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Abstract

The conventional valuation methods for investment decisions are mainly based
on simplistic methods but real world decisions are confronted more and more
with uncertain future events which are not taken into account in the conven-
tional calculations. Methods like the net present value and the decision tree
analysis undervalue certain investments where some options, like an option
to defer or to expand after a certain time, are present. With the real option
analysis this additional flexibility is taken into account and can therefore better
predict the value of the investment. These options can put a floor on the
loss with the arrival of new information when they are exercised. The use
of binomial option pricing gives a firm a better valuation of the return of a
project in the presence of managerial flexibility in uncertain times. The thesis
will cover the advantages and disadvantages as well as the new models, the
Cox-Ross-Rubinstein and the Trigeorgis log-transformed methods, which will
be tested and there will be a sensitivity analysis to further demonstrate the
behavior of the implemented method.

Keywords : Binomial Tree Analysis, Real Option Valuation, Uncertainty,
Stochastic Calculus
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Chapter 1

Introduction

An investment decision is a very important part of every company around the
globe. The question, which everyone is asking, is if the investment is worth
its cost. A project can be a change in production, a new facility, etc. in other
words it can be a range of different things. For example, for a mobile phone
company, the project can be the development of a new product. This would
mean that there is the development cost of the new parts and the production of
the said new phone. We can imagine a different project for every single company
in the world. But we need to know if it creates value as the shareholders want
to further increase their portfolio. And since the manager wants to keep its
job he needs to consider the value creation. One can say that it is an easy
decision while knowing all the cash flows, but in the real world we have at every
moment an uncertainty about the future. So, we cannot say for sure what will
be the cash flows of the future, the economy can go bad or maybe ‘get better,
the firm can lose or gain clients and so on. Without the uncertainty we could
easily establish the value through the net present value of the project, however

in the real world, this is not the case.

The following work will present a better valuation method than the widely
used net present value (NPV). Due to more powerful computers we can perform
more complex calculations at a faster speed and therefore, we can use methods
which were not yet possible. The NPV method is indeed very easy to apply
but with the uncertainty of the future it is not always the correct method to
use. For bigger firms, small calculation errors can cost millions even though it
is just an error of a thousandth. The tool that has to be created should be very
easy to use and give better results without losing the simplicity of the NPV
method. What is the biggest drawback of the NPV is its assumption of no
uncertainty in the future cash flows and its constant discount rate. In real life
both factors change with the market and with additional decisions of each firm

which would imply that the initially calculated value is not correct anymore if
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the situations changes in the future. This is why it is needed to introduce a
new way to calculate the value of a given project, so changing factors in the
economy and inside the firm can be taken into account. Additionally, we need
to be able to implement real options (see chapter 3) which would be a very diffi-
cult job with the NPV method. More on this topic will be discussed in chapter 2.

What is also important to notice is that the investment costs are sunk
costs that means once the initial costs are paid it cannot be reimbursed so
the investment becomes irreversible. Another point is the delay of the project
which means that we pay the initial cost but wait before we execute the project
which can change the decision to undergo the given project. It is like a financial
American call option where you have the possibility but not the obligation to

buy this asset and it can be exercised at any moment.

The aim of this thesis is the incorporation and the analysis of the existing
methods for the real option valuation for binomial trees. As well as the decision
why those methods are better than the NPV method in situations with an
uncertain future. Finally, we need to show if we can put in place any investment

decision we can imagine.

There are already 2 methods created, one by Cox Ross and Rubinstein and
one by Trigeorgis. We will therefore base our valuation method on exactly
those methods and we will further analyse their stability and their limitations.
Additionally, the differences and the drawbacks are presented and compared.
Another important question is why we would want a different method than
the NPV method which is used in most of the situations. A step by step
amelioration is provided in chapter 4. From here all the methods seen are
implemented and the reason why each method is or is not appropriate for real
options is elaborated with a numerical example. The last thing done in this
work is the analysis for each component of the methods based on the binomial
tree is analysed for their impact and their behaviour of the final value. Since
the uncertainty of future events will impact also the risk-free interest rate and
therefore also those models, Vasicek’s interest rate model is used to see the

change in value with the uncertain interest rates.

First the mathematical background needed will be revised so the model
can be completely understood. Starting with a short explanation of the NPV

method and how to calculate it. Then going over to the Ito calculus where the
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different stochastic differential equations are explained and solved. Finally, the
tree structure, which is used for the valuation methods, is further explained

and visualized.

Then, a short introduction of the real options as well as the Black & Scholes
equations will be overseen. What kind of real options can be found in real
life situations but keeping in mind that there are endless of different options
imaginable. To better understand each possibility, it will be explained in terms
of financial options since the models used later on are created for the financial
market. The Black & Scholes equations simulate financial put and call options
which are basic options in the the stock market. Since they are perceived as
the correct value of the respective financial option, it will be the reference for
our benchmark test. In order to make the link between the real options and
the financial options the replicating portfolio theory is then introduced. And
now we can use the methods initially created for the stock market for our real

option valuation.

Finally, each step of how to find the two models, the Cox-Ross-Rubinstein
and the Trigeorgis log-transformed method, and why we use any given method
will be explained in chapter 4. Starting with the decision tree analysis which is
based on the NPV method. Afterwards, the contingent claim analysis will be
addressed and last but certainly not least, the final models for the binomial
tree analysis for real options: the lattice tree methods. For the latter, the
process on how to find the model will be elaborated, then the implementation
of the real options. In real market conditions there are also volatile risk-free
interest rates and that is why a simple model is introduced to see how the final
value behaves to this change. The last point is about the stability of the two
methods modelled before.

After finding those models, they have to be analysed numerically to see
if they give indeed the correct values which is then done by using the Black
& Scholes equations. Again, showing a simple numerical example to show
the different advantages and disadvantages of each method presented in the
previous chapter is also part of the chapter. The correctness of the final value
calculated by the lattice tree methods will be analysed afterwards with the
use of our benchmark. The sensitivity of each variable will be tested to see
the behaviour of each component inside the model. Simple options are also

implemented to show the possibilities of the real option valuation. To round
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this up, the stochastic interest rate will be used, and the stability will be tested,

to see the explained behaviour in chapter 4.



Chapter 2
Mathematical Background

This chapter is dedicated to the necessary mathematical theory as well as one
fundamental part of the finance industry: the net present value. Starting with
the latter one, we will go over the theory for this evaluation method as well
as the advantages and disadvantages which will clarify already why it is not
always appropriate to use this finance tool. Then we will spend a lot of our
time on the stochastic equations since they are the heart of the valuation tool

with a stochastic payoff.

2.1 Net present value

2.1.1 Principle

The calculation of the net present value of a project is the most basic evaluation
tool of an investment in the finance world of today. It is simply the difference
between the present cash income and the present value of the cash outflow

discounted to the current day:

T Oz
NPV =% (2.1)
=0

—~ (1+7r)
Where 1 is the discount rate, i the i*" time period and N the total number
of time periods. C; stands for a cash flow either positive or negative which
means that money is incoming or outgoing respectively. A positive NPV value
represents a profitable investment and on the other hand a negative value
represents an investment with loss of money. The discount rate takes into
account the various factors of devaluation of the money, e.g. inflation. For each
firm, the future cash flows will be discounted by the weighted average cost of

capital (WACC) which considers the level of debt and equity used as well as
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the cost of each one. The formula for the WACC is the following:

D

E
WACC = —— o
EiD v T 5D

T debt (22)

where E is the equity used, D the debt, 7¢quity is the cost of equity and rgep is
the cost of debt.

2.1.2 (Dis)advantages

The NPV method is indeed very easy to apply but it also has some drawbacks
which are not always negligible in real world projects.

Managerial flexibility cannot be taken in account. For example, we have a
project where we do not now when we will launch the new product and we want
nevertheless calculate its respective value with the NPV. By holding on with the
launch of the new product, we do not now from which date we have to discount
the future cash flows. Imagine, we can have the possibility of deciding that it
can be launched on every day for the next months. But with the use of the NPV
and its constant discount rate we would always choose to launch right now since
the discounted value will be worth less and less by pushing the launch further
to the future. The only way it can be better to start the project in the future
is by changing its discount rate. Then we would need to find a new discount
rate for each future event. We can easily see that this approach is not as easy
as it is supposed to be with a simple application of the NPV. Additionally,
the uncertainty of future events that may occur produce also a change in the

cash flows. This problem adds another complexity to the calculation of its value.

In other words if we have simple projects where we do not have a lot of
choices the NPV method is the tool we need to use. However, if we can have
multiple outcomes and we can change our mind about the conditions of the
project, then we should look at another method which is easier to implement.
On top of that the newly introduced method should also consider the ever
changing market. That means that it should adapt to the trend of the market.
So when the market goes down then the sales of a product will be affected and
therefore the future cash flows. The same goes for a market increase. With the
NPV method we cannot correctly assess the volatility of the market and this

will be considered in the future methods.
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2.2 Ito Calculus

In the following subsections we will talk about stochastic equations and how
calculate them. We start with the Wiener Process which represents the noise
of the stochastic equation. Then we attack the actual equations starting with
a basic example. The generalized case is the Ito’s Process which can be solved
using Ito’s lemma, a fundamental part of the stochastic theory. This section will
be rounded up with different stochastic equations like the geometric Brownian

motion, mean-reverting process and the jump process.

2.2.1 Wiener Process

A Wiener process can also be called Brownian motion and is a continuous time
stochastic process which has 3 main properties: It is a Markov process which
means that the future state only depends on the current state and not the past.
In addition to that it has also independent increments, so the non-overlapping
intervals are independent from each other and last but not least the changes
of the process in any time interval are normally distributed, but the price
described by the Wiener process should not be, because for example the price
of an asset cannot be worth less than nothing. So, by using the logarithm of
the price as a normally distributed variable we can get rid of this problem.
Additionally, the prices of a stock grow at a compounded rate, so in order to
simulate the price we need to find this rate which is a multiplication of different
factors which are all represented as exponential values. Another reason is that
with the log-normal distribution of the stock price the cheap stocks do not
change with the same absolute values as the more expensive ones. In terms of
percentage change, they will move with the more or less same value but not in

absolute value.

Proposing a Wiener process, B;, then the change of By, AB;, is linked to

the change of time:

ABt = €V At (23)

where ¢, is a random normally distributed variable with mean 0 and standard
variation 1 and each ¢;, where ¢ signifies a certain time period, are completely
uncorrelated. By dividing the time interval in a large number of intervals it is
safe to say that the equation 2.3 can be easily expressed in continuous time

with a nearly equal expression:

dBt = et\/% (24)
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Again the distribution of €; has zero mean and unit standard deviation. Which

gives dB; a distribution of:

E(dB,)
V(dB,)

0
(B.)" = dt

2.2.2 Brownian Motion with Drift

In this case we have a Brownian Motion where the mean increases in time, e.g.
a stock which is always changing from day to day but still after one year the
mean of all possible outcomes of the stock price is gradually increasing instead
of staying around 0. This phenomenon is also called the drift of the stochastic

equation. This case can be expressed with a different stochastic equation:
dx = adt + odB, (2.5)

where dB; is the change of a Wiener process and « is the drift parameter and
o the variance parameter also called volatility. The change of x is normally
distributed and has a mean of E[Az] = aAt and a variance of V[Az] = o2At.

2.2.3 Ito Process

The generalized equation of the previously given equation 2.5 can be called Ito
process:
dx = a(z,t)dt + b(x,t)dB; (2.6)

There exist many different forms of such a process but there are three different
types which are useful for the real options analysis: geometric Brownian motion,

mean-reverting motion processes and the jump process.

Geometric Brownian Motion

An important case is the geometric Brownian motion with a drift where

a(x,t) = ax and b(x,t) = ox and where o and o are given constants:

dr = axdt + oxdB; (2.7)

t dz
X

Knowing tha is normally distributed and those changes seems like logarith-
mic changes, therefor, the changes of x seems to be log-normally distributed.
But since we are not working with a normal differential equation we need to do

a change of variable to get the correct equation which will then be log-normally
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distributed.

For F' = log(x) we try to find the stochastic equation with this change of
variable. Ito’s Lemma is needed in order to find the wanted equation. Starting
with a Taylor expansion of the proposed function F:

oF oF 10°F

dF = —dx + —dt + ———(dz)* + = —=(dz)* + - - - 2.8

5z M G T G () g () (28)

In normal calculus the higher order elements of the equation will vanish but
not in this case. There will be still some terms staying contrary to the normal
expansion. Considering again the general case 2.6 to find the final expression

with their parameters.
(dz)? = a®(z,t)(dt)* + a(z, )b(x, t)(dt)? + b2(x, t)dt (2.9)

Comparing the different powers of dt it can be derived that the (dt)? and (dt)?
go faster to 0 as dt while dt becomes infinitesimal small. So the higher powers
of dt are negligible to dt. The same goes for (dz)® but we only have terms
which are negligible to dt itself. The final equation is then:

82F oF

OF oOF 1,

Applying this equation to the geometric Brownian motion case the first and

second derivative is needed: 85 = 916, %f =0 and a F = —m%. The equation of

the geometric Brownian motion can be then rewrltten as:
L,

Since F'is normally distributed and the mean and variance of F are given in

the previous point, the mean of z(¢) can be written as followed:
Elz(t)] = zoe™ (2.12)
and the variance is given by
V[z(t)] = zie®(e* — 1) (2.13)

On figure 2.1 we can see some simulated trajectories. The volatility is fixed at

20% and the risk-free rate is at 5% and finally the initial value equals 10.
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FIGURE 2.1: 5 simulated trajectories from the same brownian
motion with initial value of 10, a drift of 5% and a volatility of
0.2

Mean-reverting Processes

On the other hand, the previously given stochastic equation is not always
accurate while handling a different kind of assets like raw commodities. There
might be some fluctuations of the price but in the long run they’re rising in
price due to the rising marginal cost of production. So, the fluctuations always
come back to the mean of the given asset. So we introduce another term inside
the equation 2.7:

dx = n(x — x)dt + odB; (2.14)

where 7 is the mean of the given asset and 7 is the speed of the mean reversion.

So the expected value and the variance are then given:
E(x) =2 + (xo — T)e ™ V[z; — 7] = —(1 — e™2™) (2.15)

2.2.4 Jump Processes

A third process to consider is the jump process. If for example you hold a
patent and after some time the competitors found another way to do the same
which would then result in a big downward jump of the equity value. Unlike
the other processes we do not have the continuity over the whole time frame.

At a certain moment there can be a jump happening due to several reasons.
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The jump itself will be also of random size as the arrival time will be modelled
by a Poisson process.

We have then a typical equation of:
dr = a(x,t)dt + b(z,t)dB; + c(x, t)dW,; (2.16)

Where we have for the first two terms the same as for the initial Ito process,

but the last term is due to the possible jump. We have for dW;:

(2.17)

J, — 0  with probability \dt
"7 lu with probability 1 — \dt

And ) represents the mean arrival rate of a Poisson process. This Process can
be used in certain cases but for our methods we will only consider the geometric

Brownian motion.

2.3 Tree Structures

We introduce 2 different types of tree structures. A tree structure is charac-
terized by nodes and branches. We start with one single node where we add
branches to this point and creating new nodes at the end of each branch. The
initial point is their respective parent node. We can restart this procedure as
often as we like to form a tree structure. In our case, we focus only on the

possibility to add 2 outgoing branches for each created node.

Binomial tree

First of all we have a regular binomial tree. At each node we have a possibility
to go up or to go down each is represented by a created branch. Every up
movement has a probability p to be realized and each down movement a
probability of (1-p). The drawback of this model is the fast increasing size of
the tree. And so the computing time increases even further, since we have to
visit every possible possibility inside that tree in order to find the initial value.

This tree structure can be seen in figure 2.2.

Lattice model

Then we have the lattice model, where an upward then downward movement is
the same as a downward then upward movement. As the horizon gets bigger it

is faster to compute the needed values inside the tree. So, in the future we will
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use this model only in order to compute the real option valuation. Here on the
other hand, we do not need to calculate all the possibilities since sometimes
they are the the same for different scenarios. We can see an example in figure
2.3.
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Chapter 3

Introduction to Real Options

This short chapter will go over the different possible real options, the replicating
portfolio theory and the Black & Scholes Model. The first section is to visualize
what kind of option we can actually incorporate and what it means in the
industry, as well as a short comparison to the financial options. Then we will
walk through the replicating portfolio theory which will make the link between
a financial instrument and the latter options. Last but not least, the Black &
Scholes model will be explained which is one of the best known equation in

finance history.

3.1 Different Options

In this section, we walk through some options. There can be many more, but
this is a list of the most obvious ones. There are no limitations of the complexity
of the underlying options. Imagine a scenario and we can incorporate this into
a different real option. First it will be explained what this option is all about
with a short example to better understand each option and lastly, an equivalent
to the financial option will be elaborated if it is possible. So, the most common

options are listed below.

e Option to defer (learning option): We do not have an exact starting date
for our project. That means it can be undergone in a certain time frame
so that we maximize the profit made. For example, we are prepared to
invest some money into a new product which is highly dependent on the
market condition. In order to maximize the profit, you have to decide
when the best moment to launch the new product is. Maybe if the market
is very bad at the moment but in several months the markets recovers
from the low, we can profit from waiting those months before launching
the new product. It can be compared to a financial call option where you

can exercise the option to buy the stock or in this case the launch of the
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product and the strike price can be then the investment needed for the

start.

Time to build option (can be shut down while constructing): It is very
often used in research and development projects where you try to find a
new way to do your business, but you can stop the project whenever you
want. In most research projects the written code or new tests are not
conclusive or helpful for the other branches of the firm and then you lose
the totality of the invested capital. Especially research projects can be
stopped in any case if the management deems the progress unpromising.
This option on the other hand can be compared to a put option where
you have the right to sell the infrastructure for a certain price like the

put option.

Option to shut down or abandon: This option is not the same as before
since here you are able to sell your project for a certain price. After
building a factory the head of operations can always decide to not use
this facility and leaving the infrastructure untouched. In such a situation
you can always sell the ground and the building to a third party. This
can also be seen as a financial put option but with the special case where
you can abandon the investment for further losses. Here it is possible to
have losses and therefore having negative cash flows which is not exactly
the case for the stock market where a stock cannot fall under 0 and so

the shareholder can only loose his stake in the company.

Option to alter operating scale: You can increase the return by scaling
up the whole project. And on the opposite, if the market condition turns
bad we are able to scale down the project without completely abandoning
it. If a production facility gives promising results, then someone can
replace the machines by more powerful ones to amplify the production
output. In a way it can be also understood as a call option where you
can be inclined to start the project on a negative cash flow and then
exercise the option to grow. In this case the project has as a strike price
the investment needed to grow. On the other hand, we have the option
to decrease the scale of operation and there we can find an analogy to
the put option where you can find an investment which might perform
better than it supposed to for the next time and then you can exercise

the option to sell parts of your equipment and produce less to cut losses.
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e Growth option: Again, this is often used in research and development
where one discovery can lead to new opportunities to profit. In cases
where the new equipment for example brings us to new possibilities in
the production line in other branches of the firm and so leading to new

opportunities in the other department.

e Multiple interacting options: And of course, we can combine different

options to correctly model the possible decisions a firm can make.

3.2 Replicating Portfolio

As we have already established that most of the real options can be interpreted
like a financial option of the stock market we can now introduce the replicating
portfolio theory. To correctly simulate the project this theory will make the
link between the project, like a launch of a new mobile phone, and a financial
instrument in the stock market. The main objective is to replicate the project’s
return and risk factors using bonds and shares. The bonds are risk free at a
certain return rate. The shares deliver the volatility or the risk factor of the
project. This factor depends on the firm for which we want to evaluate the
project. Each firm can have a different structure and a different growth rate,
etc. Also, the industry can give more stability in terms of payoff but there are
many factors which should be analysed in order to correctly value the return
rate and the volatility. So as said before, the portfolio should consist risk free
bonds and shares. We can then model the tree as seen in the graph 3.1 where
S is representing the shares, B the chosen bond, p the probability of an upward
movement, r the return rate of the bond and n the number of shares. The
shares should have the same risk as the project in order to correctly replicate

its behaviour.

By using the replicating portfolio, we can use the existing theory on the
financial options in the stock market for example. This will help us to evaluate
the different projects and therefore the moment when to undergo the investment.
But unfortunately, not in every case there can be found an equivalent portfolio
which correctly imitates the project structure. But for the purpose of this
thesis we will neglect the fact that the replicating portfolio cannot always be

found in real life.
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nSq+ (1 +r)B
FiGurE 3.1: Principle of the replicating portfolio theory

3.3 Black and Scholes

The Black and Scholes formula, [2], was the first widely used formula for options
pricing. Especially invented to find a theoretical price for the European options
using their current share value, expected dividends, the option’s strike price,
expected interest rates, time to expiration and expected volatility. We can
either have a call option or a put option. The call option is the right to buy a
certain stock for a certain price. On the other hand, we have the put option
which gives us the right but again not the obligation to sell a certain stock at a
certain price. Of course, the value of the option changes with different factors.

We can find the formula for the two options:
C(t,S;) = S;N(dy) — N(dy) Ke "0 (3.1)
P(t,S;) = —S;N(—dy) + N(dy)Ke "™~ (3.2)

_ln(%)+(r+"—;)t

o/t

n
dzzdl—a\/iz (

=

R TR

Where t is the time since the option was issued, S; is the share price, K the

strike price, r is the risk-free rate, o is the respective volatility.
The first term of the calculation of the call is the expected profit from the
right bought by the call. The second term however is everything that you pay

over the course of time until the expiration date since the option can only be
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exercised at the end of the time frame since we are dealing with the European
version of the call option. Additionally, the N function is the standard normal

cumulative distribution function:

1 e 22
N(z) = —/ e 2dz 3.5
@)=/ (35
The American call or put option cannot be calculated by this formula. In the
latter version you can exercise the option whenever you want to. That is why

the American option should always be more expensive than the European one.
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Chapter 4

Modelling of the Real Options

Since the net present value method is not the perfect way to evaluate our
project, the tree structures will be combined with the NPV method in order to
add already a certain complexity in decision making. Afterwards, the binomial
tree structure is being used to accommodate already the first real options.
Unfortunately, the stochastic nature of the economy is the reason why also this
method cannot be taken as the correct way to evaluate the project decision.
The first lattice method for real options with a basis of stochastic equations will
be introduced with the Cox-Ross-Rubinstein or the Trigeorgis log-transformed
method. With those models, the implementation of the real options can begin.
To add a further complication, the constant risk-free interest can also become
stochastic to get even closer to the real value of the project. The last point
of the model is the stability analysis which is also important in order to know
when we can use a certain method and when this method will not give the

correct answer.

4.1 Decision Tree Analysis

Firstly, we consider the simple application of the net present value inside a tree

structure. Each node will be calculated using the given formula:

Net Present Value (= NPV) Z

where r is the discount rate at the given moment. It is a classic tool to evaluate
the profitability of a certain project. We can find a formula for the expected
value of the decision tree analysis by calculating recursively on each node the
expected value of the values found of the outgoing nodes. Starting at the end
and going back to the current position in time to find the expected value at

our point of time.
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FIGURE 4.1: Example of a simple decision tree with two choices

Considering a simple example where we have a node in time with two
outgoing branches with a node at the end where we know what the value of
the ending node is. This example is represented on figure 4.1. Then we can

find the expected value for our position by using the following formula:

E(tree) = ]91”1:::};27”@ + ng

where p; and p, are the real world probabilities of moving to node 1 or 2, n
and ny are the payoffs of node 1 and 2 and r is the discount rate. Additionally,
we need to add the cash flow of the initial node ny since we might gain some
money already at this point of time. Now we can find the expected value of
every node with a generalized formula:
N

E(node;) = Z?lz_li_p;m +n; (4.1)
where p; is the probability of moving to node i, n; is the payoff of node i, r
is the discount rate again, j is the node for which you would like to have the
expected value and N is the number of outgoing nodes to the next step in the
tree. m; is the payoff at node j which is again positive for a cash income and
negative for an investment paid. As said before we need to evaluate the tree
recursively since the expected value of the very last node is always known since
it is only the payoff at this step and we need always the nodes of the next step

to calculate the value of our initial node.

It is already a better model than the simple application of the deterministic
cash flow (=DCF) method. Since we can already analyze simple options with
our model, for example, if we want to analyze the situation where you can
change the start of the given project or when we get opportunities to realize
another profitable project which would not be possible without the first project.

Its downside, on the other hand, is the constant discount rate which normally
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changes over time as the markets change constantly and we should adapt our
discount rate accordingly. With the time, the discount rate changes with the
firm structure and many other factors as well. By realizing different projects,
we might change different factors, who might influence the discount rate, which
would implicate that we are not using the right one at the later stages of a
project. Additionally, the income of each investment is also uncertain for most
of the projects taken depending on the future economy. This cannot be taken
into account correctly without complicating the tree structure even further and
so it becomes unreadable. The factors of uncertainty are however considered in

the next sections.

4.2 Contingent Claim Analysis

We now consider the contingent claim analysis where we account for the risk
factor of each investment. The uncertainty of future events that change the
gain from an investment is incorporated in the measure of the risk. Those
quantifiable risk indicators help us to correctly predict if an investment should
be considered. It is a forward-looking method rather than basing itself only on
past occurrences. So, with the correct risk measurements we can better predict

the value of the investment.

In the deterministic valuation of the decision tree analysis we used probabil-
ities which are given based on the situation which is decided in this particular
node. For example, at one node we put in the possibility of a defect which
is provided by the manufacturer for example. In the latter case a certain
production robot has the probability to fail of 5% in the first year of service.
This probability will be fixed in the tree and therefore the probability that
everything runs smoothly is of 95%. In the next model the risk of a project is
inside the volatility which is fixed for a certain investment. So, the probability
can be calculated and further transformed into the risk neutral probability.
Additionally, we restrict the possible outcomes at each node at 2 which was not
the case in the decision tree analysis where you can fix many different scenarios

at each node.

The contingent claim analysis (=CCA) can be presented in form of a
multiple decision tree, but we want to go even further and use a binomial
tree. As presented before we can either go up or down. Each movement has

a probability of p and 1-p respectively. The up movement means that the
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investment gains in value whereas the down movement represents a loss in value.

Let us define the different factors needed to create the analysis:

V = total value of project
S := price of the shares that are almost perfectly correlated with V
E := equity value of the project for the shareholder

S, = return of the shares after an upward movement

Sy = return of the shares after an downward movement

ry = risk-free interest rate

:= risk-neutral probability for up-movements of V and S per period

p

q := real probability for up-movements of V and S per period

u := multiplicative factor for up-movements of V and S per period
d

:= multiplicative factor for down-movements of V and S per period

We then try to replicate the investment by using shares and bonds to get the
same risk and return structure as the given investment. The value can then be
seen as ¥ = nS — B where n is the number of shares bought where its value is
represented by S and B is the bond of maturity T. So, on the up movement we
have E, = nS, — (1 +r;)B and on the down movement E; = nSq — (1 +rs)B.
The real world probability of happening to move up- or downwards are of the

same likelihood. So we can find the last unknowns simply by substituting them:

n = Ln = L o e G DL (4.2)
Sy — Sy 1—|—Tf
EuSd - EdSu (1 + T‘f) —d

B— SRS P 4.3

(Su—Sd)(1+rf) p u—d ( )

In order to calculate when the project is undertaken we consider in this case
the risk-adjusted probabilities, p, which differs to the previous case, with the
DTA. The only value that has to be evaluated are F; and E,, the values of the
equity value after one step and that means we have to find the multiplicators d
and u. From there we can simply find £y =d F and F, = u E. Now we can
use the given method since we have found every unknown necessary for the

implementation.
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4.3 Lattice Methods for Real options

4.3.1 Modeling

Cox-Ross-Rubinstein binomial tree, [4]. The classical tool for the option
pricing. We take the same parameters as before. We can see that the principle
is equivalent to the previous point but will differ later in the analysis. In this
case to make one upward movement then one downward is the same as one
downward and one upward movement. So, we use a lattice tree as described
earlier. With the replicating portfolio and the matching expected return of the

tree and the stock we can find the following equality:

Semt A = puS + (1 — p)dS (4.4)
= A = pu+ (1 —p)d (4.5)

From here on we can quickly find an expression for the risk neutral proba-

bility of going upwards:
erfAt . d

u—d

If the volatility of the given portfolio is ¢ we can find the standard derivation

p= (4.6)

of its return in a short period of time of length At: ov/At. So, we can quickly
find the variance which equals to 0?At. We want to examine the variance
of the whole tree which can be done by starting with its definition and then
substituting the corresponding values as well as replacing the probability by

the latter found formula. This gives us an expression which we can develop
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and that should be equal to the variance of the portfolio:

V =E(X") - (E(X))*
= (pv® + (1 = p)d®) — (pu+ (1 - p)d)®
= pu® — pd®> + &* — p*(u — d)* — d* — 2pd(u — d)
=p (u2 —d* — p(u — d)* — 2d(u — d))
=p (u2 +d* — p(u—d)* — 2du>
=p((u—d)* —plu—d)*)

=p(l —p)(u—d)?

eT‘fAt _ d eTfAt _ d )
 u—d <1_ u—d >(U_d)

= (" —d)(u— d — e + d)
— ue'l’fAt o Ud+ deT’fAt o eQT’fAt

= oAt

Now we have imposed two conditions on p,u and d. A third one is added

by Cox, Ross and Rubinstein via u = é. Then a solution is given by:

u = exp (O’ ]j\;) = cll (4.7)

We replace the found values into our equality in order to check their viability:

UZAt — erfAtJra\/E + erfAtfo\/E —1— e2rfAt (48)

We now use Taylors series expansion:

2 3
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We neglect the terms of At? and higher powers since we have a small step

size and therefore, the higher powers are negligible in comparison to At.

:1+WAt+UVAP%;WAﬁ+JVAﬂ2
+1+WAt—UVAr+;th—UVAw2
—1
2 2
— (14 2r;At+ §(rfAt)
= ! ((rfAt)2 + 2rAtoV At + o2 At + (rfAt)2 — 2r;AtoV At + O'ZAt)

2
= o2 At

We can see that equations 4.7 are indeed solutions to the previous system,
4.8. We can again find the last 3 unknowns as in the contingent claim analysis,
4.2:

Y b=""0x

B= " u (4.10)

(4.9)

We have now every unknown to implement a recursion formula. We intro-
duce the opportunity value R(i,j) where we denote j the j"* time step and
i is the " node from the top at time j. Both index values start from 0. So,
when we do an upward movement we will be at ¢ and j 4+ 1 and for a downward
movement we are one step further, j 4+ 1, and one node down, i + 1. At each

node we need to calculate the discounted value of the the latter nodes:
R(i,j) = e [p- R(i,j+ 1)+ (1 —p) - R(i+ 1,5+ 1)] (4.11)

This binomial tree can be visualized with the respective notations for each

node on figure 4.2.

Trigeorgis log-transformed binomial tree. Model developed by Trige-
orgis [9]. We now have to consider the stochastic processes of the different
projects. We propose that the project follows a diffusion process (a Geometric

Brownian Motion) given by the stochastic differential equation (=SDE):

AV, = aVydt + oV,dB,, >0 (4.12)



26 Chapter 4. Modelling of the Real Options
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FIGURE 4.2: Visualisation of R(i,j) for a tree with 3 levels

where a € R is the instantaneous expected return of the project, o € R the
instantaneous standard derivation and finally (B;):>o is a standard Brownian
motion.

The log-transformation is represented by Y; := In(V}),t > 0 and gives this
method his name. For every infinitesimal time interval dt the process Y follows
an arithmetic Brownian motion. We can now transform it into the following

equation under risk neutrality with a = r:

Vi 1
iy = In ( t*f“) . <rf _ 02) dt +0dB,,  t>0  (413)
Vi 2
We can prove that this process follows a normal distribution with mean,
also known as the drift, equal to (7" F— %(72> dt and standard variance of o2dt.
We then simplify it by replacing o?dt by K, defined as the time step:

ry 1
dY ~ N(uK, K) Where,u:—2—§ (4.14)

o

We want to express everything in term of the variance. We now have a
discrete Markov walk which goes up by AY with a probability of p and also
down by the same amount but with a probability of 1 — p. We also define
H := AY, the state step. We can then calculate the expected value and the

variance of one step:

E(1 step) = pH + (1 —p)(—H) =2PH — H (4.15)
V(1 step) = H* — (E(AX))?> = H> — (2pH)H)? (4.16)
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We want that the discrete-time process is consistent with the continuous-

time process, so their variances and their means should be equal which brings

us to:
1 K
=—(14+ — 4.1
p 2( + H) (4.17)
H=\/K+ (uK)? (4.18)

Again we can calculate the opportunity value, R by discounting the future

values to the node R(i,j):

RG.3) = exp{=ry s} o Rj+ 1)+ (1=p)- R+ 1+ 1] (419)

The model has to be adjusted for the occasional external cash flow that
means that at some point of time there might be a cash flow like dividends or
monthly payment of rent etc. Therefore, the usual formula for the expected
value has to be adjusted to correctly value the cash flow for the next iterations.
The value of the project is then denoted by V' and the moment before and after
by T and ~ respectively. C represents the external cash flow which is assumed
to be a payment. Then, we have V't =V~ — C. The total opportunity value
R’ is:

RVY) =RV~ +C)-C (4.20)

The moment after the payment of the dividend for example is equal to the
difference between the expected value of the value of the later levels of the tree
regardless the payment and the paid sum of dividends. The given shift in the
lattice is not everywhere the same. Since the shift is a local shift the earlier
node structure has to be maintained. To correctly predict the value of each
different real option we need check at each node if it is not better to apply a
certain real option. Now we can implement the options of the firm into the

recursion formula given in the following section.

4.3.2 Real Options Implementation

Option to defer until next period: Starting with the first option where
we can wait a certain time period before starting the project and profiting from
the expected return. So, we need to discount the future cash flows which would
be generated if the project is undergone. But on the other hand, we need to

compare it to the value of the cash flows if we actually do the project right
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now. We can then express this with our recurrence formula introduced earlier:
02
Ri. ) = max {77 % B(R(i,j + 1)), RG.j)}

Option to alter operating scale: The next on the list is where we can
change the payoff of the project at any given time. In order to do so we need
to invest capital, 1., to scale up the project by a percental amount, e. We can

then find the recursive formula:
R'(i,7) = R(i,j) + max{eV (i) — I, 0}

On the other hand, if we want to scale down the project we should do so by
a gain in capital, I, due to the possible sell off of different machines, employees,

... In this case we gain money but loose on the percental contracted value c:
R'(i,7) = R(i,j) + max{l. — ¢V (i),0}

Abandon an investment: When we abandon an investment, we can have

three possible cases:

e The investment was into a research project and by abandoning the project

we lose the whole value of the work done.

e Or the investment into a research project needs more money so that we
the choice of either abandon the project or further invest into the research

to realize the ultimate goal.

e The investment was linked with some infrastructure or needed raw mate-
rial, etc. Then we can sell everything we have for the respective value, so

we still get some money back from the investment.

For the first case we can either continue the project or just get a payoff of 0 so

we do not make further losses:
R'(i, j) = max{R(i, j), 0}
For the second case we only have to add the needed investment at R(i,j):

R'(i,7) = max{R(i,j) — I,0}
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Type of real option Adjustment

Switch use for salvage X R'(i,j) = max{R(i,j), X}

Expand by e through investing | R'(4,j) = R(4, j) + max{eV (i) — I, 0}

an additional amount I,

Contract by ¢, saving I, R'(i,7) = R(i,j) + max{l. — cV(i),0}

Abandon by defaulting on an | R'(7,j) = max{R(i,j) — 1,0}

investment I

Defer until next period R(7,7) = max {e‘rfiE(R(i,j +1)), R(i,j)}

TABLE 4.1: Transformation to be applied to the binomial tree
to correctly value the possible real options

The last case is another generalized example of the first one but this time

instead of losing everything we gain some money X from the selloff of the goods:

R/(i, j) = max{R(i, j), X}

4.3.3 Stochastic risk-free interest rates

Modification of the Cox-Ross-Rubenstein Binomial Tree. The con-
stant risk-free interest rate is already described earlier. So now, the constant
one is interchanged with an stochastic interest rate. The stochastic differential

equation is slightly different than before:
dSt = Tf(t)Stdt + O'StdBt, t 2 0 (421)

The binomial tree can still be constructed since its geometry does not
depend on the variables used. An additional function is then needed to be
defined:

a(t) = e WAL t>0

The probabilities of each node are then:

_ _u—a(t)
e and l—p= T d (4.22)
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In order to apply the ordinary Cox-Ross-Rubinstein method the intermediary
interest rates have to be calculated. Afterwards, in order to apply them and
correctly value the project, we have to recalculate the probabilities and the

risk-free rate for each period.

pU) = risk-neutral probability for up-movements after a node in time period j

:= real probability for up-movements after a node in time period j

From here on it is exactly the same procedure as before but with differ-
ent probabilities. We can apply the same procedure to the Trigeorgis log-

transformed method without any additional information.

To simulate stochastic short term interest rates we will use Vasicek’s model.
This model is used for risk neutral measures which is indeed the case for our
two methods. Vasicek based himself on a mean reverting process so that the
interest rate will always come back to the mean eventually. So, we can find the

stochastic differential equation:
dr = (f — oyx)dt + od B, (4.23)

where oy, 5 and o are all constant values. « is the speed of the mean reversion,
f/a is the mean to which the process will come back and o is, as always,
the volatility of the process. We can generalize the solution by proposing a
dependence of time to each constant. For the generalized case we can find
the solution to the stochastic differential equation. We will start by finding a
solution to the homogeneous case. First, we examine the generalized equation

where o and (8 are dependent on time, t.

dr = ayxdt
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We can find easily a solution of this process by separating the different

variables and then integrating each side of the equation:

d
j = atdt
T

t1 ¢
/ —dx:/ o, du

0T 0

¢
In(xy) — In(xg) = / ay,du

0

In (m) =
Lo

t
o xoefo aydu

Now we have the solution to the homogeneous part of the initial differential
equation. With the use of the method of the variation of parameters we can
propose a different process y; to equalize the following process with the initial
differential equation:

7 = gpedo audu (4.24)

So we compare equation 4.23 with the new one, 4.24, to find an expression

for y,: t t
dy; = Brexp (—/ Ozudu> dt + oexp <—/ audu> dB,
0 0

We consider that yy = xg and we integrate as before from 0 to t:

t u t U
Y = To + / Luexrp (—/ ozsds> du + / OLEXTP (—/ ozsds) dB,
0 0 0 0

Now we can find the generalized solution of the mean reverting process:

t u t u t
Ty = <x0 + / Luexrp <—/ ozsds> du + / OuEexTp (—/ ozsds) dBu> exp (/ audu>
0 0 0 0 0

(4.25)
Then, we come back to the model of Vasicek where o, o and S are all

independent of the time and we have to adjust a to —« to fulfill the model:
t t
Ty = (xo —|—/ Bea“du—l—/ aea“dBu) e ot
0 0

= (iﬂo - g (1 — eat) + J/Ot eo‘“dBu> e

t
=z ™ + é (1 — eat> + 0’/ e~ t=vqpB,
e 0
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From here on we can directly find the expected value as well as the volatility

of the interest rate:
_ B
E — at (1= at
(1) = zoe™ ™ + a( e )

t 2
V(z,) = E(z2) — E <a /0 eo‘(t“)dBu>

t
= 02/ e t=8) g
0

“ 5 (=)

To visualize Vasicek’s model we will apply a numerical method. The
chosen method is the Taylor 1.5 scheme found in the appendix A.1. For
u(r,Y) =p —aY and o(7,Y) = o we can reduce the iterative equation to the

following since o” =y’ =o' = 0:

Yo = o
)/i—l-l - )/;, + /'L(Th K)AS + U(Ti7 K)ABZI
+ ”/(Tiv}/i)U(Ti’Y;)AB?

1 /

fori=0,---,N—1

With the use of the numerical approximation method we can see the Vasicek
model on figure 4.3. We took the following parameters: o = 0.06, 5 = 0.12,
ro = 0.06, 0 = 0.02, T'= 5, and N = 360 where N is again the number of steps
per year, T the maturity, ro the starting point, and the other parameters are
the same as in the differential equation. We can clearly see that the risk-free
rate is always returning to the same value as before since the mean is fixed at

B/a = 0.06.

4.3.4 Stability

Cox-Ross-Rubinstein: We can firstly observe that the logarithmic change
of the process is equal to In(u) and since v = o+/7 where 7 = T/N and by
definition we have K = 03/7 we can identify that In(u) =K. To find a upper
limit on the step size to make sure that the method is stable, we realize that
if we tend N to infinity in the log-transformed method of Trigeorgis we can

find the same results as in the Cox-Ross-Rubinstein method. First, we have to
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FIGURE 4.3: Interest Rate modeled with the Vasicek model
with the parameters o = 0.06, 8 = 0.12, rg = 0.06, ¢ = 0.02,
T =5, and N = 360

compare K with K? when N — oo:

T T
K=0c%—- K?’=o¢*— 4.2
O'HN a (4.26)

We can quickly see that K? tends to 0 much faster than K. And then, we
can assess that K? is negligible in the presence of K. Therefore, we can find

for H in the model of Trigeorgis:
H=\/K+ (uK)? 2 HsaVK (4.27)

So, we find the same value for H with both models. And now we have to

analyse the approximation of the probability:

1 K
P:(H“)

K
H
oo 1 1 1
N;> 2(1—1—(”—2)\/1() with K = o%r1 andm:rf—ga2
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where q is the probability of the Cox-Ross-Rubinstein model. We will verify if
q is indeed between 0 and 1.

1
0§<1+T\/F);»—“§T (4.28)
2 o m

1
<1+@\/F>§1¢\/F§U (4.29)
2 o m

Putting those two conditions together we can find a single condition:

o? a2

T —=—"-—"7"7= (4.30)
= 2 Y
m (r ;-1 02)
Now we have an upper bound on the step size depending on the volatility

and the risk-free rate. For this model we encourage a higher volatility and less

return if we want to increase the step size.

Trigeorgis log-transformed method: We have to verify that the proba-
bility is indeed between 0 and 1. We will start with the latter case:

1 K
P:<1+”)

s(
2 K|
<1

For the next step we need to express the Variance, 4.16, differently by
substituting the probability, 4.17, inside it. From there we can find that
Var(AY) = H? — (uK)?. Since the Variance is always greater or equal to 0

we can deduce the following:

H? > (uK)?
= |H| > K]
B —H < —|uK| < |uK| < H
1724

=-1<—<1
=g s
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With this knowledge we can find a lower limit on the probability:

P:;(Hf)z;u—n:o (4.31)

And so since P+ (1 — P) =1 and 0 < P < 1 we can assume that the

method is unconditionally stable with no constraints on H and K.
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Chapter 5

Analysis of the different

methods

After building the models for the evaluation tools of the project, an analysis of
the methods should be made to know how each method behaves. Starting with
the basic valuation tool, the net present value. To add more complexity, we give
an example of the decision tree analysis. As we have seen before, the contingent
claim analysis is a better tool to evaluate real options. A basic example will
be made to prove the point. Finally, we test our two main methods: the
Cox-Ross-Rubinstein and the Trigeorgis log-transformed method. First, the
correctness will be checked with the Black & Scholes formula by reproducing
the European put option with our two methods. Then we will identify the
correct number of time steps per year using the latter formula. From there,
the sensitivity to different parameters, such as the volatility and the risk-free
rate, will be checked and analyzed. Then we change the nature of the option
to evaluate if we can use our models to calculate the value of the project. The
last point will be about the stability of both methods.

5.1 Net Present Value

Firstly, we present an example of the net present value method which is very
simple and easy to use. That is why it is widely used to valuate fixed projects
without any flexibility. Considering now that we have a discount factor, r of
6% and we need an initial investment of 60 at the beginning and 40 after one
year. This project will have a gain over 6 years of a constant value of 30 where

the cash flows are visualized on figure 5.1.
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1
]
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FIGURE 5.1: Cash flows of the project with an income of 30
per year

For this case we can observe a net present value of:

10 30 30 30 30 30
NPV = —60 —
(1.06) ~ (1.06)2 " (1.06)® T (1.06)"  (1.06)°  (1.06)°

=27.01

So, we can say this project should be undergone, since it will be profitable.
On the other hand if we now only get 20 per year which would imply that we
pay 100 to get 100 where we can see the cash flows on figure 5.2.

0 2 3 4 5 6

1
1
60 20 20 20 20 20 20

!
r

FIGURE 5.2: Cash flows of the project with an income of 20

per year
We calculate the NPV again:
20 20 20 20 20 20
NPV = —60 —
(1.06) ~ (LO6)2  (1.06)* © (1.06)F ~ (L.06)% © (1.06)°
=—12.73

This time we can observe a negative NPV which implies that the project
should not be done. Indeed, we have a payoff equal to the earlier invested
capital, but since the money in the future is worth less than the money we pay
right now we can confirm that we should not proceed with this investment. We
can see that if the payoff changes the profitability of the project also changes.
In order to predict correctly the future events, we should not follow a fixed
payoff structure but rather have multiple possible payoffs and then take the
expected value of the different scenarios. The first try to incorporate this
possibility is with the decision tree analysis attacked in the next section. Most
of the time the different payoffs are coming from the possibility to change the

strategy taken previously and so it changes with the presence of real options.
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FIGURE 5.3: Example for the decision tree analysis

5.2 Decision Tree Analysis

For this section we will consider an example of a research and development
project where we can always abandon the research at each given time step since
we are not able to progress in the field of study. For the first time step we
were successful with our studies with a probability of 0.3 and we gain nothing
since we failed to find a new technology with a probability of 0.7. This already
costs 28 in order to finance the research. At time 2 we can then construct 2
different plants: either costing 20 or 35. Each plant has different payoffs with
respective probabilities which can be found in the next figure. The payoff is

the net present values of the cash flows from year 3 to the end of the project.

In the figure 5.3 the probability of happening is denoted by p and the needed
investment by I. The different choices to implement a different size of plant
are mutually exclusive. So, we can calculate the value of the project at each

node backwards and by discounting the investment at a rate of 6%:

' ) _ 0.3%15040.4x100+0.3x5
Point P: 816 = S 1.0X6 + (X :

‘ ) _ 0.4x22040.4x12040.2x (—30
Pommt Py: 12264 = o6
Point Ty: 87.64 = max (O; % — 15; 1:1’)%28 - 25)
Point Ty,: —1.71 = 0.3x87.6410.7x0 _ 9g

1.06
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Where P; is the plant i and T; represents the stage of completion of the research.

So, we can see that the project would not be worth the cost since the NPV
is negative in point 7. We can now add a real option where we could sell the
plant for a certain price X after year 3 for example. Considering now that the

price also changes with the economic situation, so we assume the following

prices:
Xi(High) = 18 Xo(High) = 30
Xi(Medium) = 15  Xo(Medium) = 25
Xi(Low) = 12 Xo(Low) = 20

Additionally, we can assume that the net present value of the payoff for the

year 4 until the end can be assumed to be the following:

NPV (P (High))s = 125
NPV (P (Medium)), = 80
NPV (P (Low))y =2
NPV (Py(High)), = 150
NPV (Py(Medium)), = 70
NPV (Py(Low))s = —30

We now have to check if the salvage value of the plant is higher than the
NPV of the payoff of year 4 and later. This is only the case when we will be in
the worst economic condition. For these two situations we need to recalculate
the payoff. We need to keep in mind that at time 3 there is already a payoff
generated by the respective plant which is simply the difference between the
net present value at time 3 minus the one at time 4: NPV (P;); — NPV (P,),.

NPV (P (Low))s = salvage value + cash flow in year 3
—15=12+(5—2)
NPV (Py(Low))s = 20 = 20 + (—30 — (—30))

This can now be put again inside the decision tree on figure 5.4

And we can now recalculate the net present value at each node recursively
as we have done it before and we can find that the NPV} is positive this time
and is equal to 1.123. This NPV is called a strategic NPV since the valued is
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FIGURE 5.4: Example for the decision tree analysis with an
option to sell the plant in year 3

embedded inside. The value of the NPV i absence of the real option is already
known and equal to -1.708, often called static NPV. Now we can calculate the

value of the option to abandon:

Value of the option to abandon = option premium
= strategic NPV — static NPV
= 1.123 — (—1.708)
= 2.831

We can see for simple real options the decision tree analysis is well suited
but if we shrink the step size the tree can become dense and so, very hard to
calculate. Changing the discount factor for each node would even worsen the
situation. Therefore, we will try to find a better solution for complex situations
which need a near continuous decision making. The first step towards the

solution will explained with the contingent claim analysis.
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5.3 Contingent Claim Analysis

Now we consider stochastic interest rates which can be replicated by using
the replicating portfolio method which replicates the payoff structure through
financial transactions like risk free bonds and shares. We can use the formulas

found earlier, 4.2:

n:Eu_Ed E:pEu—l—(l—p)Ed
Su—Sd 1+T’f
B— EuSd—EdSu . (1+Tf>—d
T (S =S +ry) P=""a

Let us assume a binomial tree. The upward movement gives us an increase
of 50% and the downward movement gives us only 70% of the initial value, so
that we have u = 1.5 and d = 0.7. Additionally, we have an initial portfolio
value of 100. Each share is priced at 15. This time we consider a risk-free rate

of 6%. We can now calculate each unknown with the given formulas:

E, — E, 150 — 70
"T5 g, 15x15— 0.7 x 15
(1+7r;)—d 1.06 — 0.7
_ _ 106=0.7 —0.45
b u—d 15-07
5 PEu+ (1= p)E, 045 x 150 + 0.55 x 70 100
1+ Ty 1.06
E,S, — E,S, 150 x 10.5 — 70 x 22.5
B — = g O
(Su — Sd)(l + Tf) 22.5—10.5

In this case we have a value of 100 which is the same as if we would do
the calculation with the decision tree analysis. The difference with the DTA is
that we use the risk-free probability in the contingent claim analysis. In order
to check the equality for our example, we need to calculate the risk adjusted

return of the shares which cannot always be calculated:

_qSut (1 —q)Ss 1= 0.5 x 22.54+ 0.5 x 20.5

—1=1
S 15 0%

k

We can now verify the value of our portfolio with the decision tree analysis.

Value with DTA — 2Fut+ (1 — @) Fa
1+ k

~0.5%x 150+ 0.5 % 70
a 1.1

=100
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This proves that the calculated value of the portfolio is the same with the
two different methods. This changes in the presence of real options. We consider
an option to abandon. We further assume that the initial investment cost, I
equals 104, so we would not undergo the investment since we have a negative
NPV = —4. The investment cost at year 1is Iy = [y x (1 +ry) = 110.24. We

abandon the project if the value is less than the investment cost:

E, = max(V, — I;;0) = 39.76
Eq=max(Vy— 1;;0) = 0

E 1—pE
E:p u+< p)d

= 17.892
1+ Ty

where V,, and Vj are the values of the initial portfolio without the option to
abandon after one upward and one downward movement respectively. We can
again calculate the value of the option to abandon by taking the difference
between the strategic and static NPV which equals to 21.892. On the other
hand, we have the DTA method which can compute the value of the strategic
NPV:

qVu+ (1 —q)Vy  0.5x39.76+ 0.5 x 0

Value with DTA = Tk 11

= 18.073

And this time we have a difference between the two methods, but which
one gives the correct value? We simply need to apply the replicating portfolio

method to the newly found values:

E,—E; 39.76 -0

n= S-S5, 25-105 U7

5 E,S; — E;S, _ 39.76 x 10.5 — 0 x 22.5 _ A1.748
(Su—Sd)(1+7”f) 22.5—10.5

And we can finally find the real value of the portfolio with
E=nS—B=3976 x 15 — 41.748 = 17.892

So we can confirm that the correct value is indeed the one calculated with
the CCA as already expected since we need to consider stochastic interest rates

in presence of real options.
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5.4 Benchmark with Black & Scholes

If we want to verify if the 2 methods, the Cox-Ross-Rubinstein and the Trigeorgis
log-transformed method, give us correct values we need to set a benchmark to
compare them to. We know that the Black & Scholes model is indeed used
to correctly price an European put or call option. Since we transformed our
project into a financial instrument through the replicating portfolio method we
can use this formula to predict some prices of a certain real options. Since the
Black & Scholes model is only verified for an European put and call option we
need to make a change in our real option. Now we only consider the possibility
to abandon the project for a salvage, X, at the last period of time. That means

that we only have to check at the end:
R(Z7]) = maX{X - R(Zvj)a O}

We set certain parameters in order to standardize the tests and correctly
interpret the results. To check if our methods are correct or if they converge

by raising the number of intervals we take the following values:

T=0251,3
Tf:6%
c=20.2

Jz\f = 60, 120, 360, 720, 1080, 2160

S =50,60,---,150
X =100

where T is the maturity of the option, ry is the constant risk free rate, o is
the volatility of the underlying asset, N/T is the ratio between the number of
steps and the maturity, so we can fix the time step more easily, S is the initial
investment and finally X is the salvage for what we can resell our project. Now

we have the necessary unknowns to evaluate the earlier modeled methods.

5.5 Time Step

So the first thing to do to correctly analyze the 2 given methods is to find out
the size of the time step. But first we need to know that the complexity of
those methods are both at O(n?). That means if we increase the step number,

n, the computation time will increase proportional to the square of the number
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N/T

S || B&S | 60 120 360 720 1080 2160
50 || 48.511 || 48511 48.511 48.511 48.511 48.511 48511
60 || 38.511 || 38.511 38.511 38.511 38.511 38511 38511
70 || 28.512 || 28.511 28.512 28.512 28.512 28.512 28.512
80 || 18.572 || 18.562 18.564 18.571 18570 18.571 18.571
90 || 9450 || 9.472 9437 9.440 9.446 9.451  9.450
100 | 3.258 || 3.322 3.225 3247 3.253 3254 3.256
110 | 0.709 || 0.727 0.723 0.714 0.711  0.709  0.709
120 || 0.099 | 0.080 0.089 0.099 0.099 0.098  0.099
130 || 0.009 | 0.008 0.008 0.009 0.009 0.009 0.009
140 | 0.001 || 0.000 0.000 0.001 0.001 0.001 0.001
150 || 0.000 | 0.000 0.000 0.000 0.000 0.000 0.000

TABLE 5.1: Values of an European put option with the fixed
values of 0 = 0.2, 7y = 6%, T' = 0.25 and X = 100 computed
by the Cox-Ross-Rubinstein method

of steps. That means we need to find an appropriate number of steps, so we

can calculate the value in a reasonable time frame.

5.5.1 Cox-Ross-Rubinstein Binomial Tree

Starting with the Cox-Ross-Rubinstein binomial tree, we find in the table 5.1,
5.2 and 5.3 the computed values. We can compare them with the Black &
Scholes model for the different maturities, 0.25, 1 and 3. We can fix the number
of steps to the relative low ratio between the step number and the maturity,
N/T of 360 which is nothing more than to take one step for each day if we

assume that each month is approximately 30 days.

5.5.2 Trigeorgis log-transformed Binomial Tree

Continuing with the Trigeorgis log-transformed binomial tree, we can compute
the same way as before the necessary values in figure 5.4, 5.5 and 5.6. And
again, we find for the different maturities, 0.25, 1 and 3, that the ratio of 360 is
the reasonable choice considering the computation time and the given accuracy.

From now on we will only take the latter value to further analyze our methods.

5.5.3 Comparison

On table 5.7 we can compare directly the two methods given certain number of

steps and with a maturity of 1. The values differ only very slightly so we can
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N/T
S || B&S |[ 60 120 360 720 1080 2160
50 || 44.179 || 44.179 44.179 44.179 44.179 44.179 44.179
60 || 34.239 || 34.233 34.236 34.238 34.239 34.239 34.239
70 || 24.669 || 24.653 24.664 24.666 24.667 24.668 24.669
80 || 16.200 || 16.199 16.190 16.201 16.197 16.200 16.199
90 || 9.611 || 9.581 9.604 9.604 9.609 9.612 9.611
100 | 5.166 || 5.133 5149 5160 5.163 5.164 5.165
110 || 2.542 || 2.543 2553 2546 2.544  2.542  2.542
120 || 1.161 | 1.175 1151 1.163 1.161 1.160 1.161
130 || 0.498 || 0490 0.497 0499 0499 0499  0.498
140 | 0204 | 0205 0202 0202 0204 0204 0.203
150 || 0.080 | 0.078 0.078 0.080 0.080 0.080  0.080

TABLE 5.2: Values of an European put option with the fixed
values of 0 = 0.2, ry = 6%, T'=1 and X = 100 computed by
the Cox-Ross-Rubinstein method

N/T
S || B&S | 60 120 360 720 1080 2160
50 || 34.204 || 34.199 34.198 34.203 34.204 34.204 34.204
60 || 25.731 || 25.716 25.720 25.729 25.730 25.730 25.730
70 || 18.645 || 18.620 18.642 18.642 18.644 18.645 18.645
80 || 13.093 || 13.095 13.086 13.094 13.091 13.093 13.093
90 || 8.967 || 8.950 8.962 8964 8966 8968 8.967
100 | 6.026 || 6.007 6.016 6.023 6.024 6.025 6.025
110 | 3.993 || 3.991 3.998 3.995 3.994 3.993 3.993
120 || 2.620 || 2.629 2.614 2621 2620 2.619 2.620
130 | 1.708 || 1.702 1.708 1.709 1.708 1.708 1.708
140 || 1.109 | 1.114 1109 1.108 1.109 1.109 1.109
150 | 0.718 || 0.717 0.717 0.718 0.718 0.718 0.718

TABLE 5.3: Values of an European put option with the fixed
values of 0 = 0.2, ry = 6%, T'= 3 and X = 100 computed by
the Cox-Ross-Rubinstein method
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N/T
S || B&S |[ 60 120 360 720 1080 2160
50 || 48.511 || 48511 48511 48.511 48.511 48511 48511
60 || 38.511 || 38.511 38.511 38511 38511 38511 38511
70 || 28.512 || 28.512 28.512 28.512 28.512 28.512 28.512
80 || 18.572 || 18.562 18.564 18.571 18.570 18.571 18.571
90 || 9450 || 9.473 9438 9.440 9.446 9.451  9.450
100 | 3.258 || 3.324 3.226 3.247 3.253 3254 3.256
110 | 0.709 || 0.728 0.724 0.714 0711  0.709  0.709
120 | 0.099 || 0.081 0.089 0.099 0.099 0.098 0.099
130 || 0.009 | 0.008 0.008 0.009 0.009 0.009 0.009
140 | 0.001 || 0.000 0.000 0.001 0.001 0.001 0.001
150 || 0.000 | 0.000 0.000 0.000 0.000 0.000  0.000

TABLE 5.4: Values of an European put option with the fixed
values of 0 = 0.2, rf = 6%, T'= 0.25 and X = 100 computed

by the Trigeorgis log-transformed method

N/T
S || B&S | 60 120 360 720 1080 2160
50 || 44.179 || 44.179 44.179 44.179 44.179 44.179 44.179
60 || 34.239 || 34.234 34.236 34.238 34.239 34.239 34.239
70 || 24.669 || 24.655 24.665 24.666 24.668 24.669 24.669
80 || 16.200 || 16.202 16.191 16.201 16.198 16.200 16.199
90 || 9.611 || 9.584 9.605 9.605 9.609 9.612  9.611
100 | 5.166 || 5135 5151 5161 5163 5.164 5.165
110 || 2.542 || 2.545 2554 2546 2.544  2.543  2.542
120 || 1.161 || 1.176 1.152 1.163 1.161 1.160 1.161
130 | 0.498 || 0.490 0497 0499 0499 0.499  0.499
140 | 0204 | 0206 0.203 0202 0204 0.204 0.203
150 || 0.080 | 0.078 0.078 0.080 0.080 0.080  0.080

TABLE 5.5: Values of an European put option with the fixed
values of 0 = 0.2, ry = 6%, T'=1 and X = 100 computed by
the Trigeorgis log-transformed method
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N/T

S || B&S | 60 120 360 720 1080 2160
50 || 34.204 || 34.201 34.199 34.203 34.204 34.204 34.204
60 || 25.731 || 25.720 25.722 25.730 25.730 25.730 25.731
70 || 18.645 || 18.634 18.644 18.643 18.644 18.645 18.646
80 || 13.093 || 13.099 13.089 13.095 13.092 13.093 13.093
90 || 8.967 || 8.954 8965 8964 8967 8968 8.967
100 | 6.026 || 6.011 6.018 6.023 6.025 6.025 6.026
110 | 3.993 || 3.995 4.000 3.995 3.994 3.993 3.993
120 || 2.620 || 2.632 2615 2622 2620 2.620 2.620
130 | 1.708 || 1.704 1.709 1.709 1.709 1.708 1.708
140 || 1.109 || 1.116 1.110 1.108 1.109 1.109  1.109
150 | 0.718 || 0.718 0.717 0.719 0.718 0.718 0.718

TABLE 5.6: Values of an European put option with the fixed
values of 0 = 0.2, 7y = 6%, T'= 3 and X = 100 computed by
the Trigeorgis log-transformed method

assume that the behavior will be the same for the sensitivity analysis. To avoid

repetitive analysis, we will continue from now on with the Cox-Ross-Rubinstein
method.

5.6 Volatility

Now that we have fixed our environment we can start the analysis of the given
methods for the different parameters, starting with the volatility. Intuitively we
can say that the option should be worth more with higher volatilities, since the
spread between the initial investment and the worst possible situation is greater
with a high volatility and so the possibility to gain more money is greater
too. We can analyze the change of the value of the put option graphically on
figure 5.5a. As we have predicted the change in volatility depends linearly for
reasonable volatilities but if we raise the volatility even further we can see that

the curve converges to a limit which we can see on figure 5.5b.

5.7 Risk Free Rate

The next parameter to analyse is the risk-free rate. Logically, the price of the
option will shrink over time to 0 as the risk-free rate rises. We can observe on

figure 5.6a that the price is indeed lowering linearly with the behavior of the
risk free rate.
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N/T
60 360 1080
S B&S CRR  Trig | CRR  Trig | CRR  Trig
50 || 44.179 || 44.179 44.179 | 44.179 44.179 | 44.179 44.179
60 || 34.239 || 34.233 34.234 | 34.238 34.238 | 34.239 34.239
70 || 24.669 || 24.653 24.655 | 24.666 24.666 | 24.668 24.669
80 || 16.200 || 16.199 16.202 | 16.201 16.201 | 16.200 16.200
90 9.611 9.581 9.584 | 9.604 9.605 | 9.612 9.612
100 || 5.166 5.133 5135 | 5.160 5.161 | 5.164 5.164
110 || 2.542 2.543 2545 | 2546 2546 | 2.542  2.543
120 || 1.161 1.175  1.176 | 1.163 1.163 | 1.160 1.160
130 || 0.498 0.490  0.490 | 0.499 0.499 | 0.499 0.499
140 || 0.204 0.205 0.206 | 0.202 0.204 | 0.204 0.204
150 {| 0.080 || 0.078 0.078 | 0.080 0.080 | 0.080  0.080

Opt

TABLE 5.7: Comparison between the values of an European
put option with the fixed values of 0 = 0.2, 7y = 6%, T =1
and X = 100 computed by the Cox-Ross-Rubinstein and the
Trigeorgis log-transformed method

04 05
Volatilty

ion Value

Opt

4 5
Volatiity

(A) Option value with lower levels of (B) Option value with higher levels of
volatility

volatility

FIGURE 5.5: Sensibility of the option value to volatility cal-
culated with the CRR method at the standard values and the
initial investment value of 50 and the salvage value of 50 too
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FIGURE 5.6: Sensibility of the option value to the risk free rate

calculated with the CRR method at the standard values and

the initial investment value of 50 and the salvage value of 50
too

But again, if we raise the level to unreasonable levels like a return rate of
more than 60%, we can see again that it only converges to 0 and not continuing

losing value linearly as it did before. This behavior can be observed on figure

5.6b.

5.8 Analysis of the Implementation of Real
Options

For demonstration purposes we will only present two different real options.
First, we start with the option to alter the operating scale after half a year for
a project of 1 year. So, we can contract the project by a certain amount, c,
or if the project is going well we can expand the production line for example
and benefit from the good economic situation. The second real option is the
possibility to abandon on an investment or proceed by paying it. And the
second possibility is by abandoning the investment by getting paid a salvage.
We will put us into a situation of a project of 1 year at the risk-free rate of 6%,

a volatility of 0.2, an initial investment of 50 and a number of time steps of

360.

5.8.1 Altering Operating Scale Option

As mentioned before we can either contract or expand the investment after half

a year. We will analyse the behaviour of the contracting or expanding value
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FIGURE 5.7: The expand option in terms of the different expand
factors and the gain in money by expanding

and the additional investment needed.

Starting with the expansion option, we can see the behaviour of the per-
cental expansion factor as well as the needed investment to expand on figure
5.7. We can see that the option is more and more profitable if we have the
possibility to expand at a larger scale. The needed investment has the opposite
effect as we could have anticipated. The higher the investment needed the

lower is the value of the option.

On the other hand, we have the contraction value which behaves exactly
the opposite way. We can see the behavior on figure 5.8. For higher gains,
through the sell of equipment, the option value rises. At the same time if the
contraction value rises the option value goes down since we produce less and

therefore earn less money.

5.8.2 Abandoning Option

So, we will start by the option to abandon the project if we do not want to

do the needed investment for example a quarterly payment. With greater
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FIGURE 5.8: The contraction option in terms of the different
contraction factors and the gain in money by contracting

quarterly pay the option converges to 0 as we could have anticipated which

means that our method works. This is represented on figure 5.9.

Now we consider the option to abandon the project for a salvage X. This
time we check at every time step if it is favorable to switch to the salvage value.
Without any surprise the higher the salvage value is the better is the option.

We can see the evolution of the relationship on figure 5.10.

5.9 Stochastic Interest Rates

To see the influence of stochastic interest rates, the model of Vasicek was
used to simulate the evolution of the interest rates over time. We took the
standard values for the table 5.8 to show the evolution of the calculated values
in comparison to the fixed rate with different number of trials and with different
investments at time 0. Additionally, the standard deviation of each trial set was
calculated next to the mean. We took again the same parameters as we already
did for the visualization of the Vasicek method: o = 0.06, 5 = 0.12, oy = 0.06,
o0 =0.02, T =5, and N = 360. The other parameters are the standard ones
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50 trials 100 trials 400 trials

S Fixed || Mean | Sdt Dev || Mean | Sdt Dev || Mean | Sdt Dev
50 || 44.179 || 44.175 | 0.337 44172 | 0.396 44.168 | 0.392
60 || 34.238 || 34.326 | 0.362 34.231 0.409 34.211 0.426
70 || 24.666 || 24.676 | 0.365 24.669 | 0.376 24.652 | 0.391
80 || 16.201 || 16.260 | 0.285 16.244 | 0.292 16.203 | 0.328
90 9.604 9.574 0.226 9.620 0.256 9.594 0.258
100 || 5.160 5.138 0.145 5.175 0.164 5.169 0.169
110 || 2.546 2.555 0.097 2.559 0.104 2.548 0.101
120 || 1.163 1.160 0.051 1.163 0.052 1.167 0.052
130 || 0.499 0.496 0.023 0.494 0.025 0.499 0.026
140 || 0.202 0.203 0.012 0.201 0.012 0.203 0.011
150 || 0.080 0.079 0.006 0.080 0.005 0.080 0.005

TABLE 5.8: Comparison of the mean and variance for the

option value with stochastic interest rates computed with the

Cox-Ross-Rubinstein method and with parameters: o = 0.06,
6 =0.12, ro = 0.06, 0 = 0.02, T =5, and N = 360

Number of trials || 50 | 100 | 400
Time 1.3 1 2.6 | 10.5

TABLE 5.9: Computation time of the various set sizes for the
stochastic interest rate computed with the Cox-Ross-Rubinstein
method.

introduced earlier in this section.

As we can see the more trials we do per set the closer we get to the
calculation with the fixed interest rate. So, we can say that the method works
already quite well. But with the stochastic case we have a standard deviation
which is something very important to calculate the real value of the project
which might not follow the predicted way and so we can account for the latter
factor with some precision. In addition to that, we can also change the target
interest rate if we have knowledge about the change of some directives or if the
project is taken much longer and so the yield curve should adapt accordingly
to the change. As a project takes longer the return should also increase with
the time. For continuous valuation of smaller projects, we would recommend
to take 100 trials per set as the calculation time is at a reasonable range. We

can see the average computing time for each set in table 5.9.
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5.10 Stability Comparison

As analyzed earlier the Cox-Ross-Rubinstein method has its limitation. Those
might not matter in real life situations but should be mentioned nevertheless.
We have found a relation, 4.30, between the step size, the volatility and the

risk-free rate: ) )
o o

2 2
(=)
If we violate this inequality, we will find impossible probabilities. In other

words, there will be a more than 100% chance that the tree will move upward

which is indeed not possible.

To make our case we changed the risk-free rate to 30% and the volatility to
0.05, which would normally never happen in real life. Additionally, we put the
initial investment at 50, the salvage cost at 100 and the maturity at 3 years for
demonstration purposes. For those values We can see the different levels of the
probability on figure 5.11b. At the very beginning we can find a probability of
400% which is indeed ridiculous. Only when the step number exceed 36 we get

probabilities of less or equal to 1.

002778 = L« T 0.05 —0.28 < - = 0.0286
' 36 (ry - 502)2 ~(0.3-120.05%2)2 35

Through this relation we can assume that this behavior is as expected. To
see the reaction of the option value to the instability we need to look at figure
5.11a. At earlier levels the option value is around -9 and as the step number
reaches the limit value the behavior gets even more unstable and we can see

the reaction of the option value to impossible probabilities.

Now we can compare the reaction to the Trigeorgis log-transformed method
which should always be stable even at very low number of time steps. The
probabilities never exceed the 100% as we can see on figure 5.12b. At the
beginning we start under the 100% mark and then we decrease further as the
step count rises. Also, we do not have an unstable behavior for the option value.

It starts quite high, but we can see a convergence towards the final value.
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Chapter 6

Conclusion

The purpose of the thesis is to find a more adequate method to implement a
valuation tool for real life situations where we cannot predict exactly future
events which is the case in the real world. The whole model should fit inside
a lattice tree, which should also be binomial, as it can be seen in chapter
3. The simplistic method of the net present value can indeed not be used in
more complex situations. Using a decision tree analysis to capture simple real
options was the first approach but this time there cannot be captured stochastic
elements of the real market. The contingent claim analysis tries to capture
already more complex situations but here as well, it cannot correctly implement
the stochastic nature of the future economy. But the final two methods, the
Cox-Ross-Rubinstein method and the Trigeorgis log transformed method, will
be based on the contingent claim analysis where the stochastic element will be

introduced.

After the modeling of those 2 methods, the value can be correctly calculated
as it can be seen with the benchmark taken from the Black & Scholes formula
which is widely used to calculate European put and call options. After imple-
menting such an option, the values can be compared and verified that those
two methods give indeed the correct value as the number of time steps tend to
infinity. The expected behavior of each component inside the model is indeed
correctly captured by the given methods. An example of some simple real
options are also given in the last chapter which represents only the beginning
of the different possibilities which can be implemented but the implementation
of more complex situations does not need much work to be put in place. The
simple versions are used to show that the methods work indeed as expected.
The Cox-Ross-Rubinstein method is not stable with any parameter but while
using real life situations with more time steps the instability does not show

itself in the different examples.
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This work already shows that the valuation method of the real options is
already a good start, but it is not yet used as "the" valuation tool. At the
moment the most common used methods are still the net present value and
sometimes the decision tree analysis. In the last decade the use of the proposed
models is steadily rising, but more work still needs to be done about this topic
before it will be used as the go to tool for nearly every investment decision.
For the moment, the investors still prefer the simplicity of the NPV method.
However, the two methods already proved themselves as a better valuation

method which are unfortunately more difficult to implement.
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Appendix A

Mathematical formulas

A.1 Taylor 1.5 Scheme

In order to visualize some complicated stochastic functions we need to use
numerical methods to approximate the results. We introduce a common tool
to do the task. Why did we choose the Taylor 1.5 scheme? It is the most
accurate method which requires a reasonable amount of time to simulate. We

will provide the iterative formula and its components for the general Ito process:
de = p(z,t)dt + o(x,t)dB; (A1)

First of all we need two different Wiener processes, AB! and AB2. Those two
processes are correlated with a correlation factor of @ So to find an expression
we need to calculate them as followed:

AB' = N(0,0?) AB?* = N(0, ;06) with Corr(AB', AB?) :\/23

0,1 1 0,1 I 01
— AB' = N"g AB* = 0" (N )+ﬁ oY
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The only thing left to define isv/As = o and 7; which is the i** time point of the

current simulation. From here on we can finally define our iterative method:

Yo =
}/Z'—i-l = }/z + ,LL(T’U }/Z)AS + O-(Ti7 K)ABZI
1 , 1\2
= 50(7}',3/1‘)0 (13, Y:) [(AB ) — AS]
+ :u,<7-i’ YDU(TZW Y;>ABZQ
1

1
+5 (u(ﬂ, Yo' (i, Ys) + 502(%, Y (7, Yi)) A?

1
+ (0, Y00 (7, YD) + 50 (5, Yo" (7, Y0) ) [ABLA, — AB]
1 " / 2 1 1\2 1
+ 5007 Y0 (0(m V) (7, Y0 + 07, Y))* |5 (A1) = A, AB,
fori=0,--- ,N—1

Where we have that:

, do " 0o
U(T,Y)—aT O'(T,Y)—@
/ _ o 7 _ 82,“/
N(T>Y>—87Y /L(T,Y)—@
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