
Study and Analysis of Network Flows
Augmenting Path and Preflow-push algorithms

Dissertation presented by
Denis GENON , Victor VELGHE

for obtaining the Master’s degree in
Sciences Informatiques

Supervisor
Yves DEVILLE

Readers
François AUBRY, Jean-Charles DELVENNE

Academic year 2015-2016

Acknowledgment
We would like to thank our supervisor Pr. Deville for his releveant remarks and wise advices.
Furthermore, we thank him for teaching the course Artificial Intelligence which made us discover
our passion for algorithms.

We would also thank François Aubry, PhD student, for his support, patience, enthusiasm and
bright ideas. His guindance helped us for our research and writing this master thesis. He’s the
reason we produced an accomplished work.

Our thanks also goes to Pr. Jean-Charles Delvenne to accept reading our master thesis.

We are also grateful to our wonderful famillies and friends, always behind us and supporting
us.

Contents

Introduction 7

1 The Maximum Flow Problem 9
1.1 Notations and Definitions . 9

1.1.1 Capacitated network . 9
1.1.2 Source and sink vertices . 10
1.1.3 Flow . 11
1.1.4 Residual network . 11

1.2 Assumptions . 11
1.3 Problem statement . 12
1.4 Applications . 12

1.4.1 Problem of representatives . 12

2 Existing Algorithms 15
2.1 Augmenting path algorithms . 15

2.1.1 Ford-Fulkerson and Edmonds-Karp . 17
2.1.2 Complexities . 17

2.2 Preflow-push algorithms . 18
2.2.1 Introduction . 18
2.2.2 Complexity . 19

2.3 Difficult cases . 20
2.3.1 In Edmonds-Karp algorithm . 20
2.3.2 In Preflow-push algorithms . 21

3 Data Structures 27
3.1 Data structures . 28

3.1.1 Hash Map . 28
3.1.2 Tree Map . 28
3.1.3 Simple Linked List . 29
3.1.4 Home-made structures . 29
3.1.5 Complexities . 31

4 Improvements of Existing Algorithms 33
4.1 Ford-Fulkerson Scaling . 33

4.1.1 Complexity . 33
4.2 Preflow-push heuristics . 34

4.2.1 FIFO heuristic . 34
4.2.2 Highest label heuristic . 35

4.3 No initialization of height in Preflow-push algorithms 37

5

5 Implementation 39
5.1 Langage choice . 39
5.2 Structure . 40

5.2.1 Package: Models . 40
5.2.2 Package: Solvers . 40
5.2.3 Package: Objects . 42
5.2.4 Package: Results . 42
5.2.5 Conclusion . 42

5.3 Collecting and displaying results . 44
5.4 Tools . 45

5.4.1 Version control system . 45
5.4.2 Management application . 45

6 Experimental Analysis 47
6.1 Instances generation . 48

6.1.1 Density variation instances . 48
6.1.2 Size variation instances . 48

6.2 Push-Relabel . 50
6.2.1 Height label initialization . 50
6.2.2 Best Push-Relabel . 52

6.3 Data structures . 54
6.3.1 Push-Relabel . 54
6.3.2 Edmonds-Karp . 57
6.3.3 Ford-Fulkerson with scaling . 58

6.4 Behaviors . 61
6.4.1 Edmonds-Karp . 61
6.4.2 Ford-Fulkerson with scaling . 63
6.4.3 Push-Relabel . 65

6.5 Comparison . 68
6.5.1 Density variation instances . 68
6.5.2 Size variation instances . 69
6.5.3 Matching problem instances . 69

Conclusion 71

Bibliography 71

Introduction

The maximum flow problem is an optimization problem which takes place in the graph theory.
This problem is noteworthy by the long succession of research contributions that have improved
on the worst-case complexity of the best known algorithms. Among those best known algo-
rithms, we can cite, in the order of creation, the Ford-Fulkerson algorithm (1955), the blocking
flow of Dinitz (1970), the Edmonds-Karp algorithm (1972), the push-relabel algorithm of Gold-
berg and Tarjan (1986) and the binary blocking flow of Goldberg and Rao (1997).

The goal of this master thesis is to do an analysis of how the augmenting path algorithms
and the preflow-push algorithm, two families of maximum flow algorithm, perform in different
families of graphs. We also studied which data structure was the most suited to represent a
graph. Another goal of this work is to present an open-source and modulable Java implemen-
tation of these algorithms. With this implementation, we want to allow other developers to try
our implementation and extend it.

Our work is divided into several parts. First, we introduce the problem studied and we
define the notations that we will use throughout this work. Then we will define the algorithms
and data structures that we used for our analysis. After, we show the improvements on these
algorithms to make them more efficient. Then will come the part where we explain our choices
and the structure of the implementation. Finally, the experimental analysis will conclude our
work.

7

8

Chapter 1

The Maximum Flow Problem

The maximum flow problem can be stated as follows: in a capacitated network, we need to
push as much flow as we can between two specials vertices, the source and the sink. The two
constraints are that we cannot exceed the capacity of any edge and a vertex cannot hold flow. A
common analogy is a water distribution in a country. The vertices can be sources of water, cities
needing water or just some transfer nodes. The edges can be viewed as pipes with a maximal
volume of water per second (or capacity). The flow is the amount of water flowing through the
pipes. The goal is to find the maximum flow of water that can be send from a source of water
to a needing city given the capacities of each pipes. As we need to find the maximum flow that
can be pushed, this an optimization problem. We will see in the section Applications 1.4 that
the maximum flow problem is important because it can be used to express and resolve a wide
variety of different kinds of problems.

To solve this problem, two families of algorithms have been developped these last decades.
The first one is the family of the augmenting path algorithms. The aim of thoses algorithms is
to find an augmenting path in the residual network until it becomes impossible. We will return
on these principles later. The second family is the family of preflow-push algorithms. The aim
of those is to flood the network to quickly find the maximum flow.

1.1 Notations and Definitions

In this section, we will set the conventions that we will use along this master thesis. This
problem is based on the graph theory, we will then use the definitions of this theory to frame
the problem.

1.1.1 Capacitated network

Definition 1. A directed graph G = (V,E) consists of a set V of vertices and a set E of
edges. We assume, without loss of generality, that V = {0, 1, ..., n− 1}, where n is the number
of vertices. The edges are represented as an ordered pair of its vertices and is, E ⊆ V × V .

9

Figure 1.1: A directed graph.

Figure 1.2: A capacitated network.

Figure 1.1 gives us an example of a directed graph.

Definition 2. A capacitated network is a directed graph whose edges have a numerical value
associated to it. In the case of the maximum flow problem, this value represents the capacity
of the edge. The capacity of an edge is a mapping c : E → R+, and represents the maximum
amount of flow that can pass through the edge. The capacity of the edge (i, j) is denoted cij .

The figure 1.2 gives us an example of a capacitated network.

In this master thesis, everything that will be mentionned by the terms graph, network, . . . will
refer to a capacitated network.

1.1.2 Source and sink vertices

As said earlier, the maximum flow problem distinguishes two specials nodes in the problem: the
source and the sink.

Definition 3. A source is an arbitrary vertice s which possesses at least one outgoing edge.

s ∈ V such that ∃(s, k) ∈ E with k ∈ V

Definition 4. A sink is an arbitrary vertice t which possesses at least one incoming edge.

t ∈ V such that ∃(k, t) ∈ E with k ∈ V

In this master thesis, we will use the letters s and t to represent the source and the sink,
respectively.

10

1.1.3 Flow

Definition 5. A flow is a mapping f : E → R+. The flow between i and j is denoted by fij

and is subject to two constraints:

Capacity constraint fij ≤ cij , for each (i, j) ∈ E;

Flow conservation constraint
∑

(i,j)∈E
fij =

∑
(j,i)∈E

fji , for each j ∈ V \ {s, t}.

Definition 6. The value of a flow is defined by |f | =
∑

(s,j)∈E
fsj or |f | =

∑
(i,t)∈E

fit. It represents

the amount of flow passing from the source to the sink. |f | can be equivalently stated as the
amount of flow leaving s or entering t.

1.1.4 Residual network

To resolve the maximum flow problem, it is convenient to use another representation of the
capacitated network. To be able to find the maximum flow, several algorithms update the
current flow in an incremental process. Then, it will be useful to have a representation of the
graph which gives the amount of remaining flow which can be added to the current flow through
an edge. This representation is called residual network [AMO93].

Definition 7. Given a flow f in a graph G, the residual capacity cf (i, j) is defined as cf (i, j) =
cij − fij .

Definition 8. Given a flow f in graph G, the residual network Gf is the directed network
(defined on the same set of vertices) with all edges of positive residual capacity, each one labeled
by its residual capacity.

1.2 Assumptions
All along this master thesis, we will consider a capacitated network G = (V,E) with a non
negative capacity cij associated with each edge (i, j) ∈ E.

All capacities are positives integers. With irrational flow values, the flow might not even
converge towards the maximum flow [Zwi95].

There is no incoming edges to the source and no outgoing edges from the sink.

The network is connected. This assumption is important to ensure that there is a path
bewteen the source and the sink. If no such path exist, the flow is simply 0.

The network does not contain any path from the source to the sink composed only of infinite
capacity edges. The reason of this is that if a such path exist, we can send an infinite amount
of flow along this path, and therefore the maximum flow value cannot be bounded.

11

The network does not allow multiples edges bewteen two same vertices. This assumption is
not requiered if we consider that the capacities of those edges add up. This assumption allows
us to keep the representation of the problem simple.

1.3 Problem statement

We have now defined all terms we will use and made all the assumptions needed. Thus we can
now state the problem formally. The maximum flow problem is to maximize |f |, that is, to route
as much flow as possible from s to t. The flow f must satisfy the capacity constraint and the
flow conservation constraint at all vertices (except s and t). We can state the problem formally
as follows.

Maximize
∑

(s,i)∈E

fsi

subject to ∑
(i,j)∈E

fij =
∑

(j,i)∈E

fji for all i ∈ V \ {s, t}

and
0 ≤ fij ≤ cij for each (i, j) ∈ E
fij is an integer.

(1.1)

1.4 Applications

As we said earlier, the maximum flow problem arise in a wide variety of situations and in several
forms. The maximum flow problem is often a subproblem of other more difficult network prob-
lems. In this section, we will describe one application of the maximum flow problem [AMO93].
Several other applications can be found on the literature or on the web [Way01].

1.4.1 Problem of representatives

Problem Statement

A city has c citizens C1, C2, C3, ..., Cc; a associations A1, A2, A3, ..., Aa and p political parties
P1, P2, P3, ..., Pp. Each resident is member of at least one association and belongs to one political
party. Each association must elect one of its members to represent it on the governement so
that the number of council member of the political party Pk is at most uk. The task is to know
if an arrangement is possible in regards to that property.

Solution

We can transform this problem to a directed network as shown in the figure 1.3. In the network,
we added a source node and a sink node. There is an arc from the source node to each association
node with an unitary capacity. If a citizen is member of an association, there is an arc from the

12

Figure 1.3: A directed network representing the problem of representatives.

assocation node Ai to the citizen node Cj with an unitary capacity. If a citizen is member of a
political party, there is an arc from the citizen node Ci to the political party node Pj with an
unitary capacity. Finally, each political party nodes have an outgoing arc to the sink, with a
capacity of uk (defined in the problem).

If the maximum flow of this directed network is equals to the number of associations (a), we
can say that the city has a balanced council; otherwise, it does not. This is because if the value
of the maximum flow is not a, it means that at least one association is not represented.

This type of model has applications in several ressource assignment settings.

13

14

Chapter 2

Existing Algorithms

2.1 Augmenting path algorithms
The idea behind the augmenting path algorithms is as follows : as long as there is a path from
the source to the sink in the residual network, we send flow along this path. This process is
repeated until there is no more path from the source to the sink.

A directed path from the source to the sink in the residual network is called augmenting path.

When an augmenting path is found, we send a flow equivalent to the minimum capacity of
any edge in the path. We update the residual network by decreasing capacities in forward edges
and increasing capacities in backward edges. Then we look for a new augmenting path in the
new residual network.

Here is a graph with its residual network after sending 4 units of flow through the augmenting
path A-C-E-F :

15

The residual network is essential to be able to backtrack. For instance, after sending 4 units
of flow through the path A-B-E-F in the graph G1, we obtain the graph G2. On this graph, it
is not possible to find a new path from the source A to the sink F. But on its residual graph
G3, we can send 2 units of flow through A-C-E-B-D-F to obtain the maximal flow represented
in the graph G4.

Figure 2.1: Graph G1. Figure 2.2: Graph G2.

Figure 2.3: Residual graph G3. Figure 2.4: Graph G4.

The pseudo-code of the augmenting path algorithm is given here :

while Gf contains a directed path from vertex s to vertex t do
identify an augmenting path P from vertex s to vertex t;
δ = min{cij : (i, j) ∈ P};
augment δ units of flow along P and update Gf ;

end
Algorithm 1: Augmenting path algorithm.

16

2.1.1 Ford-Fulkerson and Edmonds-Karp

There are two main augmenting path algorithms, Ford-Fulkerson (published in 1956) and Edmonds-
Karp (published in 1972). They instantiate in their own way the augmenting path algorithm
given that the unique difference between both is the way of looking for an augmenting path in
the residual network.

Ford-Fulkerson uses a depth-first search, looking for long paths [Sch15a]. The flow is thus
potentially sent over a large number of edges but a small quantity. Indeed, a long path has a
higher chance to contain at least one edge with a low capacity.

On the other hand, Edmonds-Karp uses a breadth-first search to look for the shortest path
(in terms of number of edges) [Way15]. A bigger quantity of flow is thus sent on a smaller
number of edges.

2.1.2 Complexities

The max flow problem, being a problem of complexity class P, can be solved in polynomial
time. When the capacities are integers, the remaining time of Ford-Fulkerson is bounded by
O(|E| · |V | · U) and Edmonds-Karp by O(|V | · |E|2), where |E| is the number of edges in the
graph, |V | is the number of vertices and U is the maximum capacity of the graph.

Ford-Fulkerson Each augmenting path can be found in O(|E|) thanks to the depth-first
search algorithm and in the worst case, the flow will increase by 1. So the time complexity
is O(|E| · |f |), |f | being the value of the maximal flow.
This complexity is expressed in terms of the final result, we can reformulate it. Indeed, the
maximal flow cannot be greater than |V | ·U . The time complexity of Ford-Fulkerson is then
O(|E| · |V | · U).
Ford-Fulkerson has a pseudo-polynomial time complexity. Indeed, O(|E| · |V | · U) is poly-
nomial in the numeric value of the input but is exponential in the length of the input. The
input takes log(U) bits to represent U [Sch15a].

Edmonds-Karp The breadth-first search assures us that after each iteration, the length of
the augmenting path can’t decrease [Kem04]. We also know that there is a maximum of |E|
path of the same length. So we conclude that the length of the augmenting path can stay
the same for at most |E| iterations before increasing.
We know that the length of the augmenting path is between 1 and |V | − 1. The length of
the augmenting path increase by a least 1 so there is a maximum of |V | possible increases.
Thus there are at most |V | · |E| iterations.
Each augmenting path can be found in O(|E|). The time complexity of Edmonds-Karp is
then O(|V | · |E|2) [Way15]. This upper bound complexity is very severe. Indeed, it is rare
to find graphs with such features.

17

2.2 Preflow-push algorithms

2.2.1 Introduction

The drawback of the augmenting path algorithms is the operation of sending flow along a path.
The time complexity of this operation in the worst case is O(n), where n is the number of
vertices in the augmenting path. One example of this can be seen in the figure 2.5. With
augmenting path algorithms, only one unit of flow can be pushed at a time on the edge (12, 13)
in the network. In this case, a better solution is to push directly from the vertice 12, 10 units
of flow to the sink. This is the idea behind preflow-push algorithms [GT88].

Figure 2.5: Extreme case for augmenting path algorithms.

The preflow-push algorithms don’t push flow on augmenting path, they push flow on indi-
vidual vertices. Because of this, preflow-push algorithms does not respect the flow conservation
constraint. Indeed, these algorithms permit the flow entering a vertex to exceed the flow leaving
the vertex. We call this flow a preflow.

18

Definition 9. A preflow is a function x : E → R that satisfies the capacity constraint and the
following relaxation of the flow conservation constraint:∑

(j,i)∈E

xji −
∑

(i,j)∈E

xij ≥ 0 for each i ∈ V \ {s, t}.

Definition 10. The excess of each vertex i ∈ V is

e(i) =
∑

(j,i)∈E

xji −
∑

(i,j)∈E

xij .

We call a vertex with positive excess as an active vertex. The fact that there are active
vertices means that the current solution is not feasible [CSRL01]. Thus, the goal of the algorithm
is to remove the excess from those vertices. The intuition is to push the flow to the vertex closer
to the sink. Each vertex has its own height label which is, in the beginning of the algorithm,
the distance between the vertex and the sink. The algorithm only push a flow from a vertex to
another if the first one is an active vertex and if his height label is greater than the height label
of the other vertex. A popular analogy is that we can only push flow downhill. The difference
between the two heights label must be exaclty one. When we can push a flow from a active
vertex to another vertex, we call the edge linking the two an admissible edge. This operation
is called a push operation. If such scenario cannot be applied, we need to relabel the height
label of the vertex. This operation is called the relabel operation. The algorithm terminates
when there is no more active vertex. The pseudo code of this algorithm is given in Algorithm 2
[AMO93].

preprocess;
while the network contains an active vertex do

select an active vertex i;
push/relabel(i);

end
Algorithm 2: Generic preflow-push algorithm.

x← 0;
compute height labels d(i);
xsj ← csj for each arc (s, j) ∈ E(s);
d(s)← v;

Algorithm 3: Preprocess.

2.2.2 Complexity

To compute the complexity of the generic preflow-push algorithm we need to distinguish three
kinds of operations: relabels, saturing pushes, non-saturing pushes.

19

if the network contains an admissible edge (i, j) then
push δ ← min{e(i), rij} units of flow from i to j;

end
else

replace d(i) by min{d(j) + 1 : (i, j) ∈ E(i) and rij > 0};
end

Algorithm 4: Push/Relabel(i).

• There is a possibility of maximum |V |2 relabel operations. This is because the maximum
height is 2 · |V | − 1 [AMO93] and we can increase the label height at minimum one per
operation. We know that there is |V | − 2 vertices which can be relabeled (the sink and
source vertices can’t be relabeled). Then, the maximum number of relabelling is (2 · |V | −
1) · (|V | − 2) = O(|V |2).

• The number of saturing pushes per edge is O(|V |). To make a saturing push on a certain
edge again, the label height of the destination vertex must be augmented of 2. Then there
is O(2·|V |−1

2) = O(|V |) saturing push per edge: the number of maximum saturing push is
O(|V | · |E|).

• The number of non-saturing pushes is computed with φ, the sum of the height labels of the
actives vertices. The relabel increases φ at maximum (2 · |V | − 1) · (|V | − 2) (the number
of vertices times the maximum height label). The saturing push increase φ at maximum
(2 · |V | − 1) · (2 · |V | · |E|). As φ must be equals to zero at the end of the algorithm, we
need at most (2 · |V |− 1) · (|V |− 2) + (2 · |V |− 1) · (2 · |V | · |E|) = O(|V |2 · |E|) non-saturing
push to have φ = 0.

We have O(|V |2) relabel operations, O(|V | · |E|) saturing pushes and O(|V |2 · |E|) non-saturing
pushes. Thus, the generic preflow-push algorithm runs in O(|V |2)+O(|V | · |E|)+O(|V |2 · |E|) =
O(|V |2 · |E|).

2.3 Difficult cases

2.3.1 In Edmonds-Karp algorithm

In Figure 2.6, we show a graph where the Edmonds-Karp algorithm performs worse than the
Preflow-push algorithm. The Edmonds-Karp algorithm will find n + 1 augmenting paths (s-t,
s-1-t, s-1-2-t, . . . , s-1-. . . -n-t). It will perfom slower than the Preflow-push algorithm because
it will push n times on the edge (s, 1), n− 1 times on the edge (1, 2), . . . The Preflow-push will
be faster, because he will only push once on each edges.

20

Figure 2.6: Difficult case for the Edmonds-Karp algorithm. τ is equal to (
n+1∑
i=1

i)− 1.

2.3.2 In Preflow-push algorithms

The ping-pong effect

The ping-pong effect is a phenomen that occurs in preflow-push algorithm that considerably slow
it down. To describe the ping-pong effect [CGI08], we will execute the preflow-push algorithm
on the network in Figure 2.7.

Figure 2.7: The initial graph. c is an integer greater than 4.

After the preprocess, we push a flow along the path 8-7-6-5-4-3-2-1-t. To be able to do this
push, the vertices must be relabeled. We obtain the residual network given in the Figure 2.8
with the corresponding labels for each vertices. The vertex 1 is active. The algorithm relabels
it with the height 3. Then, the flow is pushed along the path from the vertex 1 to the vertex 8,
and relabel the height labels of the visited vertices. After thoses push and relabel operations,
we obtain the residual network described in the Figure 2.9.

The algorithm will now select the vertex 8, relabels it to the height label 5 and push the
excess flow from 8 to 7. The vertex 7 is selected, his height label modified to 6 and the excess
flow is pushed from 7 to 6. The algorithm repeats those operations for each vertices along the
path 6-5-4-3-2-1. We obtain now the residual network described in the figue 2.10.

21

Figure 2.8: The residual network after some iterations. The only active node is node 1.

Figure 2.9: The only active node is node 8.

We obtain a residual network that look like the residual network in the figure 2.8. The only
differences are the height label of the bottom vertices. The algorithm will relabel and push
the vertices along the path 1-2-3-4-5-6-7-8. We have now the residual network described in the
figure 2.11.

22

Figure 2.10: Node 1 is active again.

This round trip between the vertex 1 and the vertex 8 is called the ping-pong effect and is
the main drawback of the preflow-push algorithms. This flow exchange terminates when the
height label of the vertex 8 become greater than the height label of the source.

Figure 2.11: Node 8 is active again

Pratical case

In this section, we will present you a simple case (Table 2.1) where the Preflow-push algorithm
perfom very differently between two similar cases. The only difference, as shown in the state 1,
is that the capacity of the upper edges of the graph differ by one. In the easy case, the flow is
push from s to t, then s to 1, then 1 to 2 and so on. When the vertex 3 become active (with a
excedent of 9) it push 4 units of flow to the sink (state 2). The vertex 3 is still active and will

23

State Easy case Difficult case

State 1

State 2

State 3

State 4 Solved

State 5 Solved

Table 2.1: Two similar cases with different resolutions.
24

push his flow to 2 after being relabeled. The vertex 2 will do the same to the vertex 1. We are
in the state 3 and no more vertices are actives, thus the algorithm terminates.
In the second case, the three firsts states are the same except for the capacity of the upper edges.
This cause an excedent of one unit in the vertex 1. This active vertex prevent the algorithm
to terminate. The algorithm then push this excedent to the vertex 2 after relabeling the vertex
1. The vertex 2 will do the same to the vertex 3. We are now in state 3 and this ping pong
effect will occur till the height label of the vertex 1 is bigger by one than the height label of the
source. When this is the case, the vertex 1 push the excedent to the source and no more vertices
are actives: the algorithm terminates. The longer the upper path is, the more time it takes to
bring the extra unit of flow back to the source.

This simple case demonstrate how the Preflow-push algorithm perfom differently on graphs
with small differences.

25

26

Chapter 3

Data Structures

For this master thesis, we want to be able to analyse the difference between several data struc-
tures. Moreover, the traditional adjacency matrix [Sch15a] is not adapted for the big graphs.
Indeed the neighbourhood of a vertex is obtained in O(|V |) given that it is necessary to go
through the entire line. Furthermore, when the graph is not dense, a big part of the used
memory is useless.

As a reminder, an adjacency matrix is a two dimension array, where each line represents a
starting vertex and each column represents a ending vertex. The values represent the capacity
between both vertices, 0 meaning that there are no edge between them.

Figure 3.1: A graph with its adjacency matrix.

We thus decide to use an other structure;

With the same principle as the adjacency matrix, we use an array where each line represents
the neighbours of a vertex. For example, the first line contains the information on the neighbours
of the first vertex. But contrary to the adjacency matrix, we do not use an array to represent
neighbours but a different structure requiring less memory space.

We used five different data structures : hash map, tree map, simple linked list and two

27

home-made structures based on the sparse set, split array and sparse map.
Each vertex will have its structure, storing which vertices are neighbours and what are the

capacities of the edges to these vertices. If we had to represent a graph with 10 vertices, we would
have a array of 10, for example, hash maps. Each hash map representing the neighbourhood of
a single vertex.

3.1 Data structures

3.1.1 Hash Map

A hash map is an unordered associative array, which associates a key with a value. It contains
a single array of buckets, where the values are stored. A hash function converts the key into an
index, which represents the bucket where the record (key/value) is stored [Dro08].

Ideally, the hash function assigns to every key a different bucket but it is possible to have
several keys giving the same hash code. This is called a collision. One bucket can thus contain
several records.

The load factor is the number of records divided by the number of buckets. If the load
factor is too high, the hash map will be slower. But having a too low load factor does not save
search time, it just uses some memory pointlessly. To keep the load factor to a defined value (eg
between 2

3 and 3
4), we must, when inserting new records, resize the hash map.

In our case, the key is the id of the nearby vertex and the value is the capacity of the edge.

3.1.2 Tree Map

Figure 3.2: A Red-Black
tree.

A tree map, implemented by a Red-Black tree in Java1, is a self-
balancing binary search tree. In addition to the restrictions im-
posed by the binary search tree, which is to have for each vertex,
the left sub-tree containing only lower keys and the right sub-tree
only higher keys, the Red-Black tree respects four other conditions
thanks to an additional information, the color of a vertex :

• A vertex is either red or black

• The root is black

• The parent of a red vertex is black

• For each leaf, the path to the root contains the same number of black vertices

These constraints implies an important property of the Red-Black trees : the longest possible
path from a root to a leaf can be only twice as long as the smallest possible. We thus have an
almost balanced tree. This ensures the fundamental operations to be performed in O(log n).

1https://docs.oracle.com/javase/7/docs/api/java/util/TreeMap.html

28

3.1.3 Simple Linked List

The simple linked list is one of the simplest data structures. Each node consists of two fields,
an object and a reference to the next node. It is unordered given that the put operation is
systematically made on the head of the list.

Figure 3.3: A simple linked list.

3.1.4 Home-made structures

We have implemented two home-made structures based on the sparse set. A sparse set is com-
posed by two arrays, dom and map. map contains the position of each element in dom which
contains the data. So dom[map[i]] contains the data related to i. An integer value split repre-
sents the separation between current elements and removed elements [Sch15b]. For instance, if
the sparse set represents the neighbours of a vertex, dom will contains all possible neighbouring
vertices (outgoing and incoming edges). All vertices on the left part of split are current neigh-
bours while all vertices on the right part aren’t.

Here is an example of sparse set :

Figure 3.4: A sparse set.

We cannot use this structure like that because the neighbourhood of a vertex doesn’t form
a suite of index. For example, if a vertex had three neighbours 8, 72 and 13, we can’t directly

29

know which vertex is contained in which index. So we implemented a first data structure, the
split array, which is a simplified version of the sparse set without map. We also implemented an
other structure, the sparse map, which is a sparse set with a hash map instead of an array for
map, permitting to associate a vertex with its position in dom.

Split array

A split array is composed only by the dom array which contains all possible neighbouring vertices.
The array is divided into two parts, one with the current neighbour vertices and the other one
with the vertices which are not, or no more, neighbours. An integer value split indicates the
position of the array’s separation.

Figure 3.5: A graph with the split array of vertex 2.

To add a vertex (for example after sending units of flow on the path 0-1-2-4-5, an edge is
created from 2 to 1 and 1 becomes a current neighbour of 2), we need to go through the right
part of dom to find the future neighbour vertex, exchange its place with the vertex on the right
of split and increase split by 1.

To remove a vertex, it is the reverse operation. We need to go through the left part of dom
to find the neighbour vertex, exchange its place with the vertex on the left of split and decrease
split by 1.

Sparse map

A sparse map is a sparse set with a hash map instead of an array for map. The hash map
associate each vertex with its position in dom.

To add or remove a vertex, it is the same as for the split array but we don’t need to go
through dom because we can obtain the position of a vertex in dom thanks to the hash map,
saving valuable time. In compensation, we need to update the hash map so it remains consistent.
We simply need to swap the values of the two vertices which were exchanged in dom.

30

3.1.5 Complexities

We use 5 functions on our data structures :

entrySet which is used to obtain the set of neighbours

get/set which, respectively, returns or modifies a capacity

add/remove which is used to add or to remove a vertex

This table below represents the complexities with the notation big O, which means "in the
worst case". Although for the tree map, the simple linked list and the split array, the worst case
is not too penalizing but that is not the case for the hash map and thus for the sparse map.
Indeed, we obtain O(n) if every elements of the hash map are in the same bucket. However,
with a correct hash function, we can expected O(1) [Dro08].

Hash map Tree map Simple linked list Split array Sparse map
entrySet O(b) O(n) O(n) O(n) O(n)
get/set O(n) O(log n) O(n) O(n) O(n)
put O(n) O(log n) O(1) O(n−) O(n)

remove O(n) O(log n) O(n) O(n) O(n)

With n the number of outgoing edges of a vertex, n− the number of incoming edges and b
the number of buckets. So, n is also the number of neighbours.

31

32

Chapter 4

Improvements of Existing
Algorithms

In this chapter, we will describe some improvements found on the literature [EK72, AMO93]
that can be done on the algorithms presented in Chapter 2.

4.1 Ford-Fulkerson Scaling

The Ford-Fulkerson algorithm has a pseudo-polynomial time complexity, making it very slow
when the maximum capacity of the edges is high. But there is a variant of this algorithm
which has a polynomial time complexity, the Ford-Fulkerson with scaling. The scaling con-
sists in looking for an augmenting path which has a large enough residual capacity. To do it,
we use G∆ which is G with only the edges having a capacity greater than or equal to ∆ [Sch15a].

As long as there is an augmenting path in G∆, we send flow through it. This is a ∆-scaling
phase. When a ∆-scaling phase is ended, which means that there are no more augmenting paths
in G∆, we divide ∆ by 2 and begin the next ∆-scaling phase, looking for new augmenting paths
in G∆. Initially ∆ = U , with U the maximum capacity of the graph.

4.1.1 Complexity

To compute the complexity of the Ford-Fulkerson Scaling algorithm, we need to know how
many ∆-scaling phases are possible, how many augmenting paths can be discovered at most in
a ∆-scaling phase and how an augmenting path is found [Way15].

• There is at most O(log(U)) ∆-scaling phases because initially ∆ = U = 2log(U) and after
each phase, ∆ = ∆

2 .

• There is at most O(|E|) augmenting paths in each ∆-scaling phase. To prove it, let f be
the flow at the end of the ∆-scaling phase and f∗ be the maximal flow. At the end of a
∆-scaling phase, the total flow which we can add to f to obtain f∗ is less than or equal

33

to |E| ·∆ so f∗ − f ≤ |E| ·∆. Since we know that in the next ∆-scaling phase, ∆′ = ∆
2 ,

there will be a maximum of 2|E| augmentations during the next phase [Sch15a].

• We know that each augmenting path can be found in O(|E|).

The Ford-Fulkerson Scaling algorithm is thus bounded by O(|E|2 · log(U)).

4.2 Preflow-push heuristics

In Section 2.2, we defined the generic preflow-push algorithm. In this algorithm, we do not make
a particular choice when it comes to select the next operation. In this section, we will define
two heuristics that aim to reduce the number of non-saturing pushes which is the bottleneck of
the generic preflow-push algorithm [AMO93].

4.2.1 FIFO heuristic

This algorithm examines the active vertices in the first-in, first-out (FIFO) order. The set of
the active vertices is now a queue. The algorithm will always choose the first vertex from the
queue while there are active vertices. The algorithm terminates when the queue is empty.

Complexity

To analyze the complexity of the FIFO preflow-push algorithm, we must define the concept of a
vertex examination. We call vertex examination the sequence of operations that make an active
vertex inactive or relabeled. For example, the algorithm could perfom several saturing pushes,
leaving the first vertex of the queue active. Then the algorithm could make a non-saturing push
or could relabel the vertex. We refer to this sequence of operations as a vertex examination.

We will partition the total number of vertex examinations into phases. The first phase con-
sists of the vertex examinations of the vertices that becomes actives in the preprocess operation
(the neighbors of the source). After all those specific vertices have been examinated, we enter in
the second phase. The second phase consists of the vertex examinations of the vertices that are
in the queue at this moment (i.e. when the vertices of the first phase has been all examinated).
And so on.

To bound the number of phases in the algorithm, we define the potential function φ =
max{h(i) : i is active} where h(i) is the height of the vertex i.

During a phase, the algorithm can perform at most one relabel operation. In the first case,
the excess of every vertex that was active at the beginning of the phase moves to vertices
with smaller height labels and φ decreases by at least one unit. In the second case, when the
algorithm performs at least one relabel operation during a phase, φ might increase by as much
as the maximum increase in any height label. As we know that the maximum number of relabel
operation is 2 · |V |2 (because each label can increases at most 2 · |V | times), the total increase
in φ over all phases is at most 2 · |V |2.

34

With these two cases, we can bound the total number of phases by 2 · |V |2 + |V |. The FIFO
preflow-push algorithm thus runs in O(|V |3).

4.2.2 Highest label heuristic

This algorithm always pushes flow from the active vertex with the highest height label.

Complexity

It is fearly easy to develop an O(|V |3) bound for this algorithm. We define the function
h∗ = max{h(i) : i is active}. First, the algorithm examines the active vertices with distance
labels equal to h∗ and pushes flow to active vertices with distance labels equal to h∗ − 1 and
these vertices, in turn, push flow to active vertices with distance labels equal to h∗ − 2, and
so on. These operations stop when there is no more active vertices or the algorithm relabels
a vertex. If the algorithm relabel a vertex, these operations are repeated. In the worst case,
the algorithm makes |V | − 1 vertex examinations and then relabel a vertex. As we know that
the maximum of relabel operations is 2 · |V |2, the highest label preflow-push algorithm runs in
O(|V |3).

However, this bound is rather loose and can be improved by a more clever analysis. We will
first define some concepts and functions used to compute the complexity of the algorithm.

We define the set of admissible arcs as the set, at some point of the execution of the algorithm,
of all the arcs (u, v) such that h(u) = h(v) + 1. This set forms a forest (a set of trees) because
it has at most n− 1 arcs, at most one incoming arc per vertex, and does not contain any cycle.
The root of each of these trees is the vertex without any incoming arc.

For any vertex i ∈ V , we denote D(i) the set of descendants of that vertex in the set of
admissible arcs. The height label of the descendants of any vertex i will always be higher than
h(i).

An active vertex with no active descendants (other than itself) will be called a maximal
active vertex. We denote the set of the maximal active vertices H.

We define the potential function φ =
∑

i∈H φ(i) with φ(i) = max{0,K + 1 − |D(i)|} where
K is a constant that we will define later. For any vertex i, φ(i) is at most K because |D(i)| ≥ 1.

We will now see how each operations performed by the algorithm will change the value of
φ. First, a non-saturing push on the arc (i, j) will make i inactive and j might become a new
maximal active vertex. Since |D(j)| > |D(i)|, this push increase φ(i) + φ(j) by at least one if
|D(i)| ≤ K. When a saturing push occurs on the arc (i, j), this arc becomes inadmissible and
will be no more in the current forest (the set of admissible arcs). The vertex i is no more a
maximal active vertex and j might become a new maximal vertex. This operation increases
φ up to K units. Let’s consider now a relabel operation on the vertex i. This vertex has
no admissible arcs because we relabeled it. Thus, this vertex is a root vertex in the current
forest and it has no active proper descendants. After the relabel operation, all the incoming
arcs at vertex i become inadmissible. Therefore, all the current arc entering vertex i will no

35

longer belong to the current forest. The relabel operation decreases the number of descendants
of i by one: φ increases by at most K. The last operation is to introduce new arcs in the
current forest. This does not create new maximal active vertices and might remove maximal ac-
tive vertices and increase the number of descendants of some vertices. Thus, φ does not increase.

To compute the worst-case, we define hmax = max{h(i) : i is active}. A phase is the
sequence of pushes during which dmax remains unchanged. There are O(|V |2) phases because
there can’t be more than 2 · |V |2 relabel operations. We distinguish two types of phases: cheap
phases and expensive phases. A phase is cheap when it performs at most 2·|V |

K non-saturing
pushes and expensive otherwise. The number of non-saturing pushes in cheap phases is at most
O(|V |2 · 2·|V |

K) = O(|V |
3

K).
By definition, an expensive phase performs at least 2·|V |

K non-saturing pushes. Since the
network can contain at most |V |K vertices with K descendants or more, at least |V |K non-saturing
pushes must be from vertices with fewer than K descendants. As we said earlier, the total
increase of φ due to saturing pushes and relabels is at most O(|V | · |E| · K). The algorithm
perform O(|V | · |E| ·K) non-saturing pushes in expensive phases.

By balancing the complexity of each case, we obtain the optimal value of K when both are
equal: |V |

3

K = |V | · |E| · K or K = |V |√
|E|

. We have now the number of non-saturing pushes:

O(|V |2 ·
√
|E|) which is the complexity of our algorithm.

Textbooks do not provide a description of the data structure used to enforce the highest
label heuristic. We implemented a custom data structure based on the idea of François Aubry,
PhD student at UCL. We therefore show how to implement such a data structure with O(1)
operation.

The ActiveSet

The data structure is divided in two parts: the ActiveSet and the next array. The ActiveSet, as
shown on Figure 4.1a, is a array of linked lists of size |V | · 2. The ActiveSet can be defined as
follows: activeSet(k) = {i : i is active and h(i) = k} ∀ 0 ≤ k < |V | · 2. When a vertex becomes
active, it is added to the linked list at the index of the array corresponding to his height. The
next array is an integer array of size |V | · 2 where all of his element are pointers to the next non
empty list. For example, let’s take the case of the Figure 4.1, where there is no active vertices
with heights between 3 and 2 · |V |−1 (all active vertices are shown in the figure). The first (top)
element of the data structure is 9 and the second is 6. In the next array, the value at the index
h(9) must be equals to h(6) and so on. Note that the minimum height of the active vertex must
point to −1 because there is no following elements. A variable is used to point at the top of the
ActiveSet. Here is the operations needed:

getTop Give the top element of the ActiveSet. It is used when the highest label preflow-push
algorithm must examine a vertex;

36

(a) The ActiveSet (b) The next array

Figure 4.1: The data structure

add When a vertex become active, the vertex is added to the ActiveSet;

updateTop Used when the top vertex is relabeled;

removeTop Used when the top vertex is no longer active (i.e. when there is a non-saturing
push);

isEmpty Used to know when the ActiveSet is empty. When the ActiveSet is empty, the
algorithm terminates.

4.3 No initialization of height in Preflow-push algorithms
In the Preflow-push algorithm, there is an initialization phase, called preprocess, used to com-
pute the height label of the vertices and performs a saturing push on all the edges leave the
source. The computation of the height labels can be performed in O(|V |) with a simple breath
first search from the sink (see Algorithm 5). This computation performs |V | relabelings. But
what happens if we do not compute the height labels before (i.e. all the height label will be
equals to zero) ? In fact, the number of relabeling will be the same. If we do not compute the
height labels before, any active vertices will be relabeled before to be able to make a first push
because the active vertex will be at height zero and his neighbours too. From that, to case can
arise: first, the push is non-saturing. It means that the vertex is no longer active, and the new
active vertex need to be relabeled in order to be able to make a push from it. So there is no
more relabeling operations than if we compute the height labels in the preprocess. In the second

37

case, the push is saturing: the vertex is still active. In this case, this vertex can push directly
into an other neighbour because is height label has already been set at one unit higher than
his neighbours. In these two cases, there is not unnecessary relabeling operation. In term of
relabeling, there is no gain to compute the height labels in the preprocess.

parents ← fill(−1);
Queue q ← new Queue;
q.Enqueue(sink);
sink.h = 0;
while q is not empty do

u← q.Dequeue();
for every vertex v adjacent of u do

if v.h equals to 0 then
parents[v] ← u ;
v.h← parents[v].h+ 1 ;
q.Enqueue(v);

end
end

end
Algorithm 5: The computation of the height labels.

However, not making this computation could prevent the highest label heuristic (Section 4.2.2)
to perfoms at his best. We will analyze this in the experimental analysis (Chapter 6).

38

Chapter 5

Implementation

In this chapter, we will explain our implementation choices and the tools we used to carry out
our project. Our main goal was to release a maintainable open source library so that other
developers could use it and contribute to it. Our choices were mainly guided by this goal.

5.1 Langage choice

Figure 5.1: Java
Logo

In order to implement the different flow algorithms presented, we had
to choose a programming language. We decided to develop the different
algorithms with Java1. Java is a programming language created in 1995
by Sun Microsystems. Java is designed to run acress multiple operating
systems, including Linux, Mac OS X and Windows. Java is known to be
flexible, scalable and maintainable. Java is an object-oriented program-
ming language, which permits the development of modulable applications
via systems like encapsulation, composition, inheritance, and delegation. We choose Java be-
cause of the followings reasons:

• Java is very popular. This is a key point because we want that the librairies we developped
were accessible to as many. Another consequence of this is that Java is well documented.

• Java is modulable. The OO Java paradigm is useful to develop this project were different
algorithms and different data structures must be implemented. Concepts like inheritance,
interfaces are very useful to achieve this.

• Java is fast. Many optimizations have improved the performance of the JVM over time
such as the Just-in-time compiling. Some of our instance are very big, so we need a
language able to solve them quickly.

• We are accustomed to using java. A good knowledge of the language is required to make
correct implementations.

1https://community.oracle.com/community/java

39

5.2 Structure
Our project is divided in two core packages: models and solvers. The first one contains all the
representations of the network we used. The second contains all the different algorithms we
implemented. There is two others packages: objects which contains implementation of some
data structures and results which contains instance generators and results analyzers.

5.2.1 Package: Models

This package contains all the network representation we implemented: SplitArrayGraph, SparseMap-
Graph, TreeMapGraph, LinkedListGrah and HashMapGraph. As we can see in the Figure 5.2,
all these class implements the interface Graph which define the behaviour of the object that rep-
resent the network. Here is the method which must be implemented when creating a network
representation in our project:

parse(file_path) parse the file given in the constructor argument. The parse method
must take into account if the graph is directed or not;

getV(), getE() return respectively the number of vertices and the number of edges;

getVertex(id) return the vertex with the corresponding id;

getVertices() return the set of vertices;

getAdjacents(id) return the neighbours of the vertex id;

removeEdge(id1, id2) remove the edge between id1 and id2 ;

addEdge(id1, id2, c) add an edge from id1 to id2 with the capacity c;

getCapacity(id1, id2) return the capacity of the edge between id1 and id2 ;

setCapacity(id1, id2, c) set the capacity of the edge between id1 and id2 at c;

getAdjacentsSize(id) return the number of neighbours of the vertex id;

getMaxCapacity() return the biggest capacity in the network: used to initalize the scaling
phase.

We defined the abstract class SimpleGraph which contains all the common code between all
the network representations we implemented.

5.2.2 Package: Solvers

This package contains all the solvers we implemented. As we said in the Chapter 2, there is
two family of algorithm to solve the maximum flow problem: the augmenting path algorithms
and the preflow-push algorithms. The different algorithms in the augmenting path have a lot in
common. For example, the difference between the Ford-Fulkerson algorithm and the Edmonds-
Karp algorithm is how the algorithm find an augmenting path. As we can see in the Figure 5.3,

40

Figure 5.2: UML diagram of the package models.
41

we used the strength of inheritance to avoid duplicate code. On the other part, the preflow-push
algorithm have a lot of differences in their implementations, we decided split them in three
classes.

The solvers have a constructor overloading, which permits to define any vertex as the source
and the sink.

5.2.3 Package: Objects

This package contains several data structures:

Vertex.java used to represent a vertex;

Arc.java used to represent an arc;

Edge.java used to represent an edge. The difference between an arc and an edge is that
the arc does not have the information about the origin vertex;

SimpleLinkedList.java implementation of a linked list;

Node.java represent a node in a linked list;

SplitArray.java implementation of the split array;

SparseMap.java implementation of the sparse map;

ActiveSet.java data structure used to select the highest label in the highest label preflow-
push algorithm.

5.2.4 Package: Results

This small package contains four classes. The first are the instances generators: InstanceGen-
eratorDensity.java and InstanceGeneratorSize.java. The first class generates a graph class with
different densities and the second with different sizes. The two last classes are ResultsConvert-
erByDensity.java and ResultsConverterBySize.java. They are used to analyze our results.

5.2.5 Conclusion

The main advantage of our structure is how easy is to add different data structures or solvers.
All you need is to implement the interfaces and add your own class in the correct package. Then,
the solvers can be call with different data structures with a few line of codes as we can see in the
Figure 5.4. Another advantage is that our code can be used as a library, without even looking
at the code of it.

42

Figure 5.3: UML diagram of the package solver.

43

Graph sm = new SparseMapGraph("file_path", true);
Solver ek = new EdmondsKarp(sm);
ek.getResults();
Solver pr = new PushRelabel(sm);
pr.getResults();

Figure 5.4: Example of use.

5.3 Collecting and displaying results
In order to gather the different run times of all the algorithm we implemented on all the instances
we generated, we decided to automate the launch of the different algorithms. We decided to
make a script in Python2 because it was the easiest way to do it. The Python script launch
the different algorithms with the different data structes on all the instance, and store the com-
putations time collected on a text file. A Java program is then used to classify the run times
by solver and by instance and store these results in a csv file. When we have the run times in
the right form, we use the library ggplot23 of the R4 language to plot the different graphs. We
choosed this library because the graphs rendered are very customizable and very nice.

All our scripts Python and R are available on the Git (see Section 5.4.1). You can also easily
test your own instances thanks to the file BatchMain in the package flowAlgorithm of our Java
code. It takes 5 arguments :

args 0 represents the solver. ’FF’ for Ford-Fulkerson with scaling, ’EK’ for Edmonds-Karp,
’PR’ for Generic Push-Relabel, ’FPR’ for FIFO Push-Relabel and ’HLPR’ for Highest Label
Push-Relabel.

args 1 represents the data structure. ’LL’ for linkedlist, ’HM’ for hashmap, ’TM’ for
treemap, ’SA’ for splitarray and ’SM’ for sparsemap.

args 2 represents the path of the instance file structured as well : the first line contains "|V |
|E|" and each other line represents an edge "idvertex1 idvertex2 capacity". For example "0 1
10" represents an edge from 0 to 1 with a capacity of 10.

args 3 ’true’ for directed, ’false’ for undirected graph.

args 4 ’r’ to obtain all results, empty to obtain the run time in ms.

2https://www.python.org
3http://ggplot2.org
4https://www.r-project.org

44

5.4 Tools

5.4.1 Version control system

Figure 5.5: Git Logo

Using a versioning tool appeared to us from the beginning as an evidence.
Our main needs were to share the code we did between us and to version
it. We decided to use Git5 because we already both master it and it is
one of the most popular versioning tool. We used Github6 to host our
application. With Github, it is fearly easy to make our project open source and knowing that
this platform is very popular among developers, our project can benefit from a certain visibility.
Our repository can be found at the following url: https://github.com/denisgenon/flow_
algorithm.

5.4.2 Management application

Figure 5.6: Trello
Logo

Even if we were only two working on the project, we judged useful to
have project management tool to assist us. This kind of tools permits
us to separate the tasks to make, to write somewhere our ideas, to fix
deadlines and to see the evolution of our project. We decided to use
Trello7 because we were already used to it. Trello uses the kanban paradigm for managing
projects. Our project were represented as a board, which contains columns corresponding to
some states (backlog, nice to have, in progress, . . .). Each column contains lists of cards which
were our tasks. In this way, we could follow the flow of a feature from idea to implementation.

5https://git-scm.com
6https://github.com
7https://trello.com

45

46

Chapter 6

Experimental Analysis

For the analysis of our algorithms and data structures, we decided to analyze the run time on
three types of instances :

Density variation instances : Graphs having a fixed number of vertices (|V | = 1000) and
a density of edges ranging from 5 to 100%. The maximum capacity of an edge is 10000.

Size variation instances : Graphs having a density of edges fixed (10%) and a number of
vertices varying from |V | = 1000 to |V | = 5000. The maximum capacity of an edge is 10000.

Matching problem instances : Graphs having a source s, a sink t and two groups of 500
vertices R1 and R2. 500 edges connect s to all vertices in R1 and 500 other edges connect
all vertices in R2 to t. All other possible edges can only go from R1 to R2. The graphs have
a density of connectivity between R1 and R2 ranging from 5 to 100%. The capacity of all
edges is 1. This type of graph is often used in the maximum flow problem.

The Figure 6.1 represents a matching problem instance with a density of connectivity between
R1 and R2 equal to 100%.

Figure 6.1: Matching problem instance with a density of edges equal to 100%.

47

6.1 Instances generation

To obtain the necessary instances, we implemented instances generators which respects the
characteristics of the network graphs (a connected graph where each vertex has at least one
incoming and one outgoing edge).

6.1.1 Density variation instances

For the density variation instances, we first create a minimal connected graph. To do this, let
Connected be the set of the connected vertices, DoubleConnected the set of vertex having at
least one incoming and one outgoing edge, Edges the set of edges and AllEdges the set of all
possible edges. Initially, Connected contains the vertex 0, DoubleConnected and Edges are
empty and AllEdges contains all possible edges. When we want to add a vertex v to the graph,
we take a random vertex r from Connected, add the edge (v,r) in Edges, add v in Connected,
remove the edges (v,r) and (r,v) from AllEdges and add r in DoubleConnected. After adding
our 1000 vertices, we have a connected graph where each vertex has one incoming edge and
sometimes at least one outgoing edge (all vertices in DoubleConnected).

For each vertex not present in DoubleConnected, we take a random vertex from Connected,
add the edge between them in Edges and remove this edge and its opposite from AllEdges.
For this step, to avoid adding an edge (or its opposite) which is already present in the graph,
we check if the new edge and its opposite are not present in Edges. We thus have a connected
graph where each vertex has one incoming edge and at least one outgoing edge.

We then add the necessary number of edges to obtain the desired density. We take a random
edge from AllEdges, add it to Edges and remove it and its opposite from AllEdges. A first
graph is generated when we have a density of 5%. We add it edges to obtain a density of 10%
and generate a second graph. And so on up to 100%. At the end, a density variation class is
composed by twenty graphs where each graph generated before an other one is a sub-graph of
the latter. With |V | = 1000, a complete graph has (|V |−1)(|V |)

2 = 499500 edges.
The Algorithm 6 represents the density variation class generator.
We generate 10 classes of this type.

6.1.2 Size variation instances

For the size variation instances, we use the same technique as for the density variation instances
without the AllEdges set. Indeed, it is not necessary to generate all possible edges for graphs
with a 10% of edge density. Especially when we know that a complete graph with |V | = 5000
has 12497500 edges. To know if an edge (or its opposite) is already present in the graph, we
check if it is contained in Edges.

We generate a network graph with |V | = 1000 and an edge density of 10%. We add it 500
vertices and the corresponding edges to respect the characteristics of the network graphs. We
add then the necessary edges to keep a 10% edge density and generate this new graph. And so
on until |V | = 5000. At the end, a size variation class is composed by nine graphs where each
graph generated before an other one is a sub-graph of the latter.

We generate 10 classes of this type.

48

Local variables :
Connected : set of connected vertices
DoubleConnected : set of vertex having at least one incoming and one outgoing edge
Edges : set of edges on the graph
AllEdges : set of all possible edges on the graph
Connected← {0}, DoubleConnected← ∅, Edges← ∅, AllEdges← ∅;
for u← 0 to |V | − 1 do

for v ← 0 to |V | − 1 do
if u 6= v then

add (u,v) in AllEdges;
end

end
end
for v ← 1 to |V | − 1 do

r ← random vertex in Connected;
add (v,r) to Edges;
add v in Connected;
remove (v,r) and (r,v) from AllEdges;
add r in DoubleConnected;

end
for v ← 0 to |V | − 1 do

if !(DoubleConnected contains v) then
r ← random vertex in Connected;
if Edges contains (v,r) || contains (r,v) then

v = v − 1;
else

add (v,r) to Edges;
remove (v,r) and (r,v) from AllEdges;
add v in DoubleConnected;

end
end

end
for prct← 5 to 100 by 5 do

while |Edges|−(V−1)
V ·(V −1)

2 −(V−1)
· 100 < prct do

e← random edge in AllEdges;
add e to Edges;
remove e and reverse e from AllEdges;

end
generate graph with Edges;

end
Algorithm 6: Density variation class generator

49

6.2 Push-Relabel

In this section, we will analyze how the different heuristics performs in the push-relabel algo-
rithm. We also tried each heuristic with and without the height label initialization phase (as
explained in Chapter 4) to show if this phase is useful in practice.

6.2.1 Height label initialization

To analyze the effects of the height label initialization, we decided to compute the number of
operations performed. In the preflow-push algorithms, they are three differents operations: the
relabelling, the saturing push and the non-saturing push.

Relabelling

Figure 6.2: The average number of relabels in density variation classes. All the algorithms have
the same count of relabeling operation.

We can observe in Figure 6.2 what we said in Section 4.3 in terms of relabels. The number of
relabels is not affected by the fact we initialize or not the height label in the preflow phase of
the algorithm. The reason of this is explained in Section 4.3.

50

Saturing push

Figure 6.3: The mean number of saturing pushes in density variation classes.

We can observe in Figure 6.3 that for each heuristic, the initialization is slightly beneficial in
term of the number of saturing pushes. The highest label heuristic perfoms more saturing pushes
than the FIFO heuritic, and the generic algorithm performs less saturing pushes than the two
others.

Non-saturing push

Figure 6.4: The mean number of non-saturing pushes in density variation classes.

51

As for the saturing push, the number of non-saturing pushes slightly decreases when we do
an initialization of the height labels. The highest label heuristic decreases the number of non-
saturing pushes compared to the generic algorithm. The FIFO heuristic tends to augment this
number of pushes.

6.2.2 Best Push-Relabel

In this section, we will compare the run time of each algorithm on different kinds of instances.

Density variation instances

Figure 6.5: The run time of the different push relabels on all density variation classes.

We can see here that the FIFOPushRelabel is the fastest. For each heuristic, it is interesting
to see that the initialization phase does not make the resolution of the problem faster. This
is because the computation of the initialization phase does not benefit to resolve the problem
faster.

52

Size variation instances

Figure 6.6: The run time of the different push relabels on all size variation classes.

When changing the size of the network, we can see that the highest label heuristic performs the
best. The initialization of the algorithm does not seem to change a lot the computation time of
each heuristic. In this case, the highest label is heuristic faster.

Matching problem instances

Figure 6.7: The execution time of the different push relabels on the matching problem classes.

53

Here, we can observe that the initialization phase makes each heuristic slower. It is because
the problem here is simpler and very quick to solve, thus, the initialization phase takes a more
important place in the result. Here, the high label heuristic is the best as well.

6.3 Data structures

In this section, we would like to determine which data structure is the most adapted for our
algorithms. We therefore analyzed experimentally the run time of each algorithm based on 5
data structures defined on the Chapter 3.

6.3.1 Push-Relabel

The Figure 6.8, 6.9 and 6.10 represents the average run time of all data structures with High-
est Label Push-Relabel. They were computed on, respectively, the density variation, the size
variation and the matching problem instances.

Figure 6.8: Average run time of all data structures with Highest Label Push-Relabel on density
variation classes.

54

Figure 6.9: Average run time of all data structures with Highest Label Push-Relabel on size
variation classes.

Figure 6.10: Average run time of all data structures with Highest Label Push-Relabel on match-
ing problem classes.

55

Figure 6.11: Average run time of all data structures without the hashmap and the treemap with
Highest Label Push-Relabel on matching problem instances.

On the 3 type of instances, we notice that the hashmap and the treemap offer very poor
performances. For density and size variation instances, structures based on the sparseset stand
out from others by their good performances. The linkedlist being between map based structures
and sparseset based structures. To be able to decide between the splitarray and the sparsemap,
we need to look at the Figure 6.11, which represents the average run time of the splitarray, the
sparsemap and the linkedlist on matching problem instances.

The most adapted data structure for Push-Relabel algorithms is the splitarray.

Profiler

We have profiled our code with all data structures on a complete density instance graph with
Highest Label Push-Relabel. The Figure 6.12 represents the number of invocations and the total
run time of the function getAdjacents, which is the function that take the most time. Those
results highlight the good performances of the splitarray and the sparsemap.

Hash map Tree map Simple linked list Split array Sparse map
getAdjacents 21.940 21.940 17.555 18.980 19.513

total time (ms) 208 311 120 80 30

Figure 6.12: The number of invocation of the function getAdjacents and its total time with
Highest Label Push Relabel.

56

6.3.2 Edmonds-Karp

The Figure 6.13, 6.14 and 6.15 represent the average run time of all data structures with
Edmonds-Karp. They were computed on, respectively, the density variation, the size varia-
tion and the matching problem instances.

Figure 6.13: Average run time of all data structures with Edmonds-Karp on density variation
classes.

Figure 6.14: Average run time of all data structures with Edmonds-Karp on size variation classes.

57

Figure 6.15: Average run time of all data structures with Edmonds-Karp on matching problem
classes.

As for the Push-Relabel, the structures based on maps are the least efficient while the
structures based on the sparseset provide better performances than the others. Nevertheless,
the difference between the splitarray and the sparsemap is more pronounced. We can conclude
that the most appropriate data structure for Edmonds-Karp is the splitarray.

Profiler

After profiled our code on a complete density variation graph, several observations can be
made. First, we explain the poor performances of the hashmap and the treemap thanks to the
Figure 6.16 which represents the number of invocations of the function getAdjacents.

Hash map Tree map Simple linked list Split array Sparse map
getAdjacents 217.142 426.317 31.465 56.844 184.623

total time (ms) 1.933 7.714 322 163 1.092

Figure 6.16: The number of invocations of the function getAdjacents and its total time with
Edmonds-Karp.

The linkedlist is slower than the sparsemap and the splitarray because its function getCapacity
is very slow. That is what we can see in the Figure 6.17 which represents the number of invo-
cation and the total time of the function getCapacity.

6.3.3 Ford-Fulkerson with scaling

The Figure 6.18, 6.19 and 6.20 represents the average run time of all data structures with Ford-
Fulkerson with scaling. They were computed on, respectively, the density variation, the size
variation and the matching problem instances.

58

Simple linked list Split array Sparse map
getCapacity 220.029 279.480 783.293

total time (ms) 271 90 32

Figure 6.17: The number of invocations of the function getCapacity and its total time with
Edmonds-Karp.

Figure 6.18: Average run time of all data structures with Ford-Fulkerson with scaling on density
variation classes.

Figure 6.19: Average run time of all data structures with Ford-Fulkerson with scaling on size
variation classes.

59

Figure 6.20: Average run time of all data structures with Ford-Fulkerson with scaling on match-
ing problem classes.

Those figures highlight the poor performance of the linkedlist while the hashmap seems to
be most appropriated for Ford-Fulkerson with scaling than for the other algorithms. We never-
theless note that the map based structures explode with a high density of edges for the matching
problem instances. The structure based on the sparseset offer, as always, good performances.

The sparsemap is the most adapted data structure for Ford-Fulkerson with scaling.

Profiler

When we look to the Figure 6.21, which represents the total time of the function getCapacity
and its number of invocations, we understand why the linkedlist is so slow with Ford-Fulkerson
with scaling. This figure explains also why the splitarray and the treemap are not well adapted
to this algorithm, its function getCapacity is too slow.

The hashmap has a very fast function getCapacity but its function getAdjacents take too
much time compared to the sparsemap (1146 ms for the hashmap and 31 ms for the sparsemap).
This is why the sparsemap is the most adapted data structure for Ford-Fulkerson with scaling.

Hash map Tree map Simple linked list Split array Sparse map
getCapacity 58.718.016 58.493.923 6.319.627 7.515.168 7.604.521

total time (ms) 1 2.020 7.489 1.411 209

Figure 6.21: The number of invocations of the function getCapacity and its total time with
Ford-Fulkerson with scaling.

60

6.4 Behaviors

6.4.1 Edmonds-Karp

Density variation instances

One of the most blatant observations on Edmonds-Karp is that it is very regular, what we can
observe in the Figure 6.22, which represents the run time on each density variation instance,
with its best data structure, the splitarray. Indeed, Edmonds-Karp solves the maximum flow
problem on complete graphs with |V | = 1000 with a run time ranging from 750 to 1000 ms.

Figure 6.22: Run time of Edmonds-Karp on all density variation classes with the splitarray.

Size variation instances

The Figure 6.23 represents the run time of Edmonds-Karp on all size variation instances with
the splitarray. Edmonds-Karp is regular with a run time ranging from 750 to 1000 ms to solve
the maximum flow problem on graphs with |V | = 5000 and a density of edges equal to 10%
(|E| = 1249750).

61

Figure 6.23: Run time of Edmonds-Karp on all size variation classes with the splitarray.

Matching problem instances

As usual, Edmonds-Karp remains very regular. We can see that on the Figure 6.24 which
represents the run time of Edmonds-Karp on all matching problem instances. It takes an average
of 460ms to solve a matching problem instance with a maximum density of edges.

Figure 6.24: Run time of Edmonds-Karp on all matching problem classes with the splitarray.

62

6.4.2 Ford-Fulkerson with scaling

Density variation instances

The Figure 6.25 represents the run time on each density variation instance, with the sparsemap.
Although less regular than Edmonds-Karp, Ford-Fulkerson with scaling remains stable with a
run time ranging from 500 to 2500 ms to solve the maximum flow problem on complete graphs
with |V | = 1000.

Figure 6.25: Run time of Ford-Fulkerson with scaling on all density variation classes with the
sparsemap.

This graph also highlights the presence of two type of graphs on this type of instances.
Indeed, we observe that the run time of instances 2, 4, 9 and 10 are similar. The same clustering
is observable with the instances 1, 5 and 7.

Size variation instances

As we can see on the Figure 6.26 which represents the run time of Ford-Fulkerson with scaling
on all size variation instances, it is quite regular but its performances are slightly worse than
Edmonds-Karp. Indeed, Ford-Fulkerson with scaling solve the maximum flow problem on graphs
with |V | = 5000 and a density of edges equal to 10% with a run time ranging from 3000 to 4000
ms.

63

Figure 6.26: Run time of Ford-Fulkerson with scaling on all size variation classes with the
sparsemap.

Matching problem instances

The Figure 6.27 show that Ford-Fulkerson with scaling has a constant run time to solve this
kind of instance. The spike present at the end of the graph is due to its data structure, the
sparsemap. We also found this behaviour in the Figures 6.15 and 6.20, but we haven’t found
an explaination about it. It takes an average of 120 ms to solve a matching problem instance
with a maximum density of edges.

Figure 6.27: Run time of Ford-Fulkerson with scaling on all matching problem classes with the
sparsemap.

64

6.4.3 Push-Relabel

Density variation instances

When we look at the results of the FIFO Push-Relabel, an observation is quite obvious : it is
not regular at all. As shown in Figure 6.28, the run time on one density variation instance can
vary from less than 100 ms to more than 5000 ms.

Figure 6.28: Run time of FIFO Push-Relabel on the density variation class 6 and 8 with the
splitarray.

It may nevertheless have a stable run time but once very high and once extremely low. That
is what we can observe in Figure 6.29 and Figure 6.30.

Figure 6.29: Run time of FIFO Push-Relabel on the density variation class 10 with the
splitarray.

65

Figure 6.30: Run time of FIFO Push-Relabel on the density variation class 7 with the splitarray.

When displaying the run time of each density variation instance with its best data structure,
we obtain a very disparate graph, as we can see in Figure 6.31. Indeed, the FIFO Push-Relabel
solve the maximum flow problem on complete graphs with |V | = 1000 with a run time ranging
from 100 ms to 6700 ms.

Figure 6.31: Run time of FIFO Push-Relabel on all density variation classes with the splitarray.

As for Ford-Fulkerson with scaling with this type on instances, we note that the instance 2,
4, 9 and 10 have high and similar run time.

Size variation instances

Contrary to the results obtained on the density variation instances, the Highest Label Push-
Relabel is regular but it offers catastrophic performances. Indeed, it has a run time ranging

66

from 85000 to 125000 ms to solve the maximum flow problem on graphs with |V | = 5000 and a
density of edges equal to 10%. It is 1000 times slower than Edmonds-Karp.

Figure 6.32: Run time of Highest Label Push-Relabel on all size variation classes with the
splitarray.

Matching problem instances

The Highest Label Push-Relabel excels in this type of instances. Indeed, it has a regular run
time ranging from 20 to 30 ms to solve a matching problem instance with a maximum density
of edges.

Figure 6.33: Run time of Highest Label Push-Relabel on all matching problem classes with the
splitarray.

67

6.5 Comparison

6.5.1 Density variation instances

The Figure 6.34 represents, for each algorithm, the average run time on all density variation
instances with its best data structure. As we can see, Edmonds-Karp seems to be the most
appropriated algorithm to solve the maximum flow problem with graphs having a high-density
of edges.

The complexity of FIFO Push-Relabel (O(|V |3)) depend less on the number of edges than the
complexity of Edmonds-Karp (O(|V | · |E|2)) or Ford-Fulkerson with scaling (O(|E|2 · log(U))).
It should thus have the best performances but unfortunately, due to its irregularity, its average
run time is high.

We believe that these results are due to two things. First, the worst case graph for Edmonds-
Karp (a graph where each edge is used in each augmenting path of a different length), which
defined its O complexity, is not possible to obtain with the generation of a density variation
instance. Its complexity is a loose bound on this kind of graphs. Secondly, we saw that the Push-
Relabel has a drawback, the ping pong effect. We think that the density variation instances,
due to their random aspect, are favorable to the appearance of structure which allow the ping
pong effect.

Figure 6.34: Average run time of the three algorithms on all density variation classes.

68

6.5.2 Size variation instances

The Figure 6.35 represents, for each algorithm, the average run time on all size variation instances
with its best data structure. In this figure, it is clear that the augmenting path algorithms
offer incomparable performances with Highest Label Push-Relabel. Edmonds-Karp is the best
algorithm to solve the maximum flow problem on graphs with low density of edges and a large
number of vertices.

It can be explained by their complexity. Indeed, the preflow-push algorithms (O(|V |2 ·√
|E| for the Highest Label heuristic) are more dependant on the number of vertices than the

augmenting path algorithms (O(|V | · |E|2) for Edmonds-Karp).

Figure 6.35: Average run time of the three algorithms on all size variation classes.

6.5.3 Matching problem instances

The Figure 6.36 represents, for each algorithm, the average run time on all matching problem
instances with its best data structure. We notice that the run time of Highest Label Push-
Relabel remains constant during the addition of edges while the run time of Edmonds-Karp
increases. It is a logical behaviour in view of the complexities.

When we analyze the structure of this type of graphs, we notice the Edmonds-Karp is not
adapted. Indeed, it will look for a huge number of augmenting path due to the backward edges
from R2 to R1 created after a push on edge from R1 to R2. While Highest Label Push-Relabel
visits once each vertex, not taking into account the number of edges.

Highest Label Push-Relabel is undoubtedly the most appropriated algorithm to solve this
type of instance.

69

Figure 6.36: Average run time of the three algorithms on all matching problem classes.

70

Conclusion

After all our work, we can draw several conclusions. First, which data structure should we use
for each algorithm? Clearly, in view of the results, the data structures based on the sparse
set are most suitable for maximum flow algorithms. Indeed, we have, in our analysis, focused
attention on the importance of the functions getAdjacents (which return the set of neighbours
contained in the structure) and getCapacity (which return the edge’s capacity to a neighbour).
These are the two major functions used in these algorithms. Ford-Fulkerson with scaling prefer
a data structure with fast function getCapacity since it makes tremendous amount of calls to
it due to the scaling. Edmonds-Karp and the preflow-push algorithms behave in a similar way
from the point of view of the data structure, they are more efficient with a structure adapted to
the function getAdjacents.

Depending on a graph, which algorithm should we use? One of the first conclusion is that in
most cases, if you have to choose among the augmenting path algorithms, select Edmonds-Karp.
Its performances are better than Ford-Fulkerson with scaling. We believe that the heuristic used
in Edmonds-Karp, which is to send first the flow on the shortest augmenting path, is suitable
and effective for solving the maximum flow problem. What about preflow-push algorithms? Our
master thesis highlighted two things, the preflow-push algorithms can be extremely fast but are
not regular at all. Indeed, if the graph allows the ping pong effect, Edmonds-Karp will perform
much better than Push-Relabel. So if your graph has a random structure, we recommend to
use Edmonds-Karp while if you know that the ping pong effect is not possible on your graph,
Push-Relabel offer performances that Edmonds-Karp can not compete.

71

72

Bibliography

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1993.

[CGI08] Raffaele Cerulli, Monica Gentili, and A Iossa. Efficient preflow push algorithms.
Computers & Operations Research, 35(8):2694–2708, 2008.

[CSRL01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[Dro08] Adam Drozdek. Data Structures and Algorithms in Java. Delmar Learning, 3rd
edition, 2008.

[EK72] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic effi-
ciency for network flow problems. J. ACM, 19(2):248–264, April 1972.

[GT88] Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum-flow
problem. J. ACM, 35(4):921–940, October 1988.

[Kem04] David Kempe. SC570: Analysis of Algorithm - Edmonds/Karp Algorithm. University
of South California, USA, 2004.

[Sch15a] Pierre Schaus. LINGI2266: Advanced Algorithms for Optimization - Lecture 5 :
Network flows. Université Catholique de Louvain, Belgium, 2015.

[Sch15b] Pierre Schaus. LINGI2266: Advanced Algorithms for Optimization - Lecture 8 :
Constraint Programming Part 1. Université Catholique de Louvain, Belgium, 2015.

[Way01] Kevin Wayne. CS423: Theory of algorithms - Max Flows Applications. Princeton
University, USA, 2001.

[Way15] Kevin Wayne. 2WO08: Graphs and Algorithms - Lecture 7 : Network Flow I. Eind-
hoven University of Technology, Netherlands, 2015.

[Zwi95] Uri Zwick. The smallest networks on which the ford-fulkerson maximum flow proce-
dure may fail to terminate. Theoretical Computer Science, 148(1):165 – 170, 1995.

73

Rue Archimède, 1 bte L6.11.01, 1348 Louvain-la-Neuve www.uclouvain.be/epl

