over the lowest-RTT interface (WiFi in our case). However,
this can be fragile. If one packet is lost, then the congestion window is reduced and the next
data might be sent over the other interface. If the application pushes data at a higher rate,
then the congestion window over the lowest-RTT interface is not large enough and the packet
scheduler will send data over the second subflow.

4.7.2 Multipath TCP’s behaviour with shaped networks

An important benefit of the resource pooling capabilities of Multipath TCP is its ability to
adapt to various networking conditions. When a smartphone moves, the performance of the
WiFi and cellular interfaces often vary. Previous work with bulk transfer applications has
shown that Multipath TCP can adapt to heterogeneous networks having different bandwidths
and delays [56]. Our measurement framework also allows to explore the performance of
smartphone applications under various network conditions.

As an illustration, we analyse the packet traces collected when the smartphone is uploading
with Dropbox. The figure 4.8 on page 39 shows the means of the throughput T ∗ on con-
nections uploading at least 1 MB. T ∗ is computed at each packet over the last 250 packets
at Multipath TCP level. For instance, if a connection carries 500 packets, there will be 251
points for T ∗. This is done to minimise the effect of the shaping made by the Dropbox
application, which sends data by blocks of 4 MB with some idle time between them. We first
consider a WiFi access point attached to a DSL router having 1 Mbps of upstream bandwidth

37

4.7. MULTIPLE-PATHS MEASUREMENTS

0 100 101 102 103 104 105 106 107 108

Bytes on connection
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 b

yt
es

 o
n

ce
llu

la
r

1

2

Dailymotion
Drive
Dropbox
Facebook
Firefox
Messenger
Spotify
Youtube

Figure 4.7: When the default route points to the cellular interface, lot of connections are aspired by
the WiFi interface.

and 15 Mbps of downstream bandwidth. When the smartphone is attached to both this
WiFi access point and the 4G network, the smartphone sends 91% of the data over the 4G
network. This allows the smartphone to reach 8-9 Mbits in the upload direction, which is
a significant improvement relative to the WiFi bandwidth under shaping. A closer look at
the packet traces reveals that Multipath TCP achieves sometimes a lower performance than
regular TCP over the 4G network.

As a second test case, we consider our standard WiFi access and the 4G network limited down
to a few hundred kilobits per second. This is the shaping enforced by our cellular network
once we reach the monthly traffic volume quota. In this case, 98.8% of the bytes are sent over
the WiFi interface. This allows Multipath TCP to reach a thoughtput of around 18-20 Mbits,
very close to the one achieved by Multipath TCP with 4G and WiFi. Multipath TCP can
thus avoid being trapped in a low performance network.

4.7.3 Analysis of the delay seen by applications

Although the distribution of the flow across both interfaces is interesting from a technical
point of view, the user has little care for that. Instead, users are interested in two main
important characteristics of the network: the throughput and the delay perceived. In the
general case, the throughput is not the critical point; rather, most of the smartphone usages
require lot of interactivity between the devices and the servers. In order to evaluate the
possible benefits of Multipath TCP on this point, we compute the round-trip-time of all data

38

4.7. MULTIPLE-PATHS MEASUREMENTS

WiFi 4G MPTCP 4G (WiFi 1M) MPTCP 3G (3G 100k) MPTCP 4G
0

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 [M

bi
ts

/s
]

Figure 4.8: Throughput of upload connections with at least 1 MB of data with Dropbox.

packets in the upload direction. The density function function of those round-trip-times is
shown on figure 4.9. We only consider traces without shaping in five conditions: TCP with
WiFi alone, TCP with 3G alone, TCP with 4G alone, Multipath TCP with both 3G and WiFi
and Multipath TCP with both 4G and WiFi. For clarity, we show the results of the three first
conditions on figure 4.9a and those of the two last ones on figure 4.9b. Note that for TCP, the
round-trip-time is computed by tcptrace whereas for Multipath TCP, the round-trip-time is
computed at Multipath TCP level by mptcptrace.

0 50 100 150 200 250 300 350 400
RTT seen by smartphone [ms]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

De
ns

ity
 fu

nc
tio

n

TCP WiFi
TCP 4G
TCP 3G

(a) Using TCP with one interface.

0 50 100 150 200 250 300 350 400
RTT seen by smartphone [ms]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

De
ns

ity
 fu

nc
tio

n

MPTCP 4G
MPTCP 3G

(b) Using Multipath TCP with both inter-
faces.

Figure 4.9: Density function of the round-trip-times seen by the smartphone on unshaped networks.

Interestingly, we observe that the density function of the delay indicates a lower delay at
Multipath TCP level than the delay obtained by the worst interface alone. Furthermore, in
the case of Multipath TCP with both 4G and WiFi, it exhibits lower round-trip-times than

39

4.8. CONCLUSION

the best interface (which is the WiFi one) and a lower jitter. This indicates that applications
will perceive a more interactive and stable network in Multipath TCP than in TCP.

4.7.4 Efficiency of Multipath TCP

In some cases, data transferred by Multipath TCP on one flow can be retransmitted again on
the other flow. This phenomenon is called reinjection [63] and might limit the performance
of Multipath TCP in some circumstances [68]. We used mptcptrace [32] to compute the
reinjections over all observed Multipath TCP connections.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Fraction of data bytes

0.80

0.85

0.90

0.95

1.00

CD
F

Reinjection
Retransmission

(a) From smartphone to proxy.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Fraction of data bytes

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

CD
F

Reinjection
Retransmission

(b) From proxy to smartphone.

Figure 4.10: CDFs of connections with the fraction of reinjections and retransmissions using MPTCP
with both WiFi and 4G up.

In our experiments, reinjections in the upstream direction are rare, as shown on the fig-
ure 4.10a. Indeed, fewer than half a percent of all connections include a reinjection, whereas
more than 15% of connections encounter TCP retransmissions. Moreover, we observe that
those reinjections are short (no more than 5 KB are reinjected on a connection) and only
affect biggest connections (no reinjection on connections with less than 1 KB of data). Note
that in the figure 4.10, we only consider connections with at least two subflows (since single
flow connections are irrelevant in the context of reinjections). In the downstream direction,
reinjections are observed on only 2.5% of all connections (as shown on figure 4.10b) but up
to 60% of data bytes of a connection can be reinjected. Nevertheless, we have to put those
results into perspective knowing that the largest observed reinjection concerned 30 KB on a
transfer of 5 MB of data.

4.8 Conclusion

In this chapter, we presented our measurements made using our test framework. This tool is
publicly available and can be reused by researchers to conduct reproducible experiments with
traffic generated by real applications with a specified scenario.

40

4.8. CONCLUSION

We studied the interactions between eight very different smartphone applications covering
various usages and the latest version of the Multipath TCP implementation in the Linux
kernel. First, all the studied applications worked without any modifications with Multipath
TCP, showing that the protocol is well compatible with existing applications. Second, for short
connections (which are most of the whole connections established by our scenarios), Multipath
TCP mainly uses the default route to forward data. This shows the importance of the default
route on the smartphone case. A further discussion about that point will be described in
chapter 6. Third, for long connections, Multipath TCP enables applications to pool the
bandwidth on the cellular and WiFi interfaces and maintains good performances when one of
them faces bandwidth restrictions. Since Android smartphones mainly associate to a network
by relying on metrics like signal-to-noise ratio, this can be beneficial for the user experience.
Fourth, the delay and the jitter perceived by the applications can be lowered by using Multipath
TCP in Full Mesh mode, allowing better interactivity and so better user experience. Fifth,
the overhead of Multipath TCP related to reinjections is very small compared to the TCP
overhead (retransmissions), especially in the upload case.

So far, we discussed about measurements made in controlled scenarios with a motionless
device. However, those scenarios are not actual pictures of smartphones usages, but an
approximation. Furthermore, users do not stay eternally stuck at a given location. The
discussion about the performances of Multipath TCP with traffic generated by real users
continues in chapter 5.

41

Chapter 5

A closer look at real traffic

In the previous chapter, we studied the interactions between Multipath TCP and smartphones
applications in a controlled environment. However, although our scenarios cover various kinds
of smartphone usages, they give little indications about the traffic generated by real users. The
intent of this chapter is to fill this gap by analysing the packet traces generated by two different
datasets: a Multipath TCP capable server and Multipath TCP capable smartphones.

There are previous works related to our chapter. Livadariu et al. explore the performance
of Multipath TCP on dual-stack hosts in [46] and show that performance over IPv6 and
IPv4 paths differ. Ferlin et al. analyse how Multipath TCP reacts to bufferbloat in [28]
and propose a mitigation technique. As of this writing, this mitigation technique has not
been included in the Linux Multipath TCP implementation. Other measurements have been
conducted in the Nornet testbed. Hesmans et al. analyse in [34] a one week-long subset
of the multipath-tcp.org dataset studied in this chapter. This workshop paper focuses
on the control plane aspects of Multipath TCP while our master thesis also considers real
smartphones and analyses the packet traces in much more details than [34].

This chapter is organised as follow. First, we describe our two datasets. Then, we propose
a broad comparative analysis between our two datasets on various points, like the subflows
or the Multipath TCP acknowledgements. After that, we follow a very fine-grained study to
explain some imperfections related to the use of Multipath TCP, and in particular to subflows
not used, reinjections and receive window limitations. Finally, we conclude this chapter by
summarising the key lessons of our measurements.

43

5.1. DESCRIPTION OF THE DATASETS

5.1 Description of the datasets

In this section, we present the two analysed datasets: the multipath-tcp.org traces and the
smartphones ones. Although the first dataset has nothing particular related to smartphones,
it’s still interesting to see the behaviour of Multipath TCP in such different environments.
As in previous chapter, we still extract information from traces thanks to our analysis scripts
explained in section 3.5.1 on page 18.

5.1.1 multipath-tcp.org traces

For this first dataset, we use tcpdump to collect all packets sent and received by the server
that supports multipath-tcp.org. Indeed, the Multipath TCP implementation in the Linux
kernel [52] is available from multipath-tcp.org and thousands of users have downloaded and
installed it on their computer. In addition to that, this host also supports other web servers,
a FTP server and uses an iperf daemon to enable researchers and other Multipath TCP
users to perform various tests. In the remaining of this chapter, this dataset is called the
server dataset. We extract from the traces the packets that correspond to Multipath TCP
connections, which can be identified by looking at the utilisation of the Multipath TCP options
during the three-way handshake.

Over the five month period from November 17th, 2014 to April 27th, 2015, we have captured
more than 400 millions packets from Multipath TCP connections. Overall, 153.5 GBytes of
data were exchanged by using Multipath TCP. The server supports both IPv4 and IPv6. Over
this period, we received Multipath TCP packets from 7616 different IPv4 addresses (resp.
2496 IPv6 addresses) belonging to 4354 different /24 subnets (resp. 437 different /48 IPv6
subnets).

5.1.2 Smartphones traces

Our second dataset covers the traffic produced by a dozen of Nexus 5 smartphones running
Android 4.4 with a modified Linux kernel that includes latest Multipath TCP patch (as pre-
sented in section 4.5 on page 30). This dataset allows us to understand how real smartphone
applications behave when using Multipath TCP instead of regular TCP. However, installing
Multipath TCP on the smartphones is not sufficient to use it for all connections established
by applications. As of this writing, there are probably only a few dozens of Multipath TCP
enabled servers on the Internet and these are rarely accessed by real smartphone applica-
tions. To force these applications to use Multipath TCP, we installed ShadowSocks on each
smartphone and configured it to use a SOCKS-like server that supports Multipath TCP for all
TCP connections as already described in section 3.4 on page 15. The smartphones thus use
Multipath TCP over their WiFi and cellular interfaces to reach our SOCKS-like server and
this server uses regular TCP to interact with the final destinations. The setup is summarised
by the figure 3.1 on page 12.

44

http://multipath-tcp.org
http://multipath-tcp.org

5.2. ANALYSIS

From the server side, all the connections from our dozen smartphones appear as coming
from our SOCKS-like server. This implies that the real (cellular or WiFi) IP address of the
smartphone is not visible to the servers that it contacts. This might affect the operation of
some servers that adapt their behaviour (e.g. the initial congestion window) in function of
the client IP address. Note that since ShadowSocks does not support IPv6, those traces only
contain IPv4 packets. In the remaining of this chapter, we call this dataset the smartphones
dataset.

We also installed on each smartphone the MultipathControl Android application (described
in section 3.5.2 on page 22) that manages the utilisation of the cellular and WiFi interfaces.
Smartphones with Android 4.4 assume that only one wireless interface is active at a time.
When such a smartphone switches from cellular to WiFi, it automatically resets all existing
TCP connections by using Android specific functions. Our application enables the cellular and
WiFi interfaces simultaneously. Our application also controls the routing tables and updates
the policy routes that are required for Multipath TCP every time the smartphone connects
to a wireless network. Thanks to this application, our modified Nexus 5 can be used by any
user since it does not require any networking knowledge.

To collect data, we encouraged our test users to use their smartphones as heavy users. They
installed new applications and often listened to web radios when walking. We also used
tcpdump on the SOCKS-like proxy to collect all the packets viewed by the proxy. In our
analyses, we filtered those packets to consider only packets exchanged between the smart-
phones and the proxy. Without that filter, we could consider Multipath TCP connections
between the proxy and a Multipath TCP capable server (like multipath-tcp.org), which
could bias our results. Over a period of 7 weeks from March 8th, 2015 to April 29th, 2015,
we collected more than 65 millions Multipath TCP packets for a total of 20.3 GBytes over
337,587 connections.

5.2 Analysis

We first analyse the main characteristics of the Multipath TCP connections in the two col-
lected datasets. In the server traces, we identify 183,795 Multipath TCP connections. These
connections use several destination ports. Most (86.83 percent) connections use port 80.
The remaining connections are on ports 21 (4.97 percent), 5001 (1.73 percent) and other
port numbers linked to passive-mode FTP connections and a private HTTP proxy used for a
few tests. Looking at the exchanged bytes, the connections on port 80 consume 26.8 percent
of the total volume (22.14 percent on port 5001 iperf).

For the smartphones traces, the destination ports of the captured packets are not sufficient to
identify the application level protocol. Since the smartphone connects through a SOCKS-like
proxy, all the packets are sent towards the destination port used by our proxy (443 in our
case to prevent middlebox interference). To extract the real destination port, we parse the
SOCKS command that is sent by the ShadowSocks client at the beginning of each TCP

45

5.2. ANALYSIS

connection and extract the real destination port (details about these messages are given in
section 3.4 on page 15). We find that 30.71 percent of the connections use port 53. This
is because ShadowSocks client sends all DNS requests over TCP to the SOCKS-like proxy.
The remaining connections are mainly on ports 80 and 443 with respectively 29.68 and 29.63
percents.

10-2 10-1 100 101 102 103 104 105 106

Seconds

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

server
smartphone

Figure 5.1: Duration of the Multipath TCP connections.

Another interesting point is the duration of the observed connections. Figure 5.1 plots the
durations of the Multipath TCP connections observed on both the server and the smartphones
datasets. We observe that most of the Multipath TCP connections last less than 10 seconds
on both traces: 65.77 percent on the smartphones dataset compared to 75.31 percent on the
server one. The smartphones traces contain more shorter and longer connections than the
server traces. On the server traces, only 1.51 percent of the connections last more than 100
seconds compare to the smartphones traces with 19.83 percent. Some of these connections
on smartphones last for more than one entire day. In particular, we find that one of those
one day lasting connections carried only 10 KBytes by establishing (and using) seven different
subflows. Looking at the time-sequence diagram, we observe that data is sent in a periodic
way with same amount of bytes, except a few packets. This connection is probably related
to the smartphone notification services.

Looking at the volume carried by each connection, we observe in figure 5.2 on the next page a
different trend than for their durations. On the server traces, we observe that 5.74 percent of
the connections carry only two bytes. These correspond to probes that our public server often
receives. The two bytes represent start-marker and DATAFIN of a Multipath TCP connection.
In both datasets, most of the connections carry less than 10 KBytes of data: 86.55 percent
on the smartphones dataset and 79.48 percent on the server dataset. In the server dataset,
those should be the typical sizes of web connections. But it’s important to note that most
of the volume is transported in long connections, i.e., connections that last at least several

46

5.2. ANALYSIS

seconds. As expected, we observe more connections that carry more than one MBytes of
data in the server traces than in the smartphones traces.

100 101 102 103 104 105 106 107 108 109 1010

Data bytes

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

server
smartphone

Figure 5.2: Data bytes carried by Multipath TCP connections.

5.2.1 Middlebox interferences

Multipath TCP was designed to cope with a wide range of middleboxes [29, 33]. If the
middlebox interferes too much with the operation of Multipath TCP, the connection should
fallback to regular TCP. More concretely, if a middlebox modifies the payload, the mapping
between Multipath TCP-level and subflow-level sequence numbers is likely to be invalid and
this might corrupt the transferred data. Multipath TCP uses its own checksum to detect any
modification of payload, ensuring that the mappings are always correct. If the checksum fails,
the receiver will inform the problem to the remote peer, close all but one subflow and switch
to regular TCP.

Among the 184 thousands Multipath TCP connections in the server traces, we observe only
125 of them falling back to regular TCP, which happened with 28 distinctive client IP ad-
dresses. These include 91 HTTP connections and 34 FTP connections. The FTP interference
is expected and is due to Application Level Gateways running on NAT boxes. The HTTP
interference appears only on the direction from server to client and could have been caused
by transparent proxies deployed in cellular and enterprise networks [72]. In the smartphones
traces, we do not observe any fallback, but it only covers the cellular networks in a single
country that did not have deployed proxies when the traces were collected. The numbers of
fallbacks that we observe are lower than expected from earlier work [35].

47

5.2. ANALYSIS

5.2.2 Establishment of the subflows

With Multipath TCP, a host can send data over different paths (i.e. subflows). The number
of subflows that a host creates depends on various factors including the number of interfaces
it has and its path-manager as explained in section 2.2.5 on page 7. Table 5.1 reports
the number of (not necessarily concurrent) subflows that are observed in our two datasets.
For both datasets, we see most of the connections only have one subflow (around 60% for
the server dataset and 65% for the smartphones dataset). We analyse in more details the
addresses and ports used on the connections that have at least two subflows in the server
traces. We find that 49% of these connections were originated from different IP addresses and
were likely created by the full-mesh path manager if the remote host was using Linux. The
remaining 51% of the connections originated from a single address, which would correspond
to the ndiffports path manager. All the smartphones that we used were configured with
the full-mesh path manager. The number of subflows that they originate depends of the
availability of their wireless interfaces, the duration of the connections and the changes of
position during the connection lifetimes.

Dataset 1 SF 2 SFs 3 SFs 4 SFs >4 SFs
Server 61.56% 23.3% 9.17% 1.05% 4.92%

Smartphones 66.28% 31.29% 1.03% 0.53% 0.87%

Table 5.1: Number of subflows per Multipath TCP connection

We observe in both datasets connections that use more than two subflows. In the server
dataset, we observe 216 Multipath TCP connections that are composed of 16 subflows.
The maximum number of subflows per connection in this dataset is 68. This is not an
expected number even if not all subflows are active at the same time since the Multipath
TCP implementation in the Linux kernel supports only 32 concurrent subflows. This huge
number was probably due to researchers who performed tests with the monitored server.
For the smartphones traces, we observe 1773 connections that are composed of 4 subflows
(representing 0.53% of all connections) and one connection used 34 different subflows. On
the smartphones, having more than two subflows is a sign of handover over different WiFi
and/or cellular access points since IPv6 was not used on the smartphones.

5.2.3 Subflows round-trip-times

A subflow is established through a three-way handshake like a TCP connection. Thanks to
this exchange, the communicating hosts agree on the sequence numbers, the TCP options
that are used and also measure the initial value of the round-trip-time for the subflow. For the
Linux implementation of Multipath TCP, the round-trip-time measurement is an important
performance metric because as explained in section 2.1 on page 3, the default packet scheduler
prefers the subflows having the lowest round-trip-times.

48

5.2. ANALYSIS

10-1 100 101 102 103 104

Difference of avg RTT between worst and best subflow (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

server
smartphone

Figure 5.3: Difference of average RTT between worst and best subflows carrying at least 100 KB
from server (resp. proxy) to clients (resp. smartphones) on a same Multipath TCP connection.

We evaluate the round-trip-times heterogeneity of the Multipath TCP connections. For this,
we first extract from the two datasets the connections that have at least two subflows carrying
at least 100 KBytes each. These connections carry most of the data exchanged. For each con-
nection, we use tcptrace to compute the average round-trip-time over all the subflows that
it contains. Then, we extract for each connection the minimum and the maximum of these
average round-trip-times. Figure 5.3 plots the CDF of the delay between the fastest and the
slowest subflows over all connections. In the server traces, only 24.6% of the connections have
subflows whose round-trip-times are within 10 msec. In the smartphones traces, we observe
that 79.9% of the connections are composed of subflows whose round-trip-times are within
100 msec or less. In both datasets, only around 30% of the connections experience a differ-
ence lower than 15 ms. 33.5% of connections on the server have a round-trip-times difference
larger than 200 msec and 12.6% in the smartphones traces. We observe that bufferbloat is
present in both datasets since in 12.5% (resp. 4.6%) of the connections the round-trip-times
differ by more than one second in the server (resp. smartphones) traces.

5.2.4 Multipath TCP acknowledgements

As explained in section 2.3.1 on page 8, Multipath TCP uses two levels acknowledgements :
the regular TCP acknowledgements at the subflow level and the cumulative Multipath TCP
acknowledgements at the connection level. Over the years, TCP has been tuned to pack ac-
knowledgements and minimise their overhead [10]. When there are no loss and no reordering,
a TCP receiver should usually acknowledge every second packet that it receives. We clearly
observe this expected behaviour in figure 5.4 on the next page that plots the CDF of the
number of bytes that are acknowledged by the non-duplicate TCP acknowledgements in the

49

5.2. ANALYSIS

smartphones trace. We focus on the acknowledgements received by the proxy server since the
smartphones do not transmit a lot of data. This plot is a weighted CDF were the contribution
of each acknowledgement is weighted by the number of bytes that it acknowledges. We add a
filter on Multipath TCP connections with at least two subflows. We observe that 8.15 percent
of the TCP acknowledgements were duplicate acks. 11.13% of the TCP acks (accounting for
27.72% of the bytes acknowledgement) acknowledge one entire packet (1428 bytes).

0 100 101 102 103 104 105 106 107

Acks size (Bytes)

0.0

0.2

0.4

0.6

0.8

1.0

B
y
te

s
p
e
rc

e
n
ta

g
e

MPTCP acks
TCP acks

Figure 5.4: Size of the acknowledgements received by the proxy server

We now perform the same analysis by looking at the DSS option that carries the Multipath
TCP Data acknowledgements. The green curve in figure 5.4 shows the weighted cumulative
distribution of the number of bytes acked per Data acknowledgement. Compared with the
regular TCP acknowledgements, the Multipath TCP acknowledgements cover more bytes. In
this trace, we observe 12.6% of duplicate acknowledgements at the Multipath TCP level. In
the smartphones trace, 16.9% of the Data acks acknowledge 10,000 bytes of data or less while
for regular TCP 81% of the acks acknowledge 10,000 bytes or less. Furthermore, 42.2% of
the Data acks acknowledge more than 100 KBytes. In the opposite direction (smartphones
to proxy, not shown), we do not observe such a huge difference, but this is because the
smartphones only send small amounts of data.

The difference between the regular TCP acks and the Data acks is caused by the reordering
that occurs when data is sent over several subflows. Since the Data acks are cumulative they
can only be updated once all the previous data have been received from all subflows. If a
subflow with a long round-trip-time is used, it will cause reordering and data will remain in
the reordering queue on the receiver for a long period.

50

5.2. ANALYSIS

5.2.5 Utilisation of the subflows

The second point that we analyse is the actual distribution of the data among the different
active subflows. For this analysis, we select from each dataset the Multipath TCP connections
that contain at least two subflows that transmit data. On such a connection, data can be
sent in many ways among the different subflows. At one extreme, almost all bytes can be
sent over one of the subflows. At the other extreme, packets can be distributed in a round-
robin fashion. To evaluate how data is spread among the established subflows, we propose
to use the frequency of the subflow switches. We compute this number by observing all the
packets sent over each Multipath TCP connection. In such traces, we count the number of
consecutive packets (based on the DSS option) that are sent over each subflow. The number
of subflow switches is incremented each time a data packet sent over subflow i is followed
by a data packet sent over subflow j , i 6= j . For a given Multipath TCP connection, the
frequency of the subflow switches is then the number of subflow switches divided by the
duration of the connection in seconds. The advantage of this metrics is that it can be used
to compare connections that transfer different amounts of data and have different durations.
A high subflow switches frequency will indicate a connection that sends the packets in a
round-robin fashion among the active subflows. A low frequency will indicate a connection
that sends long bursts of data over each subflow.

0 50 100 150 200

switches / second

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

server
smartphone

Figure 5.5: Subflow switching frequencies in the two datasets

Figure 5.5 provides the CDF of the subflow switches frequencies computed over all Multipath
TCP connections that carry at least 1 MBytes of data with at least two subflows that transmit
data. Each point in the curves corresponds to one Multipath TCP connection. In the
smartphones traces, 80% of the connections have a subflow switching frequency that is larger
than 10. 6.5% of the connections in this dataset switch more than 100 times per second
between subflows.

51

5.3. MULTIPATH TCP IMPERFECTIONS

The CDF of the subflow switching frequencies is different in the server traces. In those
traces, only 42.5% percent of the connections have a frequency smaller than 10. On the
other hand we observe that 15.1% percent of the connections in this trace of have a subflow
switching frequency that is larger than 200. The higher subflow switching frequencies in the
server can be explained by several factors. First, as explained in section 5.2.2 on page 48,
half of the connections in those traces used the ndiffports path manager. The subflows
on these connections are likely to follow (almost) the same path and thus have (almost)
the same round-trip-times. Furthermore, there are probably users that have configured the
round-robin scheduler and use it to contact the monitored server.

5.3 Multipath TCP imperfections

The previous section has shown how Multipath TCP is used by real applications in today’s
networks. It confirms the good results obtained by several researchers who performed active
measurements with the Linux implementation [54, 12, 18]. However, previous work has shown
that there are some network conditions where this implementation does not always perfectly
use the available networks [56, 18, 6, 68, 5]. We analyse the packet traces in more details to
detect some Multipath TCP imperfections.

5.3.1 Unused subflows

A first potential imperfection Multipath TCP is that subflows can be established without
being used to transport data. Creating subflows that are not used consumes some bytes and
more energy on smartphones [57] since the interface over which these subflows are established
is kept active. Considering Multipath TCP connections composed of at least two subflows in
the smartphones dataset, we observe that among the 249,622 subflows established, 135,136
of them were additional subflows (i.e., not initial ones). 102,287 of these subflows were
established without carrying any data.

There are three reasons that explain those unused subflows. Firstly, the subflow can become
active after all the data has been exchanged. This happens often since 53.6% of the connec-
tions in the smartphones traces carry less than 1000 bytes of data. Secondly, the difference in
round-trip-times between the two subflows can be so large that the subflow with the highest
RTT is never selected by the packet scheduler. Usually, the cellular subflow has a larger
RTT than the WiFi subflow. Though, we notice that on the unused additional subflows,
43.15 percent show a better RTT with the newly-established subflow, but 75 percent of the
connections containing such subflows carry less than 1000 bytes, and 95 percent less than
20 KBytes. Thirdly, the subflow can be established as a backup subflow. For the server
dataset, we observe 66,287 subflows that did not carry any data. By immediately creating
subflows, the full-mesh path manager is responsible for some Multipath TCP inefficiencies.
An improved path manager [68, 57] would prevent some of these inefficiencies.

52

5.3. MULTIPATH TCP IMPERFECTIONS

5.3.2 Reinjections

A second possible source of imperfections with Multipath TCP are the reinjections. A reinjec-
tion [63], is the transmission of the same data over two or more subflows. A reinjection can
occur for several reasons: (i) handover, (ii) excessive losses over one subflow or (iii) limited
windows due to the Opportunistic Retransmission and Penalization (ORP) heuristic proposed
in [63] and enhanced in [56]. This phenomenon has been shown to limit the performance of
Multipath TCP in some wireless networks in [68].

Among all the analysed Multipath TCP connections, only 2.5-3% of them contain reinjections
in the server dataset. This percentage increases up to 8-9% in the smartphones dataset.
However, if we focus on the connections that are composed of at least two subflows, these
numbers increase. In the server (resp. smartphones) dataset, 4.1 (resp. 10.6) percent of
these connections experience reinjections.

Multipath TCP reinjections are closely coupled with regular TCP retransmissions. We use
mptcptrace (resp. tcptrace) to extract all the reinjections (resp. retransmissions) in our
two datasets. Since reinjections can only occur on connections that contain at least two
subflows by definition, we perform this analysis by considering only the connections that are
composed of at least two subflows and that carry at least one byte. Figure 5.6 shows the CDF
of the reinjections and retransmissions in the server dataset. The number of retransmitted
and reinjected bytes are normalised with the number of bytes exchanged over the connection.
Since the same data can be sent over several subflows, this fraction can be larger than one for
connections that carry a small amount of data that is retransmitted and/or reinjected.

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of total bytes

0.80

0.85

0.90

0.95

1.00

C
D

F

Reinjection
Retransmission

Figure 5.6: CDF of the fraction of bytes that are reinjected/retransmitted on the Multipath TCP
connections composed of at least two subflows in the server dataset

We observe that reinjections occur but they are less frequent than the regular TCP retrans-

53

5.3. MULTIPATH TCP IMPERFECTIONS

missions. While 25% of the Multipath TCP connections composed of a least two subflows
experience retransmissions, only 4.1% of them experience reinjections. For the server dataset,
923 MBytes (718,327 packets) are reinjected (out of a total of 113 GBytes transmitted). In
those traces, 1323 MBytes are retransmitted.

To better understand the reinjections and the retransmissions, we plot in figure 5.7 the CDF of
the normalised times when reinjections and retransmissions occur during each Multipath TCP
connection. To produce this plot, we extract from the packet traces the timestamps of all
retransmissions and reinjections and normalise them as a fraction of the duration of the entire
Multipath TCP connection. Note that here, we include all connections (and thus also single-
flow ones), which allow to see all retransmissions (and not only on multi-flow connections).
Moreover, each point corresponds to the timestamp of one retransmitted/reinjected packet.
In the server trace, we observe that there are proportionally more retransmissions in the
beginning of connections than close to the end. This is probably because TCP’s congestion
control algorithm is more aggressive during the slow-start phase than when it enters congestion
avoidance mode. For the reinjections, we do not observe in figure 5.7 a strong bias in favor
of the beginning of the connections.

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of connection duration

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Reinjections
Retransmissions

Figure 5.7: CDF of the normalised times when reinjections and retransmissions occur in the server
dataset.

Figure 5.8 on the facing page also provides the CDF of the fractions of the bytes that are
retransmitted/reinjected in the smartphones traces. We observe that these two events are
more frequent than in the server trace. 27.7% of the connections composed of a least two
subflows experience at least one retransmission. Furthermore, 50% of the bytes sent over
a connection are retransmitted in 2.3% of the connections. Looking at the reinjections, we
observe the same trends. There are more reinjections in the smartphones trace than in the
server trace. 10.6% of the connections experience reinjections and 2.3% of them reinject 20%
or more of their bytes. However, looking at the total number of bytes, the problem is not so

54

5.3. MULTIPATH TCP IMPERFECTIONS

severe. In the smartphones dataset, we observe only 63.7 MBytes (resp. 237 MBytes) of data
that are reinjected (resp. retransmitted) by the proxy to the smartphones. This number must
be compared with the 19.8 GBytes of data that are sent by the proxy to the smartphones in
this dataset.

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of total bytes

0.80

0.85

0.90

0.95

1.00

C
D

F

Reinjection
Retransmission

Figure 5.8: CDF of the fraction of bytes that are reinjected/retransmitted on the Multipath TCP
connections composed of at least two subflows in the smartphones dataset.

The behaviour of retransmissions and reinjections is quite different when looking at the smart-
phones dataset, as shown on the figure 5.9 on the next page. Indeed, retransmissions occur
much more at the beginning of the connections (more than 35% of the retransmissions occur
during the first fifth of the connections) and at the end (more than 15% of the retransmissions
occur close to the very end of the connection). This behaviour is driven by two reasons. First,
smartphones use different wireless interfaces: cellular (2G, 3G, 4G) and WiFi. Second, some
connections on smartphones (e.g. HTTP/1.1) tend to carry most of their data bytes at the
beginning of the connection and then the connection remains almost idle until its end.

For reinjections, we observe several vertical bars in figure 5.9 on the following page. A closer
look at the packet traces reveals their root cause. The bar at the fraction 0.33-0.34 is caused
by a quite long connection (lasting more than 30 minutes) that performs a handover. Five
subflows were established for this connection. It exchanges most of its 450 MBytes of data
within the first seven minutes. At that point, a window of more than 115 KBytes of data
(carried with very small packets, such as these represent more than 6000 packets) over around
3 seconds was reinjected. In this connection, the main cause of the reinjection is the loss
of a cellular subflow, probably caused by a user movement. After trying to retransmit some
packets over the cellular subflow, Multipath TCP reinjects them over another subflow.

The vertical bar at 0.95 on figure 5.9 on the next page is also mainly due to one connection
that performs handover. This connection lasted 800 seconds and transferred more than

55

5.3. MULTIPATH TCP IMPERFECTIONS

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of connection duration

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Reinjections
Retransmissions

Figure 5.9: CDF of the normalised times when reinjections and retransmissions occur in the smart-
phones dataset.

4 MBytes of data over three subflows. At the beginning of the connection, the smartphone
used one subflow, and the server sent data slowly (around 100 KBytes over 5 seconds). This
subflow then failed when only one packet was in flight. During a period of eight minutes, the
server tried to retransmit the packet without success. Then, the smartphone opened a new
subflow, the server retransmitted the segment and then started to send data at a higher rate
(200 KBytes within one second). After one second, this subflow failed while 175 KBytes of
data were still in flight. Three minutes later, the smartphone opened a third subflow and the
server sent one reinjected data packet to the smartphone that acknowledged it. However,
the server waited one more minute before reinjecting the data bytes that were in-flight (with
some retransmissions). Overall, 14,531 packets were reinjected on this connection. On this
last subflow, 3.5 MBytes of data were sent within 50 seconds.

The reinjections that appear nearly at the end of connections are mainly caused by the same
kind of events as described before. When analysing the retransmissions that appear close to
the end of connections we observed than 42.1% occurred on short connections lasting less
than 3 seconds.

5.3.3 Receive window limitations

The receive buffer plays a more important role for Multipath TCP than for regular TCP since
it is used to cope both with retransmissions but also to reorder the data received over the
different subflows. With single-path TCP, if the receive window is too small, then the sender
will slow down. Multipath TCP uses a single window that is shared among all active subflows
[63]. If the receive window is too small, the sender is blocked. This blocking might be

56

5.3. MULTIPATH TCP IMPERFECTIONS

caused by the transmission of some data over a slow subflow. To cope with such limitations,
Multipath TCP can use the Opportunistic Retransmission and Penalisation (ORP) heuristic
to reinject this data over another subflow.

To evaluate whether the receive window caused performance problems in our traces, we
first extract the maximum receive window advertised over each Multipath TCP connection.
Figure 5.10 provides a boxplot of these maximum windows in function of the number of
bytes transported over each connection of the server dataset. For the short connections,
we observe a huge variance among the maximum advertised receive windows with a median
of 92 KBytes. For the connections that carry more data, the median maximum advertised
window increases with the connection size. This variation is expected since the automatic
buffer tuning algorithm [66] used by Linux automatically adjusts the receive window during
the connection. For the long data transfers, the receive window appears to be large enough in
most cases. In the smartphones traces, all smartphones are configured with the same settings
for the receive buffer.

10-100 KB

100KB-1MB
1-10 MB

10-100 MB

Larger th
an 100 MB

Unique bytes sent

103

104

105

106

107

108

109

M
ax

 re
ce

iv
e

w
in

do
w

 s
iz

e

Figure 5.10: Maximum advertised receive windows in the server traces

Despite the large maximum receive buffers that are advertised in our traces, we still observe
reinjections that are triggered by the ORP heuristic due to a limited receive window. To
detect those ORP reinjections, we use mptcptrace to extract the number of in-flight bytes
and compare it with the advertised receive window for each transmitted packet. Our detection
works in two steps. We first extract from the packet traces the timestamps when the difference
between the advertised receive window and the flight-size is too small. We consider this
difference to be too small if it is below TWinDiff that we set at a value of 5,000 bytes. Then,
if a reinjection occurs within 50 milliseconds after such a timestamp we consider that it is
caused by the ORP heuristic. Among the connections that are composed of at least two active
subflows, we detect that 33.7% of the reinjections are caused by the ORP heuristic.

We analysed many of these connections manually with the graphs produced by mptcptrace.
As an example of the good operation of the automatic buffer tuning, let us consider the
figure 5.11 on the next page showing the following connection extracted from the server

57

5.3. MULTIPATH TCP IMPERFECTIONS

0 5 10 15 20 25 30 35 40
Time

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Si
ze

 (b
yt

es
)

receive window
MPTCP flight size
reinjections

Figure 5.11: An example of the automatic buffer tuning working as expected.

dataset. At the beginning of the connection, the receive window grew to reach a first limit
at about 125 KBytes. After around 25 seconds, the receive window increased, showing the
establishment of a new subflow for the connection. During the whole connection, the number
of bytes in flight never reached the receive window, showing that the sender was not blocked
by the receive window. However, our qualitative analysis reveals some unexpected interactions
between this heuristic and the receive window.

In some cases, we observe issues with automatic receive buffer tuning that caused unnecessary
early reinjections. In those cases, the received buffer announced by the receiver does not grow
fast enough to cope with the multiple flows. This too small receive buffer blocks the sender
that decides to reinject data. It is important to note that from the subflow TCP perspective,
the sender is not blocked by the window because it does not take into account data sent
over the other subflows in its own window. An example that illustrates this particular case is
presented in figure 5.12 on the facing page. The red crosses at the top of the graph show the
times when reinjections occur. We observe that there are early reinjections at the beginning
of the connection while the receive window has not yet been fully opened by the automatic
buffer tuning algorithm. Once the receive window has reached its maximum value, there are
no more reinjections. These reinjections cause a temporary slowdown of the connection that
may be relatively important for small connections because a good subflow may be penalised
for a bad reason.

Another factor that may limit the performance of Multipath TCP is the size of the receive
window when the difference between the round-trip-times of the subflows is too large and the
fastest subflow is not sufficient to carry all the data. In this case, Multipath TCP tries to use
several subflows. If the current receive window is too small, Multipath TCP will reinject data
in an attempt to unlock the situation faster. Note however that the reinjected segment must

58

5.4. CONCLUSION

0 5 10 15 20 25 30 35 40
Time

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

Si
ze

 (b
yt

es
)

receive window
MPTCP flight size
reinjections

Figure 5.12: Receive buffer autotuning leading to unnecessary reinjections

still fit in the congestion window of the subflow on which it reinjects the data. Unfortunately,
there is no guarantee that the reinjected segment will arrive faster than the original one.
Figure 5.13 on the next page is an example extracted from our packet traces that illustrates
this situation. In this case, reinjections are caused by a window limitation and happen on
regular basis during the entire connection lifetime. A more detailed analysis of the Multipath
TCP time sequence graph reveals that the reordering is mainly responsible for this usage of
the receive window. To prevent this problem, the packet scheduler on the sender should be
replaced by a scheduler that sends segments out-of-order so that they would arrive in order at
the receiver. Such schedulers have been proposed and evaluated by simulations [42], but to
our knowledge they have not been included in a real Multipath TCP implementation.

5.4 Conclusion

In this chapter, we have shed some light on how Multipath TCP is used today by real
applications in both fixed and wireless networks. We expect that our findings and the datasets
that we have collected will help Multipath TCP implementers and other researchers to improve
the protocol and its implementations so that it can reach the same stability and efficiency
that TCP reached after decades of usage.

Our detailed analysis of two different kinds of packet traces has led to several interesting
observations. First, the server traces shows that Multipath TCP works correctly over a wide
range of Internet paths. This demonstrates the deployability of the protocol extension in the
global Internet. Second, the server and the smartphones traces reveal two different usages
of Multipath TCP. About 70% of the connections are composed of subflows that are created

59

5.4. CONCLUSION

0 20 40 60 80 100 120 140
Time

0

100000

200000

300000

400000

500000

600000

700000

800000

Si
ze

 (b
yt

es
)

receive window
MPTCP flight size
reinjections

Figure 5.13: Frequent reinjections on a window limited connection

almost immediately. These connections expect improved performance from the utilisation of
several subflows. In the remaining 30% of the connections, one or more subflows are created
more than one second after the initial subflow. This corresponds to the second use case
for Multipath TCP that enables applications to continue to use existing connections after a
handover. This use case is very important for mobile devices. Looking at the round-trip-
times of the subflows that Multipath TCP uses, our analysis reveals that there can be a huge
difference between the fastest and the slowest subflow inside each Multipath TCP connection.
This large delay difference must be taken into account by Multipath TCP developers who
propose solutions to improve the performance of the protocol. To analyse how data is spread
among the active subflows, we have introduced the subflow switching frequency. This metric
measures how often data transmission switches from one subflow to another.

We have then analysed in more details some of the inefficiencies of Multipath TCP. The first
identified inefficiency is that the current Multipath TCP implementation in the Linux kernel
often creates subflows that do not carry any data. On a server, this is not a severe problem,
but on a smartphone, establishing a subflow on the cellular interface without using it has a cost
in terms of energy consumption and radio channel usage. Multipath TCP developers should
consider better path management strategies for smartphones. Second, we have studied in
details how retransmissions and reinjections occur. Our analysis reveals that reinjections, i.e.
retransmitting data over more than one subflow, are common but less frequent than regular
retransmissions. However, when they are triggered to react to receive window limitations, they
can significantly affect the connection performance. The ORP heuristic that is currently used
by the Linux Multipath TCP is probably not the perfect approach to solve this problem.

60

Chapter 6

Streaming applications

Our third measurement campaign is about streaming applications and more precisely about ra-
dio streaming applications. This kind of application is particular because it generally transfers
a constant flow of data over long connections. Thanks to Multipath TCP, these connections
can remain alive while switching from one wireless network to another. These handovers are
frequent with smartphones as we are often disconnected from a WiFi network while moving
out of building. Because users are also attached to a cellular network, they expect their
current connections to continue to work on this cellular network without interruption. This
behaviour is not natively supported by TCP but Multipath TCP has been designed to handle
such cases as previously explained in chapter 2 on page 3.

The study of mobile devices using with Multipath TCP is not new. Paasch et al. provide
in [54] detailed measurements on the interactions between Multipath TCP and cellular and
WiFi networks. They proposed and analysed three modes for the operation of Multipath
TCP. In particular, they consider reaction to handovers. Raiciu et al. analysed in [62] a
mobility architecture that uses Multipath TCP on mobile nodes that access servers through
proxies. Their measurements performed with Multipath TCP on a laptop in movements
demonstrate the benefits of such an architecture. Pluntke et al. [59] analysed whether
Multipath TCP could reduce energy consumption by using several interfaces simultaneously.
Lim et al. proposed in [45] a technique to reduce the energy consumption of smartphones
using Multipath TCP and evaluated it with experimental measurements. Xiao et al. [77]
analysed the performance of regular TCP in mobility scenarios. They identified that one of
the main performance issues was the handoffs between networks in which TCP is disconnected
for some time. Here, we can see that Multipath TCP could resolve this issue by opening a
new subflow for every arising network, instead of waiting the loss of a TCP connection to

61

6.1. METHODOLOGY

open a new one. Williams et al. analyse in [73] the performance of Multipath TCP in moving
vehicles. They observed that at moderate speed, Multipath TCP is able to remain active
and perform handover without adversely affecting a delay-tolerate file download or causing
excessive data-level retransmissions.

The problematic related to handovers has also been analysed in other studies. Croitoru et
al. [15] explored a WiFi-based solution that allows clients to continuously scan for nearby
access points and add a new virtual network interface each time a new router is discovered.
Nirjon et al. [49] proposed a way to perform handovers based on TCP connections. However,
this last solution assumes that the TCP connections are quite short, and is not suitable to
long ones such as the streaming ones.

In this chapter, we first introduce our methodology used to interpret collected data. We then
analyse cases in which the applications try to support handovers themselves using regular
TCP in a mobile environment. The benefits of Multipath TCP and its backup mode are
then analysed. Finally, we conclude this chapter by giving some areas of improvements for
Multipath TCP.

6.1 Methodology

Figure 6.1: Schema of the infrastructure for these tests with RTT values.

We installed Icecast [78] services combined to the Music Player Daemon [20] (MPD) in order
to stream a constant audio stream to the smartphones. To make a slight digression and
according to [36], streaming a constant flow is more energy-consuming than only sending
bursts of data. Even if this mechanism is not efficient on smartphones, Icecast is a popular
streaming media server used by many public radios in the world. By setting our own Icecast
services on our Multipath TCP-ready server, we were able to easily dump packets generated
by this service and fully control the application and its environment. But more importantly,
no proxy is required to perform the measurements. We thus obtain results which really show
what we could have if Multipath TCP is supported by streaming media providers.

62

6.1. METHODOLOGY

0 5 10 15 20 25 30 35
Time (s)

0

50

100

150

200

250

300

350

400

450

RT
T

(m
s)

3G
WiFi

Figure 6.2: Variation of the RTT on both interfaces when the devices moves away from a WiFi access
point

Five WiFi routers connected to the 100 Mbps campus network have been deployed around our
work area. Round-trip-time mean values are visible in figure 6.1 on the preceding page. The
RTT between the smartphone and the WiFi routers is very variable when walking around but
when they are close, the RTT between the smartphone and the server is always lower than the
cellular network. An example of the variation of the round-trip-times caused by the growing
distance between the device and a WiFi access point is shown on figure 6.2. These access
points do not cover the entire area, some parts are only covered by the cellular network. This
corresponds to a scenario where a user walks in a city where some homes share a public WiFi
access point (e.g. FON). WiFi with WPA2 encryption was enabled on all these devices but
without any WPA Enterprise feature, routers are not linked together and there is no roaming
at all. By deploying these routers, we wanted to increase the number of handovers when
moving smartphones along them.

During our tests, two Nexus 5 devices were used simultaneously: an unmodified one us-
ing regular TCP and one supporting Multipath TCP with our MultipathControl application
described in section 3.5.2 on page 22. The unmodified smartphone uses the Cubic TCP con-
gestion control algorithm but we tested several coupled congestion control schemes with the
other Nexus 5. A dedicated Icecast daemon per smartphone was launched on our server in
order to avoid that Icecast prioritises one over the other. The sound emitted by the streaming
application on the smartphones was recorded with the Shou.tv Android application1. With
these audio files, we can generate a visual representation of the sound produced by the TuneIn
radio2 streaming client application. We also performed some tests with the Free and Open

1See: https://shou.tv
2See: http://www.tunein.com

63

https://shou.tv
http://www.tunein.com

6.2. OVERVIEW

Source application ServeStream3 but it seems that this application doesn’t automatically
restart streaming audio files if the smartphone switches from a WiFi to a cellular network.
We guess these developers didn’t want to generate unwanted cost by using the cellular network
without user’s agreement but we wanted to avoid manual controls on handover.

100 0 100 200 300 400 500

50

0

50

100

150

200

250

300

350

400

1

2

WIFI 0

WIFI 11

mobile/HSPA+ 2

WIFI 3
mobile/HSPA+ 4

0

WIFI 5

WIFI 6WIFI 7

WIFI 8

mobile/HSPA+ 9

WIFI 10

WIFI 11

Figure 6.3: A map with a subset of information recorded by MultipathControl application.

We tried to walk along the same path during approximately five minutes for all these tests.
An example is displayed on the figure 6.3. On this map we can see the journey in blue, when
and where our MultipathControl application was notified of a network change in red with an
annotation about the network type and its ID. The accuracy of the path shown on this map
depends on the GPS chip.

Data from traces are extracted with our scripts described in section 3.5.1 on page 18 such
as seq_together.py. Other scripts specially made to analyse data generated by our Multi-
pathControl application are available in [7].

6.2 Overview

An overview of the situation with and without Multipath TCP is discussed here.

6.2.1 Handover at application level

According to [48], TuneIn Radio supports handover at the application level. This is confirmed
by figure 6.4 on the facing page. It shows the sound produced by this application when turning

3See: http://sourceforge.net/projects/servestream

64

https://github.com/MPTCP-smartphone-thesis/pcap-measurement/blob/master/seq_together.py
http://sourceforge.net/projects/servestream

6.2. OVERVIEW

Figure 6.4: Sound produced by TuneIn Radio when turning on an off the WiFi interface every 15
seconds on the unmodified smartphone.

on and off the WiFi interface every 15 seconds after having played the first sound. These
events are marked by the green lines on the figure. We can see that the application is still
able to play sound from its buffer. Sometimes the user will not notice these switches because
most media stream servers (including Icecast) are configured to send a burst of data at the
beginning of the download in order to quickly fill in a buffer. Looking at the traces, we can
see that TuneIn Radio starts downloading a new stream via the new default interface. It sends
this request to the server without any special option which would let it receive data from a
specific timestamps (e.g. no HTTP range option). Furthermore, it receives no indication from
the server to help it supporting handovers. Then we guess that the application drops the
content that has already been downloaded from its previous request and puts the new one
at the end of its buffer. But these operations are not always perfect because we sometimes
hear tiny audio glitches that are almost non perceptible and marked by a red line on the
figure. During our tests we also noticed that some server configurations force the application
to manage handovers by skipping the non-received music and playing the only current live one
sent by the server. Parts of the music were skipped but on the other hand, this application
still continued to produce sound.

Supporting handovers at the application level is not an easy task. It cannot be performed with
all protocols and can have some limitations as seen on this figure 6.4. After a few network
changes, we can see that the application has stopped producing sound (horizontal line in the
figure 6.4) as too much content have been dropped during handovers at the application level.
It also takes a lot of time to restart playing stream media. This kind of situation could be
even worse when the device starts to be far from a still attached WiFi access point.

6.2.2 Mobility

Supporting handovers when walking is harder because the conditions vary depending on the
device’s position compared to the access point. When walking, we cannot say that we have
only two states: a perfect connection or no one. But when moving the device away from
the access point, the signal quality gradually gets worse. It means that when being far from
an access point, a lot of TCP retransmissions occur and the throughput decreases below the
streaming rate. This is confirmed by figure 6.5 on the next page. The blue (resp. red) curve
shows the quantity of bytes transferred during a walk (see figure 6.3) via the WiFi (resp.
cellular 3G) interface. Vertical blue and red bars represent moments where no more data was
transferred on the specified interface. Green ones indicate when TuneIn Radio’s handover

65

6.2. OVERVIEW

0 50 100 150 200 250 300 350 400
Time

0.0

0.5

1.0

1.5

2.0

2.5

By
te

s

1e6

WiFi
Cellular
Retr RTO
Retr FRT
Retr REC
Retr UND
Start co

Figure 6.5: Quantity of bytes transferred during a walk with the unmodified smartphone.

mechanism is triggered by asking the server for a new HTTP GET request in order to download
streaming content. Finally this figure also indicates when different retransmissions packets
have been seen.

Four kinds of retransmissions are detected: retransmissions due to a timeout (RTO), fast
retransmits (FRT), recover (RCO) and unneeded ones (UND). (i) When they are due to a
timeout, packets are re-sent after a variable time period. This timer value depends on different
factors: it has to be larger than the RTT but has also to take into account at least the size
of the receiving windows and how many times the timer has expired for the same packet.
(ii) Fast retransmits are sent either after two or three duplicate ACKs as defined by [3], due
to SACK [47] information or resulting of the congestion control algorithms, i.e. Reno’s Fast
Recovery algorithm [67]. (iii) The third case of retransmissions are the recover ones. They
happen when fast retransmission packets are sent a second time. (iv) Retransmissions can be
seen as unneeded if a retransmit is sent too quickly or for a wrong recover. It is important to
keep in mind than these retransmissions are sent and detected by the server. It is this possible
that not all these retransmission packets have been received by the smartphone.

Figure 6.6: Wave form played by TuneIn Radio during the same walk as in figure 6.5 with the
unmodified smartphone.

66

6.2. OVERVIEW

When looking at the retransmissions visible on the figure 6.5 on the facing page, we can see
that most of them occur just before a wireless interface becomes unavailable. It is a sign
that the smartphone is loosing packets and the WiFi connection will soon go down. On the
other hand we see that new download requests, represented by green vertical bars, are not
immediately sent by the application when no more data is transferred to the Smartphone’s
WiFi interface but could take from 10 to 55 seconds, the longest time we saw during our
tests. These long delays explain that TuneIn Radio’s buffer will quickly be emptied and will
not be refreshed by the new stream content received via the new default interface. On wireless
networks, it is not easy to know exactly when the network is unreachable because a device can
only rely on timeouts: this value is difficult to estimate as if this period is too short, the device
will stop using this interface whereas other transient events can also cause delays. If it is too
long, then all applications which need network access will be blocked instead of restarting
their requests via the backup interface. Because it takes too much time to be notified when
a disconnection from an unreachable WiFi access point happens, the user will notice that the
streaming application is not able to play any sound during few seconds as shown on figure 6.6
on the preceding page. This figure shows the wave form played by TuneIn radio during the
same walk and the same unmodified smartphone used to generate the previous figure 6.5 on
the facing page.

Even if these figures 6.5 and 6.6 are generated from the same walk, we did not align them. To
do so, we would have to extract data from the application about when it starts downloading
data compared to the moment when it starts playing music; how much data are dropped when
trying to support handover at application level; what is the size of the buffer when loosing
connections, etc. Since this application is not Open Source, we cannot easily analyse it to
extract these information. On the other hand, the goal of these figures is to show that the
application is not able to support handovers correctly. We don’t want to try to predict the
exact moment when the application will stop producing sound because it depends on unknown
and variable conditions. But we can see that if the application stops receiving any data during
a few seconds, it will no longer be able to continue providing streaming services.

6.2.3 Streaming over Multipath TCP

Figure 6.7: Wave form played by TuneIn Radio during a walk when using Multipath TCP.

When looking at the figure 6.7 representing the sound produced by the streaming application
on the smartphone using Multipath TCP for the same walk, we can see that the application
continues to produce the sound without any blank. Compared to figure 6.6 on the facing page
where regular TCP was used, the improvement is significant. There is no more interruption in

67

6.3. ANALYSIS

the song played by the application which means that handovers are much better supported.
Note that the small blank at around the middle of the wave is actually caused by a change
of music: fade out of music A, fade in of music B.

6.3 Analysis

We now analyse in details the collected traces. In particular, we check how the traffic is
balanced between the WiFi and the cellular interfaces and we discuss the efficiency of the
backup mode.

6.3.1 Traffic distribution

It is interesting to analyse the distribution of the traffic among the cellular and WiFi interfaces
because the user might prefer the WiFi interface over the cellular one. The main reason is
the cost in terms of money but according to [45], also in term of consumed power energy.
Depending of the network type, the available bandwidth can be higher but the round-trip-time
is often lower when using WiFi as seen in chapter 4.

0 50 100 150 200 250 300 350 400
Time

0

1

2

3

4

5

6

By
te

s

1e6 Reinj. on WIFI: 12393 and CELL: 52238

WiFi
Cellular
Retr RTO
Retr FRT
Retr REC
Retr UND
Is Reinj
Start co
Start SF W
Start SF C

Figure 6.8: Quantity of bytes transferred during a walk when using Multipath TCP with LIA, WiFi
interface as default route and 3G.

Figure 6.8 shows that most of the traffic is sent over the cellular interface. The default
Multipath TCP scheduler is used. It prefers the subflow with the lowest RTT and favours the
one with fewer retransmissions [55]. It is exactly what we see on this figure 6.8: when both

68

6.3. ANALYSIS

interfaces are attached to a network, WiFi is firstly used when a new request is performed
by the client — also because the default route is via the WiFi interface as explained in
section 4.7.1 on page 34. Then when the first reinjections occur, the cellular interface takes
the reins until the next new request. According to the green vertical bars on the figure, it
seems that the application is still notified when a change in the network arises and then starts
a new subflow. The WiFi interface is then used at the beginning of this request which receives
a burst of data. But after a few seconds, all the traffic is sent through the cellular network
and some packets are even reinjected to this second subflow for a total of 50 kB.

0 50 100 150 200 250 300 350
Time

0

1

2

3

4

5

6

By
te

s

1e6 Reinj. on WIFI: 12602 and CELL: 50200

WiFi
Cellular
Retr RTO
Retr FRT
Retr REC
Retr UND
Is Reinj
Start co
Start SF W
Start SF C

Figure 6.9: Quantity of bytes transferred during a walk when using Multipath TCP with LIA, cellular
interface as default route and 3G.

When the cellular interface is used as default route and as visible on figure 6.9, almost all
traffic is sent through the cellular network. Compared to the previous situation, half of the
traffic is sent over the WiFi network but the reinjected bytes are almost the same. Note
that here, new Multipath TCP subflows are created because either the application creates
new connections or the smartphone is connected to different access points along the walk.
It means that the counters are started from zero for each new subflow and that is why
Multipath TCP’s scheduler tries to send data through the WiFi network which could have a
lowest RTT.

As observed in chapter 4, if the smartphone is connected to the same router and the cellular
network is preferred by Multipath TCP’s scheduler due to some TCP retransmissions, most of
the traffic will go through the cellular network. This is mainly explained because the reception
and transmission windows are not full at all. As shown on the different figures, Multipath
TCP has then no need to use more than one subflow to transfer data at a low rate and

69

6.3. ANALYSIS

this is why there is no reason to switch to another subflow, even more if this subflow is less
stable. Furthermore, current Multipath TCP implementation has no probing mechanism. In
this situation where the kernel has no need to use several subflows, it will not try to resend
data on the subflow which had transitional problems even if the RTT is now lower. It means
that Multipath TCP will only have an overview of a previous state.

0 50 100 150 200 250 300 350
Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

By
te

s

1e6 Reinj. on WIFI: 0 and CELL: 70230

WiFi
Cellular
Retr RTO
Retr FRT
Retr REC
Retr UND
Is Reinj
Start co
Start SF W
Start SF C

Figure 6.10: Quantity of bytes transferred during a walk when using Multipath TCP with LIA, WiFi
interface as default route and 2G.

When the 2G technology is used, handovers are still well supported: the stream application
continues to play sound without any blank. Figure 6.10 shows that this 2G network has just
enough bandwidth to support the traffic generated by the Icecast server. Bursts of data take
a few more time to be received but the round-trip-time is much more important: RTT seems
to be around 200 ms which is 6 times more than with 3G/4G. We can see that the WiFi
network is now much more used, even if multiple retransmissions — mostly categorised as
fast retransmit — are detected on this interface.

Other coupled TCP congestion schemes have been tested in addition to LIA. All results are
quite the same as presented here with LIA when using either OLIA [39] or wVegas [11]. This
can be explained by the fact that the application does not pull data as fast a possible from the
server. Therefore, the TCP received window of the lowest round-trip-time path is not fully
filled, thus only one subflow is used. Seeing no difference between those coupled congestion
control algorithms is thus expected.

70

6.3. ANALYSIS

0 50 100 150 200 250 300 350
Time

0.0

0.5

1.0

1.5

2.0

By
te

s

1e6 Reinj. on WIFI: 208 and CELL: 29988

WiFi
Cellular
Retr RTO
Retr FRT
Retr REC
Retr UND
Is Reinj
Start co
Start SF W
Start SF C

Figure 6.11: Quantity of bytes transferred during a walk when using Multipath TCP with LIA, WiFi
interface as default route, cellular as MPTCP backup link and 3G.

Figure 6.12: Wave form played by TuneIn radio during the experiment of figure 6.11.

6.3.2 Multipath TCP’s backup mode

Multipath TCP supports a backup option [29] that was described in section 2.2.4 on page 7.
When adding it to the subflows established over the cellular interface, the traffic on this
cellular network should be reduced while still taking advantage of Multipath TCP’s handover
mechanism. But the current implementation of this backup option seems not aggressive
enough to support handovers in our case.

Indeed, figure 6.11 shows that fewer data is sent through the cellular network. But we can
also see that Multipath TCP only uses this backup subflow after several retransmissions due
to a timeout. As result, the application is not able to fill its buffer and cannot play any sound
when it is empty. This is confirmed by the wave form on figure 6.12.

We are facing here the same problem as the one with the handover supported at the application
level. The good point is that if the device switches from one to another WiFi access point,
a new subflow is created and all data are recovered without any losses. But if this switch
is not fast enough like the one at the beginning of the experiment in figure 6.11 (around

71

6.4. CONCLUSION

50 seconds), the buffer is emptied and no sound is played as shown in figure 6.12 on the
preceding page (the first interruption).

The server is not immediately notified when the smartphone is too far from the access point or
disconnected. We can even see on figure 6.11 on the previous page that the cellular interface
is only used when a new download is requested while only this interface is available. The
situation is equivalent to supporting handover at the application level because in both cases
the cellular network is only used when the connection on the WiFi interface is lost.

6.4 Conclusion

The positive point is that Multipath TCP and its different congestion algorithms support well
handovers. In other words it means that the user is able to listen to music while walking with-
out having any interruption even if the application tries or does not try to support handover
itself.

On the other hand and after analysis, we can see that the cellular network absorbs most
of the traffic mostly because it is more stable and always available. But this side effect is
maybe not wanted by the user because using the cellular network is often more expensive.
The WiFi interface should be more frequently used, a bit like what we have when using 2G
technology where WiFi is used until no enough data can be sent to the smartphone via this
interface.

These results show that Multipath TCP should be customised for this case. Applications
could also be adapted. For instance they could give information to the server to prefer using
WiFi network over cellular except if the server is not able to send data at sufficient rate. It
implies that Multipath TCP has to be customised, e.g. via SOCKET’s options. Multipath
TCP’s scheduler and path manager have also to be adapted.

About Multipath TCP’s backup option, it should also be improved according to these results.
Multipath TCP’s scheduler should not wait too much before using backup subflows if there
are too many retransmissions on the non-backup ones. Data could be sent over the backup
subflow when a certain amount of losses and retransmissions have been detected. The client
should maybe take the decision to allow using the backup subflow. As a workaround, the
client could send a MP_PRIO packet to notify the server that a subflow is no longer a backup
one. To favour one subflow over the other one, this scheduler could also try to estimate the
waiting time in the send-buffer queue. If data is waiting there more than a defined time,
these bytes could then be sent over the other subflows. All these changes could improve
user’s experience with smartphones applications and especially the streaming ones.

72

Chapter 7

Conclusion

To sum up this Master’s thesis, the main important point is that Multipath TCP works
well on smartphones without any modification at the application level. Results show that
smartphones applications are now able to increase the bandwidth utilisation by using multiple
interfaces at the same time. Moreover, Multipath TCP supports keeping connections alive
along different networks, which is something difficult or even impossible at application level.
Alongside different predefined scenarios, we also conducted real medium-scale ones in which
we observed very long connections on smartphones, during more than one day.

With Multipath TCP’s default RTT-based scheduler and its Full Mesh path manager, we ob-
serve that the smartphone balances the network traffic between its WiFi and cellular interface
for some connections. Those must last at least two round-trip-times on the additional inter-
face and the application must push data faster than the growth of the congestion window. For
instance, this occurs when the application tries to push data as quickly as possible upon the
establishment of the connection. In that way, connections are not stuck by a low performance
network; they use the other one to compensate. However, this behaviour is maybe not what
the user always wants, since there are additional factors, such as the monetary cost of each
device or the power consumption, that should be taken into account.

Nevertheless, our measurements reveal that an important fraction of the connections are quite
short, i.e. shorter than one second. For those, Multipath TCP may not be useful, and may
even involve additional overhead without any benefits. In addition, some issues related to the
current reinjection strategies were found. This shows the need of an adaptation of Multipath
TCP to the particular case of the smartphones.

73

7.1. FUTURE WORK

7.1 Future work

To our knowledge, the analysis of the behaviour of Multipath TCP on smartphones with
real traffic was an unexplored area of research. Our results have then open several lines of
thoughts for future works; some of them are proposed here.

As a result of the study, the native handovers support and bandwidth utilisation on mobile
could be easily improved thanks to Multipath TCP. This promising extension could then be
already put it in place. On the mobile side, this could be done by integrating it in the
upstream kernel instead of using a customised Multipath TCP-ready kernel. On the server
side, this could be conducted towards the main Internet actors to increase the number of end
servers supporting Multipath TCP. In the meantime, the mobile providers could significantly
improve their own slower end-user network by already supporting it in their intermediate
infrastructure. Some of them already use transparent proxies (also called middleboxes) to
optimise their mobile network. Adding Multipath TCP support on these servers could already
let their clients benefit of the Multipath TCP advantages.

Regarding the Multipath TCP extension itself, a first step would be to improve the integration
of Multipath TCP for the smartphones environment. Related to our different chapter con-
clusions, the path manager could be modified to open additional subflows after some time or
some transferred bytes in order to lower the number of unused subflows for short connections.
Another option could be to develop a better scheduler to meet the expectations of the user,
depending of its needs, such as monetary cost or saving energy. About the integration in
Android devices, the default behaviour after being connected to a WiFi access point is to
disable the cellular interface. With our MultipathControl application, we counter this effect,
but the application could not be always quick enough to react, leading to the closing of sub-
flows established on that interface. To avoid this effect, a better integration with the Android
framework could be implemented as discussed in section 3.5.2.

The section 2.3.2 introduced the congestion control algorithms. However, we didn’t study
in details the effect of the available algorithms on the performances of Multipath TCP on a
mobile environment. In particular, it could be interesting to observe how those algorithms
react when a data heavy connection is spread across both interfaces (e.g. watching high
quality videos).

It could also be interesting to perform measurements with SPDY/HTTP 2 protocol which
seems to be the future of HTTP 1. In particular, we could see how Multipath TCP reacts to
those longer connections compared to HTTP 1(.1).

Except in chapter 6 with the streaming measurements, a SOCKS-like proxy was used between
the smartphone and the servers to allow the smartphone to use Multipath TCP for all TCP
connections. Although this proxy slightly affects the observed behaviour (see for instance the
section 4.7.1 and the behaviour of Firefox), most of remote servers are not Multipath TCP
capable yet. With the agreement of several big actors of the Internet or providers to support
Multipath TCP on test servers, similar measurements should be conducted again with direct

74

7.1. FUTURE WORK

connections between the smartphone and the servers.

As detailed in appendix C, we faced issues when trying to perform measurements on IPv6.
Indeed, all our results with smartphone traffic were obtained on IPv4. It might be interesting
to replay those measurement campaigns on IPv6 to see if it has an impact or not on our
conclusions.

A last point to look at when studying mobile devices is their consumption. Indeed, algorithms
running on such devices must be energy efficient to prevent them from draining all the battery.
In particular, the current full mesh path manager opens subflows on both interfaces and thanks
to our MultipathControl application, we let them on. The impact of such decision on the
energy consumption should be studied.

75

Appendix A

Tools used

A.1 tcptrace

tcptrace [50] is a tool written by Shawn Ostermann to analyze TCP traces. Initially started
in 1994, the tool has not majorly evolved since 2004 and the last version, 6.6.7. It takes
a PCAP file as input and produces graphs to characterise TCP connections in addition to
various global statistics. This is the base tool that we used to obtain information on TCP
traces. However, tcptrace does not understand specific options and messages of Multipath
TCP, and so cannot be used alone to analyse Multipath TCP traces. Moreover, running it on
Multipath TCP traces sometimes gives strange results, in particular with the number of data
bytes. Notice that some bugs are open on the Ubuntu bug tracker of tcptrace1. That’s
why our analysis scripts check if values are coherent before using them.

1https://launchpad.net/ubuntu/+source/tcptrace/+bugs

I

https://launchpad.net/ubuntu/+source/tcptrace/+bugs

A.2. MPTCPTRACE

A.2 mptcptrace

mptcptrace [32], developed by Benjamin Hesmans, is an analyser of Multipath TCP traces.
It is publicly available2. During this master thesis, we slightly improved this tool to give
additional information and fixed a few bugs. Notice that the version on the master branch on
the Git repository was designed to process only quite short traces, which is not compatible with
big traces collected and analysed in chapter 5. The dvlp_branch branch brings important
improvements to cope with large files, and we used this version to produce our results.

Unlike tcptrace, mptcptrace understands the basics of the Multipath TCP protocol and can
extract the keys that are exchanged during the establishment of the initial subflow from the
MP_CAPABLE option. Thanks to these keys, mptcptrace computes the tokens that identify the
Multipath TCP connection on both the client and the server. With these keys, mptcptrace
can link the different subflows that compose each Multipath TCP connection.

Once the subflows that are associated to one Multipath TCP connection have been grouped
together, mptcptrace is able to produce metrics and graphs to analyse it. In contrast with
tcptrace, mptcptrace mainly uses the contents of the DSS option instead of the regular
sequence number and acknowledgement number present in the TCP header. Among graphs,
it can plot the throughput (instantaneous, over X packets, on average) at the Multipath
TCP level, the size of the receive window or the amount of bytes that are in flight (i.e., not
yet acknowledged). Like tcptrace, it can also produce global statistics, at the difference
these are computed at Multipath TCP level. For instance, the duration of a Multipath TCP
connection is defined as the time between the first SYN that carries the MP_CAPABLE option
and the last packet sent over this connection, but not necessarily on the same subflow.
Another important element detected by mptcptrace is the reinjection, i.e. the transmission
of the same data over two or more subflows, and is important to characterise the efficiency
of Multipath TCP.

2See https://bitbucket.org/bhesmans/mptcptrace

II

https://bitbucket.org/bhesmans/mptcptrace

A.3. TCPDUMP

A.3 tcpdump

tcpdump [70] is a tool that dumps network traffic into a PCAP file. This format is readable
by our scripts, but also by various other tools like Wireshark. The code and the development
are publicly available3. It offers various filtering options, such as the interface to listen to our
expressions packets need to match. We used this tool to capture packets either on a specific
virtual interface on our server and on the smartphone.

A.4 tcpcsm

tcpcsm [2] is a tool initially developed in 2011 at the University of Waikato. Its purpose is to
detect TCP congestion behaviours. It can detect loss or reordering events, track congestion
window size and understanding why TCP sends less data than expected, using packet header
traces as input. By specifying an option, we can do additional analysis of traces with our
analysis scripts (described in section 3.5.1 on page 18) with this tool. In our case, we use
it to track the origin (retransmission timeout, fast retransmit,...) of TCP retransmissions in
chapter 6.

3See http://tcpdump.org

III

A.5. LINUX CONTAINERS WITH DOCKER

A.5 Linux containers with Docker

On our dedicated proxy, we had to launch different services. It was interesting to launch them
on isolated environments for technical and security reasons. Indeed, a weak service will not im-
pact other services, we can control each environment separately, we can use virtual interfaces
and only dump traffic dedicated to one service, plus many other positive points.

(a) For each isolated service, an entire OS
with libraries and programs has to be virtu-
alised.

(b) For each isolated service, only applications
are launched on isolated processes and some
resources can be shared between containers

Figure A.1: Comparison of Virtual Machines and Containers. Source: Docker.com

Virtual Machines (VM) virtualise an entire system in isolated areas as shown in figure A.1a.
Using VM is particularly interesting when we have to test different kernel versions because
virtualisers like qEmu4 allow us to virtualise a system and indicate a path to a custom kernel
image. It’s then easy to switch from one to another kernel image. Furthermore we received
some scripts to setup new environments, etc. Unfortunately, our Kimsufi server doesn’t
support hardware acceleration to virtualise systems. Without it, the processor gave us very
bad performances, it was not usable.

Because we didn’t need to regularly change the kernel, it was then decided to use Linux
containers with the help of Docker5. Linux containers are considered as operating-system-
level virtualisators and allow multiple isolated user space instances. It still use the same kernel
space as the host machine but applications can be launched in isolated environment as shown

4See http://qemu.org
5See https://docker.com

IV

https://www.docker.com
http://qemu.org
https://docker.com

A.5. LINUX CONTAINERS WITH DOCKER

in the figure A.1b on page IV.

It was interesting to use Docker to quickly create, run, debug and duplicate services. All public
services were running on a separated container. For each container, a dedicated virtual network
interface is created and connected to a virtual ethernet bridge named docker0. Docker allows
us to easily create iptables’s rules to redirect all traffic with a specific destination port to
one precise container. Then it’s easily possible to create one environment (e.g. a SOCKS
proxy) and launch multiple instances with the same configuration but accepting connections
with different destination ports on the host machine.

V

Appendix B

Running services on server

For this thesis, we created and modified a few Dockerfiles which looks like Bash scripts
and are used to build new Docker images. All of them are available on our Github account1.
Here is the list of services that we used, which are only free and open source ones.

B.1 Proxy services

• OpenVPN: We tried to use a VPN (Virtual Private Network) as proxy to use Multipath
TCP for all TCP connections but it was too heavy.
https://openvpn.net

• SSH tunnel: A SSH SOCKS proxy can be quickly set up. A dedicated service allowing
only the use of a SOCKS proxy was set up. This solution was finally abandoned due to
the overhead of using SSH encryption and mostly because this created a tunnel where
all TCP connections were piped into a single one. Having one single connections was
not easy to analyse and not realistic.
http://sshtunnel.googlecode.com

• ShadowSocks: This proxy is based on SOCKS protocol [44]. We decided to use the
implementation in C because it’s a lightweight service with a very small footprint. More
details about this selected proxy are given in the section 3.4 on page 15.
http://shadowsocks.org

1See https://github.com/MPTCP-smartphone-thesis

VII

https://openvpn.net
http://sshtunnel.googlecode.com
http://shadowsocks.org
https://github.com/MPTCP-smartphone-thesis

B.2. SHARING SERVICES

B.2 Sharing services

• FDroid: This service analyses all Android packages (APK) of a selected directory and
generate XML and images files needed to serve a FDroid repository with a HTTP
server. This repository of Android applications can be used with the FDroid client,
originally created to propose a catalogue of Free and Open Source Software. This one
was used to easily propose update for our Android applications.
https://f-droid.org

• NGinx: This is a popular web server and it was needed to distribute files of our FDroid
repository.
http://nginx.org

• SSH access: SSH access to some files has been granted to either collaborators and our
machine controlling our smartphone dedicated to our tests.
http://www.openssh.org

• Pure-FTPd: An FTP server was also used to share some files.
http://pureftpd.org

B.3 Custom services

• Collect MPCtrl: To collect data sent by our MultipathControl application described
in section 3.5.2 on page 22, a simple HTTP/RESTful server has been created. It simply
listens to HTTP PUT messages with some JSON content and add data in a MongoDB
database.
https://github.com/MPTCP-smartphone-thesis/server-collect-mpctrl

• MongoDB: A MongoDB service was running on a container linked to the previous one.
With Docker we can easily restrict access to selected containers.
https://mongodb.org

B.4 Streaming services

• Icecast 2: A streaming media server. It has been use to server MP3 files during the
last phase of our researches.
http://icecast.org

• Music Player Daemon (MPD): This tool was used to send a constant MP3 flow to the
Icecast server. The MP3 files come from public Jamendo radios.
http://www.musicpd.org

VIII

https://f-droid.org
http://nginx.org
http://www.openssh.org
http://pureftpd.org
https://github.com/MPTCP-smartphone-thesis/server-collect-mpctrl
https://mongodb.org
http://icecast.org
http://www.musicpd.org

B.5. MISCELLANEOUS SERVICES

B.5 Miscellaneous services

• Collectd and Graphite: Collectd was installed on the host machine to collect
information about the utilisation of the CPU, discs, networks, etc. All data were
transferred to a container and displayed with Graphite web application.
https://collectd.org – https://launchpad.net/graphite

• pdnsd: a proxy DNS server. Because both Shadowsocks clients and servers don’t
support IPv6 as explained in section 3.4 on page 15, we set up a modified version of
this DNS proxy in order to not answer with IPv6 results. But due to a lack of time, we
prefer to disable IPv6 on Android devices given to our testers.
http://members.home.nl/p.a.rombouts/pdnsd

IX

https://collectd.org
https://launchpad.net/graphite
http://members.home.nl/p.a.rombouts/pdnsd

Appendix C

IPv6 and smartphones

Because ShadowSocks does not support IPv61, we didn’t want that the smartphone tries
to first looking for IPv6 addresses before IPv4 ones if the device has a global IPv6 address.
Indeed, all IPv6 traffic is not redirected to the proxy and it is not what we want. Furthermore,
we faced some errors where IPv6 addresses were unreachable on some networks. It was not
really a problem for web browsers which implements Happy Eyeballs [74] algorithm. But other
applications could first try to connect to a IPv6 address before falling back to a IPv4 address
only after a few seconds.

Different approaches can help us fixing these issues with IPv6:

• Applications should always prefer IPv4 over IPv6. It’s not possible to modify the code of
all applications but we could change the behaviour of getaddrinfo() function to get
an IP from a domain name. Unfortunately, Android doesn’t use GNU C Library (glibc)
which allows some configurations2. To avoid having to recompile Android’s libc and
re-install on all smartphones, we prefer to find another solution.

• It’s possible to block DNS requests with IPv6 addresses with pdnsd settings as proposed
on the Github issue1 but we needed to manually reinstall and reconfigure ShadowSocks
client on all clients.

• Redirecting DNS traffic to a local proxy DNS server on the proxy and modify the code
to only answer with IPv6 addresses could be a solution. But a new extra layer for all

1See https://github.com/shadowsocks/shadowsocks-android/issues/275: IPv6 is not blocked in China
then it’s not an urgent task according to the developers.

2See http://man7.org/linux/man-pages/man5/gai.conf.5.html

XI

https://github.com/shadowsocks/shadowsocks-android/issues/275
http://man7.org/linux/man-pages/man5/gai.conf.5.html

DNS requests will be added and we don’t want to slow them more.

• Disabling IPv6 on the smartphones could be seen as a radical fix but it’s an easy fix and
on the other hand, IPv6 should not be used. It’s possible to disable IPv6 by recompiling
the Android kernel without its support but to avoid reinstalling a new version on all
devices, it was decided to simply change a sysctl setting. Notice that Android resets
this setting when a interface is re-enabled, which is managed by our MultipathControl
application presented in section 3.5.2 on page 22. Then a iptables’s rule has been
added to block IPv6 traffic and then avoid receiving a global IPv6 address.

XII

Bibliography

[1] Alcock, S., and Nelson, R. Application flow control in youtube video streams.
SIGCOMM Comput. Commun. Rev. 41, 2 (Apr. 2011), 24–30.

[2] Alcock, S., and Nelson, R. Passive detection of tcp congestion events. In Telecom-
munications (ICT), 2011 18th International Conference on (2011), IEEE, pp. 499–504.

[3] Allman, M., Paxson, V., and Stevens, W. Rfc 2581: Tcp congestion control.

[4] Alvarez, C. Network monitor. https://github.com/caarmen/network-monitor/, 2015.

[5] Arzani, B., Gurney, A., Cheng, S., Guerin, R., and Loo, B. T. Deconstruct-
ing mptcp performance. In Network Protocols (ICNP), 2014 IEEE 22nd International
Conference on (Oct 2014), pp. 269–274.

[6] Arzani, B., Gurney, A., Cheng, S., Guerin, R., and Loo, B. T. Impact
of path characteristics and scheduling policies on MPTCP performance. In Advanced
Information Networking and Applications Workshops (WAINA), 2014 28th International
Conference on (May 2014), pp. 743–748.

[7] Baerts, M., and De Coninck, Q. Streaming analysis scripts. Available at https:
//github.com/MPTCP-smartphone-thesis/streaming-scripts.

[8] Baerts, M., and De Coninck, Q. Test framework: Android’s ui tests and python
scripts. Available at https://github.com/MPTCP-smartphone-thesis/uitests.

[9] Baerts, M., and Detal, G. Multipathcontrol, gui to manage mptcp set-
tings and log statistics on android devices. Available at https://github.com/
MPTCP-smartphone-thesis/MultipathControl.

[10] Blanton, E., Duke, M., Braden, R., Eddy, W., and Zimmermann, A. A
roadmap for Transmission Control Protocol (TCP) specification documents. RFC7414
(2015).

[11] Cao, Y., Xu, M., and Fu, X. Delay-based congestion control for Multipath TCP.
In Network Protocols (ICNP), 2012 20th IEEE International Conference on (Oct 2012),
pp. 1–10.

[12] Chen, Y.-C., Lim, Y.-s., Gibbens, R. J., Nahum, E. M., Khalili, R., and
Towsley, D. A measurement-based study of MultiPath TCP performance over wireless
networks. In Proceedings of the 2013 Conference on Internet Measurement Conference
(New York, NY, USA, 2013), IMC ’13, ACM, pp. 455–468.

i

http://doi.acm.org/10.1145/1971162.1971166
https://secure.wand.net.nz/sites/default/files/tcpcsm_ict.pdf
https://www.ietf.org/rfc/rfc2581.txt
https://github.com/caarmen/network-monitor/
http://dx.doi.org/10.1109/ICNP.2014.47
http://dx.doi.org/10.1109/ICNP.2014.47
http://dx.doi.org/10.1109/WAINA.2014.121
http://dx.doi.org/10.1109/WAINA.2014.121
https://github.com/MPTCP-smartphone-thesis/streaming-scripts
https://github.com/MPTCP-smartphone-thesis/streaming-scripts
https://github.com/MPTCP-smartphone-thesis/uitests
https://github.com/MPTCP-smartphone-thesis/MultipathControl
https://github.com/MPTCP-smartphone-thesis/MultipathControl
https://tools.ietf.org/html/rfc7414
https://tools.ietf.org/html/rfc7414
http://dx.doi.org/10.1109/ICNP.2012.6459978
http://doi.acm.org/10.1145/2504730.2504751
http://doi.acm.org/10.1145/2504730.2504751

BIBLIOGRAPHY

[13] Choffnes, D., and Govindan, R. Investigating transparent web proxies in cellular
networks. In Passive and Active Measurement: 16th International Conference, PAM
2015, New York, NY, USA, March 19-20, 2015, Proceedings (2015), vol. 8995, Springer,
p. 262.

[14] Cisco. Vni mobile forecast highlights, 2015. See http://www.cisco.com/c/dam/assets/
sol/sp/vni/forecast_highlights_mobile/index.html.

[15] Croitoru, A., Niculescu, D., and Raiciu, C. Towards wifi mobility without fast
handover. Usenix NSDI.

[16] De Coninck, Q., and Baerts, M. Analysis scripts. Available at https://github.
com/MPTCP-smartphone-thesis/pcap-measurement.

[17] De Coninck, Q., and Baerts, M. Http/rest server to collect data
from multipathcontrol’s android application. Available at https://github.com/
MPTCP-smartphone-thesis/server-collect-mpctrl.

[18] Deng, S., Netravali, R., Sivaraman, A., and Balakrishnan, H. WiFi, LTE,
or both?: Measuring multi-homed wireless internet performance. In Proceedings of the
2014 Conference on Internet Measurement Conference (New York, NY, USA, 2014),
IMC ’14, ACM, pp. 181–194.

[19] Detal, G., Paasch, C., and Bonaventure, O. Multipath in the Middle(Box).
In HotMiddlebox ’13 (2013), pp. 1–6.

[20] developers, M. Music player daemon (MPD). http://www.musicpd.org, 2015.

[21] Developers, N. Numpy, 2015. See http://www.numpy.org/.

[22] Drago, I., Mellia, M., M. Munafo, M., Sperotto, A., Sadre, R., and
Pras, A. Inside dropbox: Understanding personal cloud storage services. In IMC ’12
(2012).

[23] Eardley, P. Survey of MPTCP Implementations. Internet-Draft draft-eardley-mptcp-
implementations-survey-02, IETF Secretariat, July 2013.

[24] Eddy, W. M. Defenses against tcp syn flooding attacks. The Internet Protocol Journal
9, 4 (2006), 2–16.

[25] Evdokimov, L. redsocks. http://darkk.net.ru/redsocks, 2013.

[26] Fall, K. R., and Stevens, W. R. TCP/IP illustrated, volume 1: The protocols.
addison-Wesley, 2011.

[27] Ferlin, S., Dreibholz, T., and Alay, Ö. Multi-path transport over heterogeneous
wireless networks: Does it really pay off? In Proceedings of the IEEE GLOBECOM
(Austin, Texas/U.S.A., December 2014), IEEE.

[28] Ferlin-Oliveira, S., Dreibholz, T., and Alay, O. Tackling the challenge of
bufferbloat in multi-path transport over heterogeneous wireless networks. In Quality of

ii

https://books.google.be/books?hl=nl&lr=&id=SiURBwAAQBAJ&oi=fnd&pg=PA262&dq=Investigating+Transparent+Web+Proxies+in+Cellular+Networks&ots=uHzYMegPIM&sig=M-D10McZQhqaylLEJt_ruec6xbg#v=onepage&q=Investigating%20Transparent%20Web%20Proxies%20in%20Cellular%20Networks&f=false
https://books.google.be/books?hl=nl&lr=&id=SiURBwAAQBAJ&oi=fnd&pg=PA262&dq=Investigating+Transparent+Web+Proxies+in+Cellular+Networks&ots=uHzYMegPIM&sig=M-D10McZQhqaylLEJt_ruec6xbg#v=onepage&q=Investigating%20Transparent%20Web%20Proxies%20in%20Cellular%20Networks&f=false
http://www.cisco.com/c/dam/assets/sol/sp/vni/forecast_highlights_mobile/index.html
http://www.cisco.com/c/dam/assets/sol/sp/vni/forecast_highlights_mobile/index.html
http://www.cisco.com/c/dam/assets/sol/sp/vni/forecast_highlights_mobile/index.html
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-croitoru.pdf
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-croitoru.pdf
https://github.com/MPTCP-smartphone-thesis/pcap-measurement
https://github.com/MPTCP-smartphone-thesis/pcap-measurement
https://github.com/MPTCP-smartphone-thesis/server-collect-mpctrl
https://github.com/MPTCP-smartphone-thesis/server-collect-mpctrl
http://doi.acm.org/10.1145/2663716.2663727
http://doi.acm.org/10.1145/2663716.2663727
http://inl.info.ucl.ac.be/publications/multipath-middlebox
http://www.musicpd.org
http://www.numpy.org/
http://www.numpy.org/
http://doi.acm.org/10.1145/2398776.2398827
http://tools.ietf.org/html/draft-eardley-mptcp-implementations-survey-02
http://www-kiv.zcu.cz/~ledvina/DHT/ipj_9-4.pdf
http://darkk.net.ru/redsocks
https://books.google.be/books?hl=nl&lr=&id=a23OAn5i8R0C&oi=fnd&pg=PR9&dq=TCP/IP+illustrated&ots=R7fqAPona6&sig=ExjKANNJlpt6uRD5ni6kV5YYRkY#v=onepage&q=TCP%2FIP%20illustrated&f=false
http://dx.doi.org/10.1109/GLOCOM.2014.7037567
http://dx.doi.org/10.1109/GLOCOM.2014.7037567
http://dx.doi.org/10.1109/IWQoS.2014.6914310
http://dx.doi.org/10.1109/IWQoS.2014.6914310

BIBLIOGRAPHY

Service (IWQoS), 2014 IEEE 22nd International Symposium of (May 2014), pp. 123–
128.

[29] Ford, A., Raiciu, C., Handley, M., and Bonaventure, O. TCP Extensions
for Multipath Operation with Multiple Addresses. RFC 6824, January 2013.

[30] Gember, A., Anand, A., and Akella, A. A comparative study of handheld and
non-handheld traffic in campus wi-fi networks. In PAM’11 (2011), pp. 173–183.

[31] Google Inc. Monkeyrunner. Available at http://developer.android.com/tools/help/
monkeyrunner_concepts.html.

[32] Hesmans, B., and Bonaventure, O. Tracing Multipath TCP connections. SIG-
COMM Comput. Commun. Rev. 44, 4 (Aug. 2014), 361–362.

[33] Hesmans, B., Duchene, F., Paasch, C., Detal, G., and Bonaventure, O.
Are TCP extensions middlebox-proof? In Proceedings of the 2013 Workshop on Hot
Topics in Middleboxes and Network Function Virtualization (New York, NY, USA, 2013),
HotMiddlebox ’13, ACM, pp. 37–42.

[34] Hesmans, B., Tran-Viet, H., Sadre, R., and Bonaventure, O. A first look at
real Multipath TCP traffic. In Traffic Monitoring and Analysis, M. Steiner, P. Barlet-Ros,
and O. Bonaventure, Eds., vol. 9053 of Lecture Notes in Computer Science. Springer
International Publishing, 2015, pp. 233–246.

[35] Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A., Handley, M., and
Tokuda, H. Is it still possible to extend TCP? In Proceedings of the 2011 ACM
SIGCOMM Conference on Internet Measurement Conference (New York, NY, USA,
2011), IMC ’11, ACM, pp. 181–194.

[36] Hoque, M. A., Siekkinen, M., and Nurminen, J. K. Energy efficient multimedia
streaming to mobile devices—a survey. Communications Surveys & Tutorials, IEEE 16,
1 (2014), 579–597.

[37] Hunter, J., Dale, D., Firing, E., Droettboom, M., and the mat-
plotlib development team. matplotlib, 2015. See http://matplotlib.org/.

[38] Kelley, A. Waveform. https://github.com/andrewrk/waveform, 2014.

[39] Khalili, R., Gast, N., Popovic, M., and Le Boudec, J.-Y. MPTCP is not
pareto-optimal: Performance issues and a possible solution. Networking, IEEE/ACM
Transactions on 21, 5 (Oct 2013), 1651–1665.

[40] Khalili, R., Gast, N., Popovic, M., Upadhyay, U., and Le Boudec, J.-
Y. MPTCP is not pareto-optimal: Performance issues and a possible solution. In
Proceedings of the 8th International Conference on Emerging Networking Experiments
and Technologies (New York, NY, USA, 2012), CoNEXT ’12, ACM, pp. 1–12.

[41] Klassen, F., and AppNeta. Tcpreplay, 2015. Available at http://tcpreplay.appneta.
com/wiki/installation.html#downloads.

iii

http://www.rfc-editor.org/rfc/rfc6824.txt
http://www.rfc-editor.org/rfc/rfc6824.txt
http://www.researchgate.net/profile/Ashok_Anand/publication/220850238_A_Comparative_Study_of_Handheld_and_Non-handheld_Traffic_in_Campus_Wi-Fi_Networks/links/09e415086be1e99a29000000.pdf
http://www.researchgate.net/profile/Ashok_Anand/publication/220850238_A_Comparative_Study_of_Handheld_and_Non-handheld_Traffic_in_Campus_Wi-Fi_Networks/links/09e415086be1e99a29000000.pdf
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://doi.acm.org/10.1145/2740070.2631453
http://doi.acm.org/10.1145/2535828.2535830
http://dx.doi.org/10.1007/978-3-319-17172-2_16
http://dx.doi.org/10.1007/978-3-319-17172-2_16
http://dx.doi.org/10.1007/978-3-319-17172-2_16
http://dx.doi.org/10.1007/978-3-319-17172-2_16
http://doi.acm.org/10.1145/2068816.2068834
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6365157&abstractAccess=no&userType=inst
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6365157&abstractAccess=no&userType=inst
http://matplotlib.org/
http://matplotlib.org/
https://github.com/andrewrk/waveform
http://dx.doi.org/10.1109/TNET.2013.2274462
http://dx.doi.org/10.1109/TNET.2013.2274462
http://doi.acm.org/10.1145/2413176.2413178
http://tcpreplay.appneta.com/wiki/installation.html
http://tcpreplay.appneta.com/wiki/installation.html#downloads
http://tcpreplay.appneta.com/wiki/installation.html#downloads

BIBLIOGRAPHY

[42] Kuhn, N., Lochin, E., Mifdaoui, A., Sarwar, G., Mehani, O., and Boreli,
R. Daps: Intelligent delay-aware packet scheduling for multipath transport. In Commu-
nications (ICC), 2014 IEEE International Conference on (June 2014), pp. 1222–1227.

[43] Lee, K., Lee, J., Yi, Y., Rhee, I., and Chong, S. Mobile data offloading: how
much can wifi deliver? In Proceedings of the 6th International COnference (2010),
ACM, p. 26.

[44] Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., and Jones, L. Rfc
1928: Socks protocol version 5. Tech. rep., RFC, IETF, March, 1996.

[45] Lim, Y.-s., Chen, Y.-C., Nahum, E. M., Towsley, D., and Gibbens, R. J.
How green is Multipath TCP for mobile devices? In Proceedings of the 4th Workshop on
All Things Cellular: Operations, Applications, & Challenges (2014), ACM, pp. 3–8.

[46] Livadariu, I., Ferlin, S., Alay, O., Dreibholz, T., Dhamdhere, A., and
Elmokashfi, A. M. Leveraging the IPv4/IPv6 Identity Duality by using Multi-Path
Transport. In Proceedings of the 18th IEEE Global Internet Symposium (GI) (Hong
Kong/People’s Republic of China, Apr. 2015).

[47] Mathis, M., Mahdavi, J., Floyd, S., Romanow, A., and Options, T. S. A.
Rfc 2018: Tcp selective acknowledgment options. Internet Engineering Task Force
(IETF) (1996).

[48] Moon, Y., Kim, D., Go, Y., Kim, Y., Yi, Y., Chong, S., and Park, K.
Practicalizing delay-tolerant mobile apps with cedos. In Proceedings of the 13th Annual
International Conference on Mobile Systems, Applications, and Services (2015), ACM,
pp. 419–433.

[49] Nirjon, S., Nicoara, A., Hsu, C.-H., Singh, J. P., and Stankovic, J. A.
Multinets: A system for real-time switching between multiple network interfaces on
mobile devices. ACM Transactions on Embedded Computing Systems (TECS) 13, 4s
(2014), 121.

[50] Ostermann, S. Tcptrace. http://tcptrace.org, 2005.

[51] Paasch, C. Improving Multipath TCP. PhD thesis, UCL, November 2014.

[52] Paasch, C., Barre, S., et al. Multipath TCP in the Linux Kernel. available from
http://www.multipath-tcp.org.

[53] Paasch, C., and Bonaventure, O. Multipath TCP. Commun. ACM 57, 4 (Apr.
2014), 51–57.

[54] Paasch, C., Detal, G., Duchene, F., Raiciu, C., and Bonaventure, O.
Exploring Mobile/WiFi Handover with Multipath TCP. In ACM SIGCOMM CellNet
workshop (2012), pp. 31–36.

[55] Paasch, C., Ferlin, S., Alay, O., and Bonaventure, O. Experimental eval-
uation of Multipath TCP schedulers. In Proceedings of the 2014 ACM SIGCOMM

iv

http://dx.doi.org/10.1109/ICC.2014.6883488
http://netsys.kaist.ac.kr/publication/papers/Resources/%5BIJ107%5D.pdf
http://netsys.kaist.ac.kr/publication/papers/Resources/%5BIJ107%5D.pdf
https://www.ietf.org/rfc/rfc1928.txt
https://www.ietf.org/rfc/rfc1928.txt
http://doi.acm.org/10.1145/2627585.2627596
https://www.simula.no/sites/www.simula.no/files/publications/files/gis2015_0.pdf
https://www.simula.no/sites/www.simula.no/files/publications/files/gis2015_0.pdf
https://www.ietf.org/rfc/rfc2018.txt
http://www.deutsche-telekom-laboratories.de/~angela/papers/AngelaNicoara-MultiNets-TECS2013.pdf
http://www.deutsche-telekom-laboratories.de/~angela/papers/AngelaNicoara-MultiNets-TECS2013.pdf
http://tcptrace.org
http://inl.info.ucl.ac.be/publications/improving-multipath-tcp
http://www.multipath-tcp.org
http://queue.acm.org/detail.cfm?id=2591369
http://doi.acm.org/10.1145/2342468.2342476
http://doi.acm.org/10.1145/2630088.2631977
http://doi.acm.org/10.1145/2630088.2631977

BIBLIOGRAPHY

Workshop on Capacity Sharing Workshop (New York, NY, USA, 2014), CSWS ’14,
ACM, pp. 27–32.

[56] Paasch, C., Khalili, R., and Bonaventure, O. On the benefits of applying
experimental design to improve Multipath TCP. In Proceedings of the Ninth ACM
Conference on Emerging Networking Experiments and Technologies (New York, NY,
USA, 2013), CoNEXT ’13, ACM, pp. 393–398.

[57] Peng, Q., Chen, M., Walid, A., and Low, S. Energy efficient Multipath TCP
for mobile devices. In Proceedings of the 15th ACM International Symposium on Mobile
Ad Hoc Networking and Computing (New York, NY, USA, 2014), MobiHoc ’14, ACM,
pp. 257–266.

[58] Peng, Q., Walid, A., Hwang, J., and Low, S. Multipath TCP: Analysis, design,
and implementation. Networking, IEEE/ACM Transactions on PP, 99 (2015), 1–1.

[59] Pluntke, C., Eggert, L., and Kiukkonen, N. Saving mobile device energy with
Multipath TCP. In Proceedings of the Sixth International Workshop on MobiArch (New
York, NY, USA, 2011), MobiArch ’11, ACM, pp. 1–6.

[60] Postel, J. Rfc793: Transmission control protocol, sept. 1981.

[61] Raiciu, C., Barre, S., Pluntke, C., Greenhalgh, A., Wischik, D., and
Handley, M. Improving Datacenter Performance and Robustness with Multipath
TCP. In ACM SIGCOMM 2011 (2011).

[62] Raiciu, C., Niculescu, D., Bagnulo, M., and Handley, M. J. Opportunistic
mobility with Multipath TCP. In Proceedings of the Sixth International Workshop on
MobiArch (New York, NY, USA, 2011), MobiArch ’11, ACM, pp. 7–12.

[63] Raiciu, C., Paasch, C., Barre, S., Ford, A., Honda, M., Duchene, F.,
Bonaventure, O., and Handley, M. How hard can it be? Designing and imple-
menting a deployable Multipath TCP. In Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation (Berkeley, CA, USA, 2012), NSDI’12,
USENIX Association, pp. 29–29.

[64] Rao, A., et al. Network characteristics of video streaming traffic. In CoNEXT ’11
(2011).

[65] Rombouts, P. A. pdnsd. http://members.home.nl/p.a.rombouts/pdnsd, 2012.

[66] Semke, J., Mahdavi, J., and Mathis, M. Automatic TCP buffer tuning. ACM
SIGCOMM Computer Communication Review 28, 4 (1998), 315–323.

[67] Stevens, W. R. Rfc 2001: Tcp slow start, congestion avoidance, fast retransmit, and
fast recovery algorithms.

[68] sup Lim, Y., Chen, Y.-C., Nahum, E., Towsley, D., and Lee, K.-W. Cross-
layer path management in multi-path transport protocol for mobile devices. In INFO-
COM, 2014 Proceedings IEEE (April 2014), pp. 1815–1823.

v

http://inl.info.ucl.ac.be/publications/benefits-applying-experimental-design-improve-multipath-tcp
http://inl.info.ucl.ac.be/publications/benefits-applying-experimental-design-improve-multipath-tcp
http://doi.acm.org/10.1145/2632951.2632971
http://doi.acm.org/10.1145/2632951.2632971
http://dx.doi.org/10.1109/TNET.2014.2379698
http://dx.doi.org/10.1109/TNET.2014.2379698
http://doi.acm.org/10.1145/1999916.1999918
http://doi.acm.org/10.1145/1999916.1999918
https://www.ietf.org/rfc/rfc793.txt
http://doi.acm.org/10.1145/2018436.2018467
http://doi.acm.org/10.1145/2018436.2018467
http://doi.acm.org/10.1145/1999916.1999919
http://doi.acm.org/10.1145/1999916.1999919
http://inl.info.ucl.ac.be/publications/how-hard-can-it-be-designing-and-implementing-deployable-multipath-tcp
http://inl.info.ucl.ac.be/publications/how-hard-can-it-be-designing-and-implementing-deployable-multipath-tcp
http://doi.acm.org/10.1145/2079296.2079321
http://members.home.nl/p.a.rombouts/pdnsd
http://conferences.sigcomm.org/sigcomm/1998/tp/paper26.pdf
http://tools.ietf.org/html/rfc2001
http://tools.ietf.org/html/rfc2001
http://dx.doi.org/10.1109/INFOCOM.2014.6848120
http://dx.doi.org/10.1109/INFOCOM.2014.6848120

BIBLIOGRAPHY

[69] Tachibana, A., Yoshida, Y., Shibuya, M., and Hasegawa, T. Implementation
of a proxy-based cmt-sctp scheme for android smartphones. In Wireless and Mobile
Computing, Networking and Communications (WiMob), 2014 IEEE 10th International
Conference on (2014), IEEE, pp. 660–665.

[70] Tcpdump/Libpcap. tcpdump, 2015. See http://www.tcpdump.org/.

[71] Team, G. Geotiler. https://github.com/wrobell/geotiler, 2015.

[72] Weaver, N., Kreibich, C., Dam, M., and Paxson, V. Here be web proxies. In
Proceedings of the 15th International Conference on Passive and Active Measurement -
Volume 8362 (New York, NY, USA, 2014), PAM 2014, Springer-Verlag New York, Inc.,
pp. 183–192.

[73] Williams, N., Abeysekera, P., Dyer, N., Vu, H., and Armitage, G. Multi-
path TCP in Vehicular to Infrastructure Communications. Tech. Rep. 140828A, CAIA,
Swinburne University of Technology, August 2014.

[74] Wing, D., and Yourtchenko, A. Happy eyeballs: Success with dual-stack hosts.

[75] Wireshark. Tshark, 2015. See https://www.wireshark.org/docs/man-pages/tshark.
html.

[76] Wischik, D., Raiciu, C., Greenhalgh, A., and Handley, M. Design, imple-
mentation and evaluation of congestion control for Multipath TCP. In Proceedings of the
8th USENIX Conference on Networked Systems Design and Implementation (Berkeley,
CA, USA, 2011), NSDI’11, USENIX Association, pp. 99–112.

[77] Xiao, Q., Xu, K., Wang, D., Li, L., and Zhong, Y. Tcp performance over
mobile networks in high-speed mobility scenarios. In Network Protocols (ICNP), 2014
IEEE 22nd International Conference on (2014), IEEE, pp. 281–286.

[78] Xiph.Org. Icecast 2. http://icecast.org, 2004-2015.

vi

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6962241&abstractAccess=no&userType=inst
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6962241&abstractAccess=no&userType=inst
http://www.tcpdump.org/
http://www.tcpdump.org/
https://github.com/wrobell/geotiler
http://dx.doi.org/10.1007/978-3-319-04918-2_18
http://caia.swin.edu.au/reports/140828A/CAIA-TR-140828A.pdf
http://caia.swin.edu.au/reports/140828A/CAIA-TR-140828A.pdf
https://tools.ietf.org/html/rfc6555
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
http://dl.acm.org/citation.cfm?id=1972457.1972468
http://dl.acm.org/citation.cfm?id=1972457.1972468
http://www.thucsnet.org/uploads/2/5/2/8/25289795/icnp14_measurement.pdf
http://www.thucsnet.org/uploads/2/5/2/8/25289795/icnp14_measurement.pdf
http://icecast.org

	Introduction
	Multipath TCP
	Overview
	Control plane
	Initial handshake
	Handshake of the additional subflows
	Removing a subflow
	Backup subflows
	Path manager

	Data plane
	A second sequence number space
	Congestion control

	Measurement infrastructure
	High level view
	Infrastructure
	Smartphones
	Server
	Routers

	Android's Multipath TCP kernel
	SOCKS proxy-like with ShadowSocks
	How SOCKS works
	Characteristics of ShadowSocks's traffic
	How all traffic is redirected to the proxy

	Developed tools
	Analysis scripts
	An Android application to control Multipath TCP

	Automated measurements
	Automated test framework
	Android's UI tests
	Controlling execution of UI tests

	Methodology
	Application studied
	Upload intensive scenarios
	Download intensive scenarios

	About loopback interface
	Multipath TCP on smartphone
	Single-path measurements
	Behaviour of TCP connections with WiFi
	Characterisation of interfaces

	Multiple-paths measurements
	Distribution of traffic on both interfaces
	Multipath TCP's behaviour with shaped networks
	Analysis of the delay seen by applications
	Efficiency of Multipath TCP

	Conclusion

	A closer look at real traffic
	Description of the datasets
	multipath-tcp.org traces
	Smartphones traces

	Analysis
	Middlebox interferences
	Establishment of the subflows
	Subflows round-trip-times
	Multipath TCP acknowledgements
	Utilisation of the subflows

	Multipath TCP imperfections
	Unused subflows
	Reinjections
	Receive window limitations

	Conclusion

	Streaming applications
	Methodology
	Overview
	Handover at application level
	Mobility
	Streaming over Multipath TCP

	Analysis
	Traffic distribution
	Multipath TCP's backup mode

	Conclusion

	Conclusion
	Future work

	Tools used
	tcptrace
	mptcptrace
	tcpdump
	tcpcsm
	Linux containers with Docker

	Running services on server
	Proxy services
	Sharing services
	Custom services
	Streaming services
	Miscellaneous services

	IPv6 and smartphones

