
Appendix A

Theory of semiconductors

The understanding of semiconductors is essential to the understanding of TCOs. The main char-
acteristics have been detailed in the body of this dissertation, but the basic theory is presented
here.

This appendix has been written using Refs. [43, 44].

A.1 Band structure of a semiconductor
In a solid, electrons can have energies which are quantified and grouped in bands containing
allowed energy levels and separated by forbidden bands in which there are no energy levels
available. When T = 0 K and if the solid is at equilibrium, the system tends to minimize its
total energy and the electrons fulfill energy levels from the lowest level to a level depending on
the solid (due to Pauli exclusion principle, only two electrons can have the same level of energy).
The valence band is the band containing the highest energy levels and in which all these levels
are occupied. The band directly above the valence band in called the conduction band.

The difference between the band structure at T = 0 K for a metal, an insulator and a
semiconductor is represented in Fig. A.1. It shows that for an insulator, the valence band
is completely full with electrons while the conduction band is completely empty. The only
difference between an insulator and a semiconductor is their band gap Eg : for an insulator,
Eg ∼ 5 eV and for a semiconductor, Eg ∼ 1 − 2 eV.

The band structure is not exactly what is depicted in Fig. A.1 because it does not take into
account the momentum of the electrons. Fig. A.2 represents the band structure for silicon and
gallium arsenide. This shows that the top of the band valence does not always correspond to
the bottom of the conduction band : they may differ by a given wave vector. If there is no
difference, the semiconductor is said to have a direct band gap. If there is a difference, then it
is said to have an indirect band gap. For example, silicon has an indirect band gap and gallium
arsenide has a direct one.

The electronic properties of semiconductors are mostly determined by the density of electrons
in the conduction band n and the density of holes in the valence band p. In the rest of this
chapter, the developments will be given for electrons only (the developments for the holes being
essentially the same).

A.2 Intrinsic concentration of charge carriers
The Fermi-Dirac distribution gives the probability for an electron to be in a certain energy state.
The expression depends on the Fermi energy Ef and on the temperature :

fe(E, T ) = 1
exp

(
E−Ef

kT

)
+ 1

. (A.1)
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Figure A.1: Energy bands of (a) an insulator, (b) a semiconductor, (c) a metal and (d) a
semi-metal for T = 0 K [44]. µ represents the Fermi level, Ev the energy level corresponding
to the top of the valence band and Ec the energy level corresponding to the bottom of the
conduction band.

At room temperature, the product kT ' 0.0259 eV so that if the Fermi level is far enough
from the conduction and valence bands, the Fermi-Dirac distribution can be approximated by
a Maxwell-Boltzmann one :

fe(E) ' exp
(−(E − Ef )

kT

)
. (A.2)

The density of electrons in the conduction band at a given temperature is

n =
∫ ∞

Ec

gc(E)fe(E)dE (A.3)

where gc(E) is the density of states (DOS) in the conduction band. If the effective mass of
electrons is isotropic, then the DOS is given by (without demonstration)

gc(E) = (2m∗
e)3/2√

E − Ec

2π2~3 (A.4)

so that the density of electrons is

n = Nc exp
(

Ef − Ec

kT

)
(A.5)

with

Nc = 2
(2πm∗

ekT

h2

)3/2
. (A.6)

The results for the density of holes in the valence band can be derived by the exact same
way and is given by

p = Nv exp
(

Ev − Ef

kT

)
(A.7)

Nv = 2
(2πm∗

hkT

h2

)3/2
. (A.8)

The product np can be determined :

np = 4
(

kT

2π~2

)3
(m∗

em∗
h)3/2 exp

(
− Eg

kT

)
≡ n2

i (T ) (A.9)
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(a) (b)

Figure A.2: Band structure of (a) silicon and (b) gallium arsenide [43].

where ni is called the intrinsic concentration. This shows that for a given temperature and for a
given semiconductor, the product np is a constant. This relation is really useful even for doped
semiconductors, as it will be shown in the next section.

For an intrinsic semiconductor, the density of holes in the valence band is equal to the density
of electrons in the conduction band. Indeed, the only contributions to the densities come from
the excitation of electrons from the valence band to the conduction band. As every excited
electron leaves a hole in the valence band, the densities have to be the same. This gives

n = p = ni = pi = 2
(

kT

2π~2

)3/2
(m∗

em∗
h)3/4 exp

(
− Eg

2kT

)
. (A.10)

A.3 Doping a semiconductor : change in concentrations
The intrinsic densities of electrons and holes in a semiconductor are really small at room tem-
perature. For example, at 300 K the intrinsic density for silicon is n = 1.5 · 1010 cm−3, and
for gallium arsenide the density is n = 5 · 107 cm−3 while the atomic concentration is around
1023 cm−3. The introduction of impurities in a semiconductor leads to the introduction of free
charges (no polaronic effects are taken into account here). This is called the doping of a semi-
conductor. In a lattice composed of silicon (for example), which is of valence 4, the replacement
of a silicon atom by a donor element like phosphorus (valence 5) is easy because the sizes of the
atoms are nearly the same. 4 of the electrons of valence from the phosphorus are used in order
to satisfy the covalent bonds with other silicon atoms. The last electron is the one which will
be useful for the electronic properties. The impurities are easily ionized (the thermal energy
at room temperature is high enough to ionize the atoms) once they are in the lattice, so the
delocalization of free charges is way easier in this case than in the intrinsic case.

The same reasoning can be done for an acceptor of electrons like boron (valence 3). Here,
an electron of the lattice will be taken by the acceptor in order to satisfy the covalent bonds. A
positive charge will thus be delocalized while the negative ion is staying around its equilibrium
position. Fig. A.3 shows the effect of the addition of a donor and of an acceptor of electron.

The introduction of impurities in a semiconductor also leads to the introduction of energy
levels inside the forbidden band. The donors introduce a level ED which is really close to the
conduction band (the donor is easily ionized) and the acceptors introduce a level EA which is
really close to the valence band. Fig. A.4 represents both different situations.
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(a) (b)

Figure A.3: Effect of (a) donor and (b) acceptor species in a semiconductor [43].

(a) (b)

Figure A.4: Introduction of energy levels due to the presence of (a) donor and (b) acceptor
species [43].

The energy needed in order to ionize the impurities is either Ec − ED or EA − Ev. In the
case of an n-type semiconductor (doped with donor impurities) with a concentration ND of
impurities, the variation of n with the temperature is the following.

• For really low temperatures, the thermal energy kT is not high enough to ionize the impu-
rities. The electrons are localized in the valence band and on the energy levels introduced
by the donors.

• If the temperatures get a little higher, the donors will slowly become ionized. In this case,

n ∝ exp
(

− Ed

2kT

)
(A.11)

with Ed = Ec − ED.

• If the temperature is such that all the donors are ionized (kT � Ed), then

n ' ND and p � n. (A.12)

• If the temperature gets even higher, the intrinsic ionization cannot be ignored :

n = p + ND (A.13)
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E

Figure A.5: Movement of an electron in a solid. On the left, there is no external electric field
and the net movement is equal to 0. On the right, the electric field leads to a global movement
in the direction of the electric field. Inspired from [44].

In the intrinsic regime, the electrons in the conduction band come from both the valence
band and the ionized impurities, but the number of electrons excited from the valence
band stays really small compared to the number of impurities introduced. The relation
np = n2

i is still satisfied for such a semiconductor and leads to the conclusion that p � n.
The electrons are then called the majority carriers and the holes the minority carriers.

For temperatures around 300 K, the situation considered is the one where all impurities are
ionized and the intrinsic regime is not reached yet.

A.4 Current in a semiconductor due to an electric field
The motion of a charge carrier in a solid is random and changes constantly of direction due
to collisions with impurities, lattice defaults or phonons (quanta of energy stored in lattice
vibrations). When there is no external force applied to the carriers, the net motion of each one
of them is zero, so that there is no spontaneous current in the material. But when an electric
field is applied, the net motion of the carriers is different from 0 and tends to be aligned with
the electric field. Fig. A.5 depicts both scenarios.

If τn is the mean time between two collisions for an electron, the drift velocity of electrons
is1

vD = −qτm

m∗
e

E (A.14)

so that the current density is

Jn = −nqvD = nq2τn

m∗
e

E. (A.15)

The mobility of the electron µn is then defined as

µn = qτn

m∗
e

. (A.16)

The same kind of expressions can be obtained for holes :

Jp = nq2τp

m∗
h

E (A.17)

µp = qτp

m∗
h

. (A.18)

The total current density is then

J = Jn + Jp = q(nµn + pµp)E. (A.19)

1Both classical and quantum considerations lead to this result.
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