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Diversification is one the main and most important concept in the financial world. It is

often said that diversification is the only free lunch in finance. From a qualitative point of

view, the concept of diversification is quite clear: a portfolio is well-diversified if shocks in

the individual components do not heavily impact on the overall portfolio. Relatively simple

to understand then but profoundly di�cult to define. Indeed, there is no broadly accepted

precise and quantitative definition of diversification.

The first who proposed a mathematical formalization of diversification in a portfolio se-

lection context was Markowitz in 1952 with his Modern Portfolio Theory. Even if it was

path-breaking for that time, it doesn’t clearly provide any proper definition of the term di-

versification or a specific measure of portfolio diversification.

Over the years, many di↵erent measures of diversification have been developed in the

literature, each with its pros and cons. In the framework of this thesis, we have chosen to

analyze six of them. Because we wanted to confront the weights concentration criterion with

the risk minimization criterion, we decided to select measures that are based on the entropy

of the weights and others that are based on the sources of risk. Those six di↵erent measures

are the Shannon’s Entropy, the Diversification Delta, the Diversification Ratio, the Marginal

Risk Contributions, the Portfolio Diversification Index and the E↵ective Number of Bets.
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Chapter 1

Introduction

1.1 Context of the research

Diversification is one the main and most important concepts in the financial world. It is often

said that diversification is the only free lunch in finance (Fernholz (2002)). Conceptually, the

concept diversification represents the idea of bringing di↵erent elements together in order

to introduce variety in a set of objects/things initially more uniform. The first who used

diversification in an economic context and highlighted the benefits of the latter was maybe

Bernoulli (1738) but he provided no mathematical foundation. To quote him: ”Another rule

which may prove useful can be derived from our theory. This is the rule that it is advisable to

divide goods which are exposed to some danger into several portions rather than to risk them

all together”. We had to wait until Markowitz (1952) and the Modern Portfolio Theory in or-

der to have the first mathematical formalization of diversification in a portfolio management

context. The Mean-Variance Model of Markowitz is built around the idea that diversification

is found by risk reduction. However, it doesn’t clearly provide any proper definition of the

term diversification or a specific measure of portfolio diversification.

Over the years, many di↵erent methods have been developed in order to measure the di-

versification of a portfolio and to create the most diversified portfolio but the concept itself

1
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seems to be hard to define. From a qualitative point of view, the concept of diversification

is quite clear: a portfolio is well-diversified if shocks in the individual components do not

heavily impact on the overall portfolio. Relatively simple to understand then but profoundly

di�cult to define. Indeed, as Meucci (2009) has noticed, there is no broadly accepted precise

and quantitative definition of diversification.

The absence of precise definition or measure of diversification can represent an issue when

we try to construct a diversified portfolio e�ciently. And as the global financial crisis of 2008

dramatically demonstrated, there is an increasing need from both academic researchers and

market practitioners for eligible ways of building more diversified portfolios.

1.2 Research Questions and Motivation

Many di↵erent measures of diversification have been developed in the literature, each with

its pros and cons. In the framework of this thesis, we have chosen to analyze six of them.

Because we wanted to confront the weights’ concentration criterion with the risk minimization

criterion, we decided to select measures that are based on the entropy of the weights and

others that are based on the sources of risk. The six di↵erent measures are:

1. The Shannon’s Entropy. Originally coming from the Information Theory and developed

by Claude Shannon (1948) to solve communication problems, Shannon’s Entropy has

later been applied in finance to measure the amount of information given by observing

the market.

2. The Diversification Delta. This measure introduced by Vermorken et al. (2012) is based

on empirical entropy. However, due to several drawbacks, we will use an alternative

version of it that has been developed by Salazar et al. (2014).

3. The Diversification Ratio. This measure proposed by Choueifaty (2006) is defined as

the ratio of the portfolio’s weighted average volatility to its overall volatility.
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4. The Marginal Risk Contributions. This measure allows to decompose the total risk of

a portfolio into the contributions of each individual assets.

5. The Portfolio Diversification Index. This measure indicates the number of unique

investments in a portfolio and is useful to assess marginal and cumulative diversification

benefits across asset classes.

6. The E↵ective Number of Bets. This measure uses the entropy of some factors (of risk)

exposure distributions to indicate the diversification of a portfolio.

Having outlined the context, the criteria and the measures of diversification we will focus on

in our analysis, we can define our main research question:

Among the six di↵erent measures of diversification we have decided to analyze, which one

captures the most e�ciently the diversification of a portfolio, from the risk minimization

criterion as well as from the weights’ concentration criterion?

Our motivation and ambition with this research question arises from the fact that the ma-

jority of analysis made in the literature are generally focused only on the performance of

portfolios that have been created by maximizing an objective function which represents a

measure of diversification. And the performance of a portfolio is depicted by its capacity to

produce a maximum of returns while minimizing the risk. Few attention is given to weights’

concentration even if it can have a serious impact on the overall risk profile of a portfolio.

Moreover, it is not correct to say that a portfolio is diversified if its total weight is distributed

among a small number of assets. Therefore, we wish to shed a light on the ability of the

di↵erent measures under study to quantify a portfolio’ diversification. We will focus our

analysis only on historical data retrieved from Bloomberg. This way, the results that will

come out of our analysis will not be distorted by estimation errors.
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1.3 Structure of the Master’s Thesis

Before getting into the heart of the study, let us look at the di↵erent chapters that structure

the remainder of the master’s thesis.

Chapter 2 We begin by reviewing the notion of risk and diversification. First, we define

quickly the risk and present two of the most used measures of risk. Then we provide some

definition that have been given to diversification in the literature. Some properties deemed

desirable for a measure of diversification are also presented and we will try to answer the

question ”Is a portfolio minimizing risk diversified”.

Chapter 3 This chapter covers the Modern Portfolio Theory developed by Markowitz as

well as the CAPM. A section is also dedicated to the empirical results and shortcomings

resulting from the model of Markowitz.

Chapter 4 In this chapter, we will review the six measures of diversification that are

analyzed in this thesis. The chapter is divided into three parts: entropy measures, risk-based

allocation and Diversification with regard to Risk Factors.

Chapter 5 This chapter is focused on the description of the methodology we followed to

answer our main research question. First we describe the data we used and provide statistical

descriptions. Then we turn to the structure of our analysis. We end up by explaining the

computation of the Shannon’s Entropy and the Risk Contribution.

Chapter 6 This chapter details our results as summarized here before and discuss the

outcomes. The analyses are performed on Matlab. The Matlab scripts that we used can be

found on the DIAL website, under the file linked to the electronic version of this thesis

Chapter 7 This final chapter concludes the thesis. We point out implications and underline

the limitations of our work to finish with some suggestions for future research.



Chapter 2

Risk vs Diversification Measures

The concept of diversification has proved to be very di�cult to define even if it is perhaps

the most important of investment principles. After more than sixty years since the publica-

tion of the first mathematical formalization of diversification in portfolio selection analysis

(Mean-Variance model of Markowitz (1952)), no formal unique definition or measure have

been proposed for the concept.

The initial theoretical foundations of portfolio diversification was based on the principle

that one investor could reduce the overall risk of his portfolio by investing in a broad range

of assets. The theory developed around this idea was path-breaking for the time and provides

a capital formalization of the link between diversification and risk, which can be summarized

as follow; a portfolio is diversified if it reduces the overall risk. Risk can therefore be reduced

but not eliminated. Indeed, as shown by the famous Capital Asset Pricing Model (CAPM)1,

there will always remain some non-diversifiable risk, or formally named systematic risk, in a

portfolio and its return is related to the portion of that risk which cannot be eliminated.

The Modern Portfolio Theory developed by Markowitz (1952) and the CAPM have been

largely adopted by academics and professionals of the financial sector. However, it has been

1
This CAPM developed by Sharpe (1964), Lintner (1965) and Mossin (1966) will not be detailed here

but a brief description of it can be found in the section 3.2

5



Chapter 2 Risk vs Diversification Measures 6

showed that their empirical results are not really adapted to the reality of markets. Moreover,

the practical application of the Mean-Variance optimization leads most of the time to highly

concentrated portfolios, which is clearly not in line with the idea of diversification and the

well-known adage ”don’t put all you eggs in one basket”.

Many other methods and measures of diversification have been proposed over the years,

and lots of them are based on the minimization of risk. For example, an approach that have

recently attracted a lot of attention from the practitioners is the risk parity which focuses

on the allocation of risk rather than on the allocation of capital. The first author who used

this term was Edward Qian (2005), even if the idea of risk parity goes back to the nineties,

with the launch of the fund All Weather asset allocation strategy by Bridgewater Associates2.

But can the diversification of a portfolio be attained only by minimizing the risk? And first,

does it have a clear, unique and common definition of the concept of diversification? Even

if no common definition of diversification has been obtained yet, it should however exist a

way to properly define diversification as well as some common properties shared by all the

di↵erent measures of diversification.

The following chapter will try to find a proper definition to the notion of diversification.

Moreover, we will also try to answer the question ”Can a portfolio minimizing the risk be

considered as truly diversified”. The methodology will consist to first defining the risk in sec-

tion 2.1. Some example of the most known measures of risk will be also given in this section.

In the section 2.2, we will then present some definitions about the concept of diversification

found in the literature. Some common properties desirables for a measure of diversification

will be also presented. After that, we will be able to answer the question that we have raised

and also, we will be able to present the criteria of diversification we choose to focus on in our

analysis part.

2
See Schwartz, S. (2011). Risk Parity: Taking the Long View. I&PE, Retrieved April 2018 from:

www.epe.com/risk-parity-taking-the-long-view/40025.article
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2.1 Origins and Measures of Risk

The purpose of every investor is obviously to select and acquire the best investments possible,

but they also have to manage the risk linked to these investments and consider the trade-o↵

between risk and return. As Benjamin Graham, the ”father of value investing”, once said:

”The essence of investment management is the management of risks, not the management of

returns”. As we already know, the objective of diversification is to reduce the risk, but how

can we define the risk and most significantly, how can we measure it? The following section

will try to answer these questions by elaborating the concept of risk and by presenting some

of the most popular risk measures.

2.1.1 Definition of Risk

In Finance, the risk can present itself under di↵erent forms such as the liquidity risk, the

financial risk, the interest rate risk, the currency risk or also the operational risk. However,

all these types of risk have something in common: the uncertainty. Indeed, the risk can be

seen as the uncertainty of a future outcome (Mehra and Hemming (2003)) and if we limit

our vision of the risk only to a financial point of view, we can define it as ”the uncertainty

that an investment will earn its expected return” (Reilly and Brown (2006)). In addition, as

briefly mentioned above, the risk in finance is usually divided into two elements, which are

the systematic risk and the unsystematic risk:

• The systematic risk is the risk that e↵ect every asset and thus is a risk that has an

e↵ect in all financial markets. Therefore, it is the risk that we will never be able to

eliminate and that cannot be diversified.

• The unsystematic or idiosyncratic risk is unique, specific to an asset and is thus the

risk that can be diversified away within a portfolio.
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2.1.2 Measures of Risk

Now that we have briefly defined the risk and the di↵erent forms that it can have, let us

focus our attention on some of the most known and commonly used risk measures.

Volatility: The first one that we will present is the standard deviation, also called volatility.

The volatility is surely the most common tool for measuring risk in financial markets. This

measure simply indicates how much the returns fluctuate around their mean and is the square

root of the variance. The more dispersion a return has around its mean, the more variable

or volatile it is and thus, the more risky it is. Since the volatility is the square root of the

variance, we will limit us to the equation of the latter, which is as follow:

V ar =
1

N

NX

i=1

(Ri � R̄)2 (2.1)

Although the use of variance as a risk measure has been largely adopted in finance, espe-

cially due to the mean-variance model for portfolio selection developed by Markowitz (1952)

(a detailed explanation of the MV model is shown in section 3.1), it implies that investors

are indi↵erent between returns above and below the mean and this is far from true in reality.

In addition, when investors think about risk, they usually have losses in mind, not swings

towards higher than usual returns.

With relation to that, we also could mentioned the covariance. It simply represent the

degree to which di↵erent assets move in relation to each other. More info on the covariance

and its formula can be found in section 3.1.

Value-at-Risk: Another well-known risk measure is the Value-at-Risk (VaR), which was

first introduced by the famous company JP Morgan in 1994. VaR basically measures the

likelihood of losses, which makes it more straightforward to understand. It can be defined as

follows:

F (Z(T )  V aR) = ⇣ (2.2)
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Where

• F(.) is the cumulative probability distribution function,

• Z(T) is the loss and is defined by Z(T) = S(0) - S(T), with S(T) the Portfolio Value at

time t,

• ⇣ is a cumulative probability associated with threshold value VaR, on the loss distribu-

tion of Z(t).

The explanation of the above formula could be summarized with the following sentence; ”how

much can one expect to lose, with a given cumulative probability ⇣, for a given time horizon

T?”

No other measures will be presented given that it is not strictly related to the topic of this

thesis, but it is interesting to ask the question what properties a risk measure can have to

be defined as such. Many di↵erent authors have written on the subject over the years, but

a significant milestone was achieved when Artzner et al. (1999) proposed the first axioms of

risk measurement. According to this paper, a risk measure has to obey the axioms in order

to be called a coherent risk measure.

Let’s consider X and Y, two random variables that denote the future loss of two portfolios.

We say that a risk measure  is coherent if it adheres to the four axioms:

1. Monotonicity: if X  Y then  (X)   (Y ); the monotonicity axiom tells us that we

associate higher risk with higher loss.

2. Positive homogeneity:  (�X) = � (X) for � > 0; The homogeneity axiom ensures,

since the risk of a stock comes from the stock itself, that we cannot increase or decrease

risk by investing di↵ering amounts in the same stock. The assumption of this axiom is

that there is no liquidity risks, which is not true in the reality of the markets.

3. Translation invariance:  (X + �) =  (X) � �, where � is a riskless bond. We will

always receive back an investment in a riskless bond so such investment bears no loss
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with probability 1. Consequently, since risk measures measure loss as a positive amount,

a gain is negative and hence the riskless bond’s investment must be subtracted.

4. Sub-additivity:  (X + Y )   (X) +  (Y ). The subadditivity is the most important

axiom because it ensures that a coherent risk measure considers portfolio diversification:

the risk of an investment in both X and Y is lower than the sum of the risks of X and

Y when taken separately.

By looking at the four axioms, we can notice the variance and the VaR that we have presented

doesn’t respect all of them and therefore can’t be named coherent measures of risk. Indeed,

the variance violates the axiom of monotonicity and the VaR does not obey the subadditivity

axiom. The consequence of the latter is that the VaR of a portfolio can be greater than the

sum of the individual risks. In addition, it has been proved that the use of VaR for portfolio

optimization leads to more concentrate portfolios4.

The incoherency of the VaR has raised a lot of questions and has led to the proposition

of a wide variety of VaR-related risk measures. An well-known example is the Conditional

Value-at-Risk (CVaR), also called Expected Shortfall (ES). ES has become a particularly

popular risk measure due to its similarity to VaR: it gives an indication for the magnitude of

the expected loss if the VaR threshold is breached, or in more simple words, it assesses ”how

bad things can get” if the VaR loss is exceeded. Briefly this can be defined by:

ES = E
⇥
Z(T )|Z(T ) > V aR

⇤
(2.3)

4
See McNeil (2002) and McNeil et al. (2005)
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2.2 Notion of Diversification: Axioms and Definitions

2.2.1 Definitions of Diversification

The concept of diversification is more nuanced and complex than most people realize. The

global financial crisis that we have experienced in 2008 highlights serious deficiencies in our

true understanding of the subject. The fact that we still have di�culty understanding the

concept of diversification maybe comes from the multitude of definitions that exist on the

subject. Indeed, even if it is the cornerstone of all portfolio selection models, the term

diversification can have many di↵erent definitions according to the literature. For some aca-

demics and practitioners, the definition of diversification depends on the method or model

used.

For example, Fragkiskos (2014) distinguishes nine di↵erent definitions of diversification by

gathering various approaches of portfolio diversification. These approaches are the market

portfolio, the number of securities, mutual correlations, tail risk measures, returns, risk con-

tributions, risk ratios, information theory and the principal portfolio respectively. It therefore

doesn’t present a unique definition and it also doesn’t mention any common properties that

a measure of portfolio diversification should have.

For others, the key characteristic of diversification is that it reduces the exposure to risk

by combining di↵erent assets with low correlation of return (Reilly and Brown (2006)). How-

ever, if we define diversification only as a method that allow us to reduce the risk, we could

find our self in some situation where we have indeed a portfolio with a minimal variance,

composed only of not risky assets, but which is extremely concentrated in a few variety of

assets and that does not represent a well-diversified portfolio. Therefore, it is not correct to

limit the definition of diversification to the reduction of risk.

Another and maybe more interesting way to define diversification can be found in a choice

theoretic framework. A recent paper on the subject has been published by De Giorgi and

Mahmoud (2016). They provide the first comprehensive overview of the various existing
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formalizations of the notion of diversification from a choice theoretic perspective. In or-

der to understand the definitions that will follow, it is important to clarify the theoretical

setup that is used. We have to consider a decision maker who chooses from the vector space

X = L1(⌦,F ,P) composed of random variables bounded on a probability space (⌦,F ,P)

where ⌦ is the set of states of nature, F is a �-algebra of events and P is a �-additive prob-

ability measure on (⌦,F).

In such framework, and since diversification represents the idea of choosing variety over

uniformity, the desirability of diversification can be axiomatized as the preference for a con-

vex combination of choices4 that are equivalently ranked. Axiomatically, the preference for

diversification can be written as follows:

x1 ⇠ · · · ⇠ xN )
NX

i=1

↵ixi ⌫ xj for all j = 1, . . . , n (2.4)

where X is a set of choices, x1, , xN 2 X and ↵1, ,↵N 2 [0, 1] for which
PN

i=1 ↵i = 1. This

notion of diversification comes from Dekel (1989) and is equivalent to that of convexity of

preferences, which states that ↵x+ (1� ↵)y ⌫ y, for all ↵ 2 [0, 1], if x ⌫ y.

Concretely, the definition states that ”an individual will want to diversify among a collection

of choices all of which are ranked equivalently”. To illustrate this, we could think of an in-

vestor evolving in the universe of asset markets and who has to make a choice between risky

positions (equities, portfolios, bonds, derivatives,etc.).

Others similar definitions of diversification have been proposed by Chateauneuf and Tal-

lon(2002). In their paper, they have introduced two notions of diversification: the first one

is a stronger notion of sure diversification and the second one is a notion of comonotone

diversification.

4
In economy, the concept of convex preferences stipulates that if a decision maker is allowed to combine

two (or several) choices, he is ensured under convexity that he is worse o↵ than the least preferred of the two

choices, that ”the average is better than the extremes”
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The notion of sure diversification stipulates that ”if the decision maker is indi↵erent between

a collection of choices and can attain certainty by a convex combination of these choices, he

should prefer that certain combination to any of the uncertain choices used in the combina-

tion”. The formal definition is as follows:

Preference for sure diversification: A preference relation ⌫ exhibits preference for sure

diversification if for any x1, , xN 2 X and ↵1, ,↵N � 0 satisfying
PN

i=1 ↵i = 1 and c, � 2 R,
"

1

⇠ · · · ⇠ xN ^
NX

i=1

↵ixi = �&c

#
) �&c ⌫ xi, 8i = 1, . . . , N (2.5)

The notion of comonotone diversification is basically the application of convexity of pref-

erences to comonotonic random variables. Two random variables w, y 2 X are said to be

comonotonic if they yield the same ordering of the state space from best to worst, which can

be written as (x(!)� x(!0))(y(!)� y(!0)) � 0 for every !,!0 2 S.

Chateauneuf and Lakhnati (2007) have proposed a weakening of the concept of preference

for diversification which stipulates that the decision maker will want to diversify between two

choices that are identically distributed. This weakened concept is referred to as preference

for strong diversification:

Preference for strong diversification: A preference relation ⌫ exhibits preference for

strong diversification if for all x, y 2 X with Fx = Fy and ↵ 2
⇥
0, 1
⇤
, ↵x+ (1� ↵)y ⌫ y.

2.2.2 Properties of Diversification

The previous definitions provide a more formal framework to define the notion of diversifica-

tion, but they still don’t provide some properties that a diversification measure should have

in order to be categorized as such. A proposition of such common properties can be found

in Carmichael et al. (2015). They detailed five properties that are deemed desirable for a

measure of portfolio diversification.
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They can be summarized as follows:

• Property 1: A single asset portfolio must have the lowest diversification degree (degen-

eracy relative to portfolio size). This comes directly from the intuitive definition we

have about diversification.

• Property 2: A portfolio formed solely with perfectly similar assets must have the lowest

diversification degree (degeneracy relative to dissimilarity). This also is a direct result

of the intuitive definition of diversification.

• Property 3: Consider a universe where an asset is duplicated. An unbiased portfo-

lio construction process should produce the same portfolio, regardless of whether the

asset was duplicated (duplication invariance). This property has been developed by

Choueifaty et al. (2013) and stipulates that two portfolios, U = A,B and U = A,A,B,

where asset A has been duplicated, must have the same diversification level.

• Property 4: An increase in portfolio size does not decrease the degree of portfolio diver-

sification (non decreasing in portfolio size). This property comes from Markowitz (1952,

p.89) where he states: ”The adequacy of diversification is not thought by investors to

depend solely on the number of di↵erent securities held”.

• Property 5: A portfolio of less dissimilar assets is likely to o↵er less diversification than

one of more dissimilar assets (non-decreasing in dissimilarity). Several authors see this

property as desirable, like Markowitz (1952), Sharpe (1972) and Klemkosky and Martin

(1975).

Those five properties form a useful tool to study diversification and give more structure to

the evaluation of a measure of diversification and its characteristics.
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2.3 Is a portfolio minimizing risk diversified?

As we have seen, the main idea we have on the diversification of a portfolio is closely linked

to the one of overall risk reduction and minimization. But is it the only important criterion

to create a diversified portfolio? If we limit the concept of diversification to risk reduc-

tion/minimization, then we only need to use a measure of risk to measure the diversification.

Such reflexions haven been implied by several authors. For example, Markowitz (1952) em-

phasized the importance for a risk measure to encourage diversification and Föllmer and

Schied (2010 and 2011) stated that ”a good measure of risk needs to promote diversification”.

Therefore, we can see that the criterion of weights’ concentration, as depicted by the well-

known adage ”don’t put all your eggs in one basket”, is not very considered when talking

about diversification. In fact, lots of emblematic figures of the financial world doesn’t seem to

think that it is a bad idea to concentrate a portfolio in few investments. Indeed, if we look at

the composition of Berkshire Hathaway’s portfolio, the multinational conglomerate holding

company created by the legendary investor Warren Bu↵et, in the late ’80s, we can notice that

it contained only a number of assets. To be precise, it was only composed of Washington

Post, GEICO, ABC-Cap Cities and Coca-Cola. Moreover, the famous economist and ac-

complishing investor John Maynard Keynes once said about diversification: ”To carry ones

eggs in a great number of baskets, without having time or opportunity to discover how many

(baskets) have holes in the bottom, is the surest way of increasing risk and loss”.

But does it mean that it is not important to not consider the weights’ concentration when

we want to diversify a portfolio? Of course, it is not. If we want to stay in line with the true

concept of diversification, we have to consider the concentrations. For example, a portfolio

showing the lowest risk level but where its investments are concentrated on a limited number

of assets can’t be considered as diversified. For that purpose, the measures of diversification

we studied in the framework of this thesis will be analyzed on the basis of two criteria: first

we will see if they can capture and express the risk present in a portfolio, as expressed by



Chapter 2 Risk vs Diversification Measures 16

the variance/volatility and VaR described above. Second, we will see if they consider the

weights’ concentration when representing the diversification of a portfolio.



Chapter 3

Modern Portfolio Theory

The Modern Portfolio Theory (”MPT”) is a portfolio selection approach proposed by Markowitz

in his paper ”Portfolio Selection”, published in 1952 by the Journal of Finance5. Even though

a lot of criticisms have been made on this theory, it is considered as path-breaking more than

sixty years later after its publication and it is still used and studied today.

In this section, we will first discuss about the approach and then we will highlight the limi-

tations and problems encountered by the MPT in the real world.

3.1 Markowitz’s portfolios selection: model and

assumptions

The major insight provided by Markowitz is that assets’s risk and return profiles should not

be viewed separately but should be evaluated by how these assets a↵ect the overall portfo-

lio’s risk and return. Indeed, the approach developed by Markowitz considers the expected

rate of return and risk of individual assets but also their interrelationship as measured by

correlation.

5
See Markowitz, H. (1952). Portfolio Selection. Journal of Finance, 7, 77-91.

17
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We can see this analytically: we assume there are N risky assets composing the portfolio,

such that each asset has a weight in the portfolio, noted !i, where each weight i represents

the proportion of the i-th asset held in the portfolio. Hence, the weights can be represented

by an N -vector ! = (!1,!2, ...,!N )T and
NP
i=1

!i = 1.

Now let’s assume that the asset returns R = (R1, R2, ..., RN )T have expected rates of re-

turn µ = (µ1, µ2, ..., µN )T . The portfolio is composed of the set of assets thus its expected

rate of return should depend on the expected rates of return of each asset included in it. So,

the expected rate of return of the portfolio is the weighted average of the expected returns of

the assets composing it. And because the expected rates of return of each assets are stochas-

tic return, the overall return on the portfolio is given by the random variable RP .

This give,

RP =
NX

i=1

!iRi (3.1)

The expected value of a weighted sum is the weighted sum of the expected values so,

µP =
NX

i=1

!iµi (3.2)

Expressed on the matrix form, it gives

RP = w
T
R (3.3)

µP = w
Tµ (3.4)

The portfolio risk is measured by the portfolio variance �2
P , so the variance of a weighted

sum. In order to express it we must define the ”covariance”. The covariance between Ri and

Rj is defined as

�ij = E{[Ri � E(Ri)][Ri � E(Rj)]} (3.5)

This can also be expressed in terms of the correlation coe�cient ⇢ij,

�ij = ⇢ij�i�j (3.6)
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We thus have

�
2
P =

NX

i=1

!
2
i �

2
i + 2

NX

i=1

NX

i>1

!i!j�ij (3.7)

And if we use the fact that the variance of ri is �ii then

�
2
P =

NX

i=1

NX

j=1

!i!j�ij (3.8)

Expressed on the matrix form, the N ⇥N covariance matrix between the returns is given by

⌃ =

0

BBB@

�11 ... �1N

.. .. ..

�N1 ... �NN

1

CCCA

And the portfolio variance is given by

�
2
P = w

T
⌃w (3.9)

As a result, under the model, the portfolio return is the proportion-weighted combination of

the constituent assets’ returns and the portfolio volatility (risk) is a function of the correla-

tions of the component assets.

We thus see that an investor get di↵erent combinations of µ and �2 depending on the choice

of !1,!2, ...,!N . Indeed, by choosing the portfolio weights, an investor e↵ectively chooses

between the available mean-variance pairs. He will thus choose a portfolio which give an

e�cient combination between mean and variance. So, in other words, a portfolio can be

considered as e�cient if it either minimizes the risk given a level of return or it maximizes

returns given a level of risk.

The set of feasible portfolios, or the attainable set, is simply the set of all possible portfolios

that can be formed by varying the portfolio weights such that
NP
i=1

!i = 1.

These two sets, the feasible one and the e�cient one, are represented in figure 3.1. The attain-

able set is the interior of the ellipse and the e�cient set is the upper left part of its boundary.
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Figure 3.1: The e�cient portfolios in the MV plane

The goal is then to choose the portfolio weighting factors optimally. However, even if both

of the views about the e�ciency of a portfolio are equivalent, the optimization does di↵er

for these two cases: the portfolio minimizing the risk is a quadratic optimization with linear

constraints, whereas in the portfolio maximizing the returns the objective function is linear,

and the constraints are quadratic. In the framework of this thesis, I will only present the

optimization minimizing the risk.

Model For the case of a minimal variance portfolio and a given portfolio return µp, the

optimization problem consists in identifying optimal portfolio weights !1,!2, ...,!N which

solve the following quadratic program:

MV = min
w

�
2
P = !

T
⌃!

s.t. µP = !
T
µ

!
T
i = 1

(3.10)

where i is the (N ⇥ 1) vector of ones.

This program represents the situation where short sales are allowed. If we wanted to include
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the condition that only long positions are allowed in the model, we should add the constraint

!i � 0.

The solution of the constrained quadratic optimization problem presented above has been

derived by Merton (1972). The latter has proved this problem can be solved using the method

of Lagrange multipliers. A more detailed exposition of the results can be found on the paper

written by Merton.

!
⇤ = µpg+ f (3.11)

with

g =
1

d
(c⌃�1µ� b⌃�1

i) (3.12)

f =
1

d
(b⌃�1µ� a⌃�1

i) (3.13)

with a = µ0⌃�1µ, b = µ0⌃�1
i, c = i

0⌃�1
i and d = ac� b

2. The portfolio standard deviation

is given by

� =

r
1

d
(cµ2

P � 2bµp + a) (3.14)

The portfolio which minimizes the variance for a specified expected return is called a ”frontier

portfolio”. It follows from this equation that all frontier portfolios !⇤ are a linear combina-

tion of two portfolios f and g. The equation of the portfolio standard deviation represents

the ”e�cient frontier”, a hyperbola for mean-variance portfolios as represented in figure 3.1.

Concretely, this e�cient frontier consists of the set of all e�cient portfolios that yield the

highest return for each level of risk, as mentioned above, and provides an elegant way to

achieve an e�cient allocation: a higher expected return can only be achieved by taking on

more risk. An interesting e�cient allocation to focus on is the one at the bottom of the

e�cient frontier. This point constitutes the portfolio with the smallest variance among all

feasible portfolios, or in other words, the portfolio with the minimum risk but also the mini-

mum return. It is called the global minimum variance (GMV) portfolio.
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Over the last several years, minimum variance portfolio has attracted more and more of

investor’ attention. This gain in popularity can be explained by two things. Firstly, the

latest financial crisis has emphasized the importance of risk management and a minimum-

variance strategy is obviously one of the perfect way to address it. And secondly, recent

papers8 support the long-standing critique of the CAPM (see section 3.2) that high-risk

stocks don’t always lead to high-return, as demonstrated by Fama and French (1992), mean-

ing that a portfolio construction based on the minimum-variance principle could represent a

highly e�cient solution for portfolio selection.

The minimum variance portfolio is a specific portfolio on the mean-variance e�cient frontier,

very easy to compute and presenting a unique solution which is recognized to be robust since

the portfolio ignore estimates of the expected returns9. The optimization function can simply

be written as:

GMV = min
w

!
T
⌃!

s.t. !
T
i = 1

(3.15)

Its weights are given by !
⇤
GMV = ⌃�1

i/i
0⌃�1

i. We can observe that the weights can be

thought of as a limiting case of the equation 3.10, if a mean-variance investor ignores the

constraint on expected returns.

Assumptions The mean-variance analysis described above comes necessary with some

assumptions. Their validity have been largely disused by the practitioners so I will only

enumerate them here but the empirical results of Markowitz’s MV model is presented in

section 4.3:

• All investors are risk averse, meaning they prefer less risk to more for the same level of

expected return
8
As an example, Ang et al. (2006) published a paper where they document a low-risk and high-return

empirical anomaly that they associate with idiosyncratic risk.
9
The empirical problems of the MV model are discussed in section 3.3. However, it is important to

mention that in this case, the expected returns do appear in the estimated covariance matrix, but it has

been proved by Morrison (1990) that, under the assumption of Normal asset return, for any estimator of the

covariance matrix, the MLE estimator of the mean is always the sample mean. This allows one to remove

the dependence on expected returns for constructing the MLE estimator of the covariance matrix.
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• Expected returns for all assets are known

• The variances and covariances of all asset returns are also known

• Investors need to know only the expected returns, variances, and covariances of re-

turns to determine optimal portfolios. They can ignore skewness, kurtosis, and other

attributes of a distribution

• There are no transaction costs or taxes

3.2 Capital Market Line and the CAPM Model

Following Markowitz’s model, an investor is only interested in the mean and variance of the

return on his portfolio and will therefore invest in one that is e�cient in the mean-variance

way. Based on this framework, Sharpe (1964) and Lintner (1965) developed an equilibrium

model, called the Capital Asset Pricing Model or CAPM, by adding two key assumptions to

the Markowitz model. The first one is that investors have identical views about risky assets

mean returns, variances of returns, and correlations and the second one is that investors can

borrow and lend at the risk-free rate without limit, and they can sell short any asset in any

quantity.

The introduction of the second assumption, so allowing a portfolio to include risk-free se-

curity has an interesting e↵ect: it turns the e�cient frontier into a straight line, called the

Capital Market Line, that is tangential to the risky e�cient frontier and with a y-intercept

equal to the risk-free rate. We can see from figure 3.2 that all e�cient portfolios are a com-

bination of the risk-free rate and a single risky tangency portfolio, T. This result comes from

Tobin’s (1958) ”separation theorem” and the tangency portfolio T is the optimal portfolio

only composed of risky assets.

As a summary, every investor that is a mean-variance optimizer will hold the same tangency

portfolio of risky assets in conjunction with a position in the risk-free asset. So, because all
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investors hold the tangency portfolio and because the market must clear, the T portfolio is

referred as the market portfolio.

Figure 3.2: E�cient frontier with a risk-free asset

Note: the figure comes from Fama and French (2003)

The equation of the capital market line (CML), and thus of the CAPM can be derived as

E[Ri] = rf + [E[RM ]� rf ]�iM (3.16)

where E[Ri] is the expected return on asset i and �iM is the market beta of asset i, defined

by the ratio of the covariance of its return with the market return and the variance of the

market return, �iM = cov(Ri,RM )
�2(RM ) . The interpretation of beta is that it measures the volatility

of a security or portfolio in comparison to that of the market as a whole. In our case of

portfolio selection, the beta represents the volatility of an asset composing the portfolio in

comparison to the total volatility of the portfolio and is defined by �iP = cov(Ri,RP )
�2
P

. In fact,

beta is a measure of the systematic risk.

This equation can be interpreted as follows: the expected return on a security or a port-

folio is equal to the risk-free rate (rf ) plus a risk premium. And the risk premium on a stock
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or portfolio varies directly with the level of systematic risk (beta). So concretely the security

market line shows the risk or expected return tradeo↵ that exists with the CAPM. As stated

earlier, since the idiosyncratic (unsystematic) risk can be eliminated through diversification

by holding a large portfolio, more return means that an investor must take more systematic

risk.

Another interesting element to look at is the slope of the CML, which is E[RM ]�rf
�RM

, also

known as the Sharpe ratio. This ratio represents the expected excess return of a portfolio to

the portfolio’s volatility, or in other words the expected excess return per unit of risk. The

Sharpe optimal portfolio is the one with maximum Sharpe ratio, which is nothing more than

the tangency portfolio.

3.3 Empirical results of Markowitz’s Mean-Variance

Model

Despite its simplicity of comprehension and utilization, the traditional mean-variance model

of Markowitz has many shortcomings when applied in practice. Theses shortcomings are

mainly related to estimation errors. Indeed, we do not know in practice the true value of the

parameters µi and �i. We therefore have to replace these unknown parameters by estimates,

based on historical data and this obviously leads to estimation errors, which have a direct

impact on the portfolio weights so that the desired properties of diversification are no longer

met. The problems resulting from estimation errors are as follows:

1. Extreme allocations and sensitivity: the first problem we encounter with the MV anal-

ysis is that it tends to produce portfolios composed of combinations of extreme shorts

and extreme longs, which are very sensitive to a change in the inputs. For example,

Chopra (1993) has shown that small changes in the input mean-variance parameters

lead to large variations in the composition of the optimal portfolio.
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2. Estimations of the returns: weights of the optimal portfolio tend to be extremely

sensitive to very small changes in the expected returns. For example, a small increase

of the expected return of one asset can greatly alter the optimal portfolio’ composition.

Best and Grauer (1991) have demonstrated that and have also showed that the more

assets there are in a feasible set, the more sensitive MV-e�cient portfolio will be to

changes in the means. Also, one of the result of Kallberg and Ziemba (1984) is that

estimation errors in the means are about ten times as important as estimation errors

in variances and covariances.

3. Estimation in variances and covariances: errors in estimated covariance matrices can

also have considerable impact. Chopra and Ziemba (1993) demonstrated that, at a

lower risk tolerance, the relative impact of errors in mean, variance and covariances is

closer. However, the problems linked to variance and covariance’ estimation errors can

be mitigated to varying extents through the use of more robust estimation techniques,

as we will see it later.

4. Amplification of large estimation errors: it has also been shown (Jobson and Korkie

(1981), Michaud (1989)) that optimal portfolio tends to amplify large estimation errors

in certain directions. Indeed, the risk of the estimated optimal portfolio is typically

under-predicted and its return is over-predicted: if the variance of an asset appears to

be small, or similarly the mean return of this asset appears to be large, as a result of

being significantly underestimated, or overestimated respectively, the optimal portfolio

will assign a large weight to it.

The major result of these estimation errors is that optimal MV portfolios are often extremely

concentrated on a few asset, and this is clearly not in line with the notion of diversification.

Beside from the estimation errors, the Mean-Variance approach allows extreme concentrations

to occur by creating optimal portfolios composed of few assets which are presenting the

highest (expected) returns (Bernstein, 2001). Many authors, such as Green and Hollifield

(1992), Bera and Park (2008) or Yu, Lee and Chiou (2014) have published on the subject and

proposed solutions to deal with this issue. The content of the following sections will thus be
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focused on the presentation of several diversification measures. Once the presentation will be

made, we will analyze their results and see if they meet some criteria that any diversification

measures must have to be named as such. These criteria and the reason of their selection

will be developed in the chapter 5, as well as the description of the dataset and methodology

we used to perform our analysis.



Chapter 4

From MV Selection to Alternative

Methods

As we have seen, the use of Markowitz approach to create an optimal portfolio has proved

to be problematic. Indeed, the method requires the expected return and variance of each

security, and we have seen that the estimation of theses parameters leads to errors which re-

sult in the creation of optimal portfolios excessively concentrated in a limit number of assets.

Therefore, the use of the MV method to construct a well-diversified portfolio doesn’t seems

to be the best choice. Moreover, the results shown by this method are clearly in contradiction

with the notion of diversification that we have presented in chapter 2.

In the following chapter, we will present some measures of diversification that have been

developed over the past few years. These measures can be grouped into the three following

categories:

1. Entropy Measures

2. Risk-based allocation

3. Diversification with regard to Risk Factors

28
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4.1 Entropy Measures

Entropy is a concept which was originally introduced in the information theory by Shannon

(1948) and was defined in a statistical mechanics framework. Although it was not initially

made to be applied in the portfolio management field, some interesting studies have been

written on the subject and its use as an alternative measure of risk is now an established fact.

The first authors who have used entropy in a portfolio optimization framework were Philip-

patos and Wilson (1972). Since then, many other related works such as Hua and Xingsi

(2003), Bera and Park (2008) or Meucci (2009) have been published. In the framework of

this thesis aiming to review and analyze measures allowing to assess the diversification of

investment portfolios, we will focus our attention on the Shannon entropy and the diversifi-

cation delta.

4.1.1 Shannon Entropy and Equally Weighted Portfolio

As mentioned, many academic and practitioner’s literature have proposed to use entropy

approach to optimal portfolio selection. The main idea of this approach is to use entropy

measure as the objective function for the optimization problem. In this case, weights of the

portfolio are considered as the probability mass function of a random variable. We can obtain

a pretty well-diversified portfolio by maximizing the entropy measure for such a random vari-

able which are subject to some given constraints. Moreover, using entropy as the objective

function guarantees non-negative weights for the assets in the portfolio, as they are seen as

probabilities, which by definition take non-negative values.

Statistically, the concept of entropy can be resume as follows: it is a probabilistic mea-

sure of uncertainty or disorder. Basically, the entropy of a random variable is the ”amount of

information” contained in this variable: the more information it contains, the more order it

has. Entropy is therefore a useful tool which is able to quantifies the amount of information

in a random variable, which provides a good measure of the disorder present in a probability
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distribution. The most prominent entropy measure is surely the Shannon’s entropy (H). In

a portfolio construction framework, it allows to shrink the weight of the assets toward an

equally weighted portfolio. It has the following form:

H(!) = �
NX

i=1

!i log!i, (4.1)

where ! = (!1,!2, ...,!N ) is a portfolio allocation among N risky assets with properties that
PN

i=1 !i = 1, !i � 0 and i = 1,2...,N.

The maximum value of H(!) is reached when !i = 1/N, for all i = 1, ..., N and the other

extreme case occurs when !i = 1 for one i, and = 0 for the rest, then H(!) = 0.

The Shannon’s Entropy form that we used in our analysis is the exponential form:

H(!) = exp
⇣
�

NX

i=1

!i log!i

⌘
, (4.2)

The measure reach a minimum equal to 1 if a portfolio is fully concentrated in a single

component and a maximum equal to N , representing an Equally Weighted Portfolio.

A word on the Equally Weighted Portfolio The equally weighted portfolio that leads

to a maximum value of H is a naive but well-known strategy in portfolio management. In-

deed, investors are still using such simple allocation rules for allocating their wealth across

assets even though other more sophisticated theoretical models have been developed in the

last 60 years.

Besides the fact that it is computationally simple to implement, it has been proved that

the 1/N asset allocation strategy can have a ”higher out-of-sample Sharpe ratio, a higher

certainty-equivalent return, and a lower turnover than optimal asset allocation policies”

(DeMiguel et al. (2005)). Comparable results have been shown in Bloomfield et al. (1997),

Jorion (1985) and Bera and Park (2008). Moreover, it does not involve any estimation or

optimization and it also completely ignores the data. All it requires is to hold a portfolio

with equal weights, so that !i = 1/N in each of the N risky assets.

A quick comparison can be made between this strategy and the one describes by the equation

3.10. Indeed, the 1/N portfolio can be seen as a strategy that does estimate the expected
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returns and covariance matrix, but imposes the restriction that expected returns are pro-

portional to total risk rather than systematic risk, which can be mathematically written like

µi / ⌃i1N .

4.1.2 Diversification Delta

The diversification delta is an entropy-based ratio that has been originally developed by

Vermorken et al. (2012). It can be defined as the ratio of the weighted average entropy

of the assets minus the entropy of the portfolio divided by the weighted average entropy of

the assets. Here, the exponential entropy is used. This idea, suggested by Campbell (1966)

but also mentioned as a risk measure in Fabiozzi (2012), allows ”to avoid singularities of the

entropy while still letting the uncertainty speak for itself”.

Formally, for a given portfolio consisting of N risky assets (X1, ..., XN) and weights (!1, ...,!N),

with
PN

i=1 !i = 1, the diversification delta developed by Vermorken et al. (2012) can be de-

fined as the following ratio:

DD(P ) =
exp(

PN
i=1 !iH(Xi))� exp(H((

PN
i=1 !iXi))

exp((
PN

i=1 !iH(Xi))
(4.3)

where f is the probability density function of X and H(X) = �
R
x[f(x)]log(f(x))dx is the

di↵erential entropy that is used as a measure of uncertainty.

The interpretation of this ratio is as follows: it is a ratio that compares the weighted individual

assets and the portfolio. The diversification delta is ”designed to measure the diversification

e↵ect of a portfolio by considering the entropy of the assets and comparing it with the entropy

of the portfolio”. Therefore, the higher the level of entropy, the higher the uncertainty and

inversely. The possible values of the ratio are ranged between 0 and 1.

The use of such ratio that compares the uncertainty of individual assets with the uncer-

tainty of the portfolio is an interesting way to analyze a portfolio and quantify the e↵ect

of diversification. However, the diversification delta presents several issues as demonstrated

by Salazar et al. (2014). By using the required properties of a risk measure as described
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in section 2.1.2, they have demonstrated that sub-additivity is not satisfied in the definition

of the diversification delta. This entails the ratio can be negative but it also means it is

not left bounded. Moreover, Salazar et al. (2014) have also shown that the left-hand side

in the numerator of equation 4.2 is not homogeneous, meaning that ”changes in the size of

the assets are not detected in the same way as changes in the portfolio” and this leads to

inconsistencies in the measurement of diversification.

Therefore, in order to address these issues, Salazar et al. (2014) have proposed to use the

exponential entropy as a measure of uncertainty and formulated the following revised diver-

sification delta DD*:

DD
⇤(P ) =

PN
i=1 !iexp(H(Xi))� exp(H((

PN
i=1 !iXi))PN

i=1 !iexp(H(Xi))
(4.4)
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4.2 Risk-based Allocation: Diversification ratio and

Marginal Risk Contributions

In this section, we will present two diversification measures based on a portfolio’s risk assess-

ment and management which have been quite popular over the last years. These measures

are respectively named the Diversification ratio and the Marginal Risk Contributions.

4.2.1 Diversification Ratio

The Diversification ratio (DR) has been introduced in 2008 by Choueifaty and Coignard.

This diversification measure can be defined as the ratio of a portfolio’ weighted average of

volatilities divided by its overall volatility. In essence, the DR measures ”the diversification

gained from holding assets that are not perfectly correlated” (Choueifaty et al. (2013)).

Another way to represent the DR is to consider a portfolio which is exposed to F independent

risk factors. Also, the portfolio’s exposure to each risk factor is inversely proportional to the

factor’s volatility so that the risk budget of this portfolio is equally allocated across all

risk factors and the DR
2 = F , meaning that the DR squared is equal to the number of

independent risk factors represented in a portfolio.

Formally, given a portfolio composed of N assets (X1, ..., XN) and weights (!1, ...,!N), with
PN

i=1 !i = 1, we have:

DR =

PN
i=1 !i�i

�P
(4.5)

where �i is the volatility of asset i and �P the portfolio volatility. According to Choueifaty et

al. (2013), the DR ”embodies the very nature of diversification”: the volatility of the overall

(long-only) portfolio is less than or equal to the weighted sum of the assets volatilities.

In order to completely understand the intuition behind this ratio, an interesting decom-

position of it has been formalized in Choueifaty et al. (2013). The decomposition has the

following form:

DR(w) = [⇢(w)(1� CR(w)) + CR(w)]�1/2
, (4.6)
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where ⇢(w) is the volatility-weighted average correlation of the assets in the portfolio and

CR(w) is the volatility-weighted concentration ratio (CR) of the portfolio. These two are

defined by

⇢(w) =

PN
i 6=j(!i�i!j�j)⇢ij
PN

i 6=j(!i�i!j�j)
(4.7)

CR(w) =

PN
i=1(!i�i)2

(
PN

i=1 !i�i)2
(4.8)

From these equations, it can be seen that a portfolio which has a high concentration in few

assets, or a portfolio consisting of highly correlated assets will have a low DR and therefore

can be described as poorly diversified. In other words, the DR increases when ⇢(w) and, or

CR(w) decreases and inversely.

The extreme case of a DR equal to 1, representing a fully concentrated, mono-asset portfolio,

is reached when correlations between assets or the CR is equal to 1.

4.2.2 Risk Parity and Marginal Risk Contributions

Risk Parity

The term ”marginal risk contributions” comes from a portfolio construction strategy named

the risk parity. The general idea behind the risk parity approach is that each asset, or asset

class (such as bonds, stocks, commodities, interest rates, etc.), doesn’t have the same contri-

bution to the total risk of a portfolio. Therefore, to build a diversified portfolio, we need to

focus on the amount of risk that each component i composing the portfolio represents rather

than on the specific weight invested in each component i. In other words, instead of being

focused on the allocation of capital like the ”traditional” methods, risk parity is focused on

the allocation of risk.

One could see risk parity as a mix between the minimum variance and the equally-weighted

portfolios as described above. Indeed, the risk parity approach can be located between the
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minimum variance and equally-weighted portfolios because roughly speaking, building a risk

parity portfolio is similar to create a minimum-variance portfolio subject to the constraint

that each asset, or asset class, contributes equally to the total portfolio risk8.

The approach has gained a lot of popularity in the last years and basically became stan-

dard practice for institutional investors. Some of them even claims it is the most e�cient

one. For example, Qian (2011) said that risk parity allocation results in better diversification

and brings higher returns. One of the main advantage of the risk parity approach is that

we do not need to use some estimation of expected returns. Indeed, as we have seen in the

section 3.3, forecasting returns is a risky business and leads to estimation errors. On the

other hand, the risk parity approach requires some accurate estimations of the variances and

covariances, but robust estimation techniques exist (se for example Ledoit and Wolf (2004))

and have been proven to be relatively stable. Therefore, it is possible to estimate variances

and covariances with a good deal of accuracy.

Marginal Risk Contributions

To measure the share of the total portfolio risk which is attributable to a component i, or

simply the risk contribution of a component i, we have to compute the product of the allo-

cation in i with its marginal risk contributions, which is given by the change in the total risk

of the portfolio induced by an infinitesimal increase in holdings of component i. Therefore,

in this context, a well-diversified portfolio is the one where all asset classes have the same

marginal contribution to the total risk of the portfolio.

Based on the use of standard deviation as the measure of the total risk of a portfolio, we

can calculate the contribution of each asset class to it. The marginal risk contributions of an

asset class, noted @xi�P , is given by the following expression:

@!i�P =
@�P

@!i
=
!i�

2
i +

P
j 6=i !j�ij

�P
(4.9)

8
Proof of that can be found in Maillard, S., Roncalli, T., and Teiletche, J. (2009)
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As mentioned, the total risk contribution from an asset i is computed as the product of

the allocation in asset i with its marginal risk contribution. The risk contribution of i can

therefore be written as:

RCi = �i(!) = !i ⇥ @!i�P = !i

!i�
2
i +

P
j 6=i !j�ij

�P
(4.10)

And the total risk of the portfolio is thus nothing more than the sum of the total risk

contributions,

TR =
NX

i=1

RCi =
NX

i=1

�i(!) (4.11)

The measure that we will use in our analysis is the risk contribution RCi.
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4.3 Diversification with regards to Risk Factors

The following measures of diversification are based on one of the best-known techniques in

multivariate analysis, the Principal Components Analysis or PCA. The attractive character-

istic of PCA is that it has the ability to decompose correlated variables into uncorrelated

components, which can obviously be very interesting to use when we are trying to analyze

the complex structure of financial markets. Indeed, PCA provides us with a way to identify

uncorrelated risk sources in the market and pick stocks from those di↵erent risk sources.

Therefore, after applying PCA for a stock picking purpose, the resulting portfolio size is

more meaningful from the point of view of diversification.

Partovi and Caputo (2004) were the first to propose the idea of using PCA in the portfolio

selection framework. Their basic idea was based on the fact that if there were no correlations

among assets, the complexity in portfolio selection dramatically decreased. Since the pub-

lication of their paper, Partovi and Caputo (2004) have inspired many academic researcher

but also many portfolio managers to construct principal portfolios (uncorrelated portfolios),

especially when risk reduction and management became the priority, after the financial crisis

of 2008.

Here we will present two interesting diversification indexes which are based on the theoreti-

cal framework of PCA: the Portfolio Diversification Index, developed by Rudin and Morgan

(2006), and the E↵ective Number of Bets, developed by Meucci (2009).

4.3.1 Brief Review of the Principal Component Analysis

Principal Component Analysis (PCA) is a statistical method of dimension reduction that is

used to reduce the complexity of a data set while minimizing information loss. It transforms

a data set in which there are a large number of correlated variables into a new set of uncorre-

lated variables, called the principal components. The first principal component account for

as much of the variability as possible, and each succeeding component accounts for as much

of the remaining variability as possible. Each principal component is a linear combination of
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the original variables in which the coe�cients indicate the relative importance of the variable

in the component.

Consider the linear combinations

Y1 = e11X1 + e12X2 + e1pXp

Y2 = e11X1 + e22X2 + e2pXp

...

Y1 = ep1X1 + ep2X2 + eppXp

This can be seen as a linear regression where we are predicting Yi from X1, X2, ..., Xp. There

is no intercept but ei1, ei2, ..., eip can be viewed as regression coe�cients.

Formally, the variance and covariance are written as

var(Yi) = e
0

i⌃ei = �i (4.12)

cov(Yi, Yj) = e
0

i⌃ej (4.13)

where �1,�2, ...,�p are the eigenvalues of the variance-covariance matrix ⌃ and the vectors

e1, e2, ..., ep are the corresponding eigenvectors.

The goal of the PCA is, for the i
th principal component Yi, to select ei1, ei2, ..., eip such that

var(Yi) is maximized with the constraints that the sum of squared coe�cients add up to one

and each new component defined is uncorrelated with all the previously defined components.

Formally, we have to maximize var(Yi) = e
0
i⌃ei subject to the constraints:

e
0

i⌃ei = 1 (4.14)

cov(Y1, Yi) = e
0
1⌃ei = 0,

cov(Y2, Yi) = e
0
2⌃ei = 0,

...

cov(Yi�1, Yi) = e
0
i�1⌃ei = 0
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4.3.2 Portfolio Diversification Index

The Portfolio Diversification Index is a measure developed by Rudin and Morgan (2006)

which quantify the diversification distinctly related to correlations. Concretely, the PDI in-

dicates the diversification’ level of a given portfolio and can assess whether the addition of

new assets to the portfolio improves its diversification and by how much (Smith (2006)).

Therefore, this index can be compared to the Diversification Ratio, as described above. In-

deed, these two measures both aim to quantify the diversification distinctly related to corre-

lations and provide frameworks for constructing diversified portfolio (Randy O’Toole (2014)).

Given a portfolio consisting of N risky assets, the equation for the PDI is as follows:

PDI = 2
NX

i=1

iRSi � 1, (4.15)

where RSi =
�iPN
j=1 �j

is the relative strength of the ith principal component, �i being the

eigenvalue associated with the ith principal component. From this equation, we can see that

the diversification properties of a portfolio are ”conveyed by means of the relative strength of

these factors” (Smith, 2006).

The PDI can have values comprised between 1 and N and the interpretation of these extreme

cases is as follows:

• A PDI = 1 represents a portfolio dominated by a single factor and thus completely

undiversified. In that case, RS1 ⇡ 1 and the others are null.

• a PDI = N represents a portfolio totally diversified. In that case, RSi ⇡ 1/N for all i.

It is thus straightforward that a high PDI value indicates a well-diversified portfolio and

inversely, a low PDI value indicates a less diversified portfolio.
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4.3.3 E↵ective Number of Bets

Another use of PCA in a portfolio construction framework can be found in Meucci (2009). In

his paper, Meucci proposed to transform a data set composed of a large number of correlated

assets into a new set of principal portfolios representing uncorrelated risk sources related to

the original assets. He then introduced a ”diversification distribution”, a tool to analyze the

structure of a portfolios concentration profile. The diversification distribution is expressed as

the ratio of each principal portfolios variance to its total variance. In this principal portfolio

environment, all the principal portfolios are uncorrelated and therefore the total variance of

the portfolio can be written as a sum of the contributions of each factor’s variance. The

ratio of individual principal portfolio variance to the total variance is then in the range of

0 to 1 and sum to 1. Here the maximum diversification is reached when the diversification

distribution is close to one. Therefore, based on this method, a well-diversified portfolio is

the one in which all the risk sources composing it are invested equally.

Moreover, Meucci (2009) introduced a diversification index that represented the e↵ective

number of uncorrelated bets (ENB) in a portfolio. The idea is that if the number of uncorre-

lated bets were small, the risks were rather concentrated in few sources and less diversified.

The construction of a portfolio following such method could be compared to the one fol-

lowing the risk parity approach, as described above. These two allocations strategy present

a similarity even if they are conceptually di↵erent. Indeed, they both construct portfolios by

allocating risks. But the way these two strategies allocate risk is completely distinct. The risk

parity strategy allocates investments in such a way that they equally contribute to the risk of

the total portfolio whereas the ENB strategy allocates risk based on uncorrelated principal

portfolios. The consequence is that risk parity allocation strategy can have rather concen-

trated risk if most assets have high correlations with each other. As an example, consider

an extreme case with all stocks perfectly positive correlated. The result is that allocating

equal risk budget to all stocks is actually the same as holding one stock. The ENB strategy

does not have such a problem since it is allocating its risk budget based on uncorrelated risk
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sources. Though in the case of perfect correlations all variation would be explained by the

first principal component.

Formally, the development of Meucci (2009) began with the decomposition of the the variance-

covariance matrix ⌃ of the N assets:

E
0
⌃E = ⇤ (4.16)

where ⇤ ⌘ diag(�1,�2, ...,�N) is a diagonal matrix. The columns of ⇤ are the respec-

tive eigenvectors E ⌘ (e1, e2, ..., eN) which define a set of N uncorrelated portfolios (prin-

cipal portfolios). The returns of the principal portfolios can be expressed as rF = E
0
R,

where R denotes the random returns on the N assets, and the variances are the eigenvalues

(�1,�2, ...,�N). Following that, the original portfolio ! can be expressed as a combination of

the uncorrelated principal portfolios with weights !F = E
�1!.

Also, the introduction of uncorrelated factors allows to write the total variance of the portfolio

as the sum of the contributions of each factor’s variance:

!0
⌃! =

NX

i=1

!
2
Fi�

2
i (4.17)

The contribution of the i
th factor to the total portfolio variance is defined by what Meucci

calls the diversification distribution: pi(!) =
!
2
Fi�

2
iPN

i=1 !
2
Fi�

2
i

. Each pi(!) is positive and their

sum equal to 1.

The interpretation given by Meucci (2009) to the diversification distribution is that it rep-

resents a set of probability masses associated with the principal portfolios and therefore, a

portfolio ! is well diversified when ”the probability masses pi are approximately equal and thus

the diversification distribution is close to uniform”. Moreover, by measuring the dispersion

of the probability distribution, which can be done thanks to its entropy, we can thus measure

the diversification of the portfolio.

ENB(!) = exp
⇣
�

NX

i=1

pi(!)ln(pi(!))
⌘

(4.18)
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A maximal value of ENB(!) equal to N would mean that the risk is evenly spread amongst

the di↵erent factors and the portfolio is thus well diversified portfolio, whereas a value of

ENB(!) equal to 1 would mean that the portfolio is concentrated in a single risk factor.



Chapter 5

Data and Methodology

In this chapter, we describe the methodology that has been followed in order to conduct our

studies on the diversification measures presented in chapter 4. The goal of the analysis is

obviously to provide answers to the research questions raised in the chapter 1.

To realize that, we will first describe the data that have been collected. Then we will present

the procedure we followed in order to perform our analysis. The implementation of Shannon’s

Entropy will be also described in this section. Finally, we will analyze the results obtained

and try to answer the research questions that we put these measures in relation with the

criteria selected to see if they meet the requirements that define a diversification measure.

The computer program chooses to complete our analysis is Matlab. The scripts that we used

can be found on the DIAL website, under the file linked to the electronic version of this

thesis.

5.1 Description of the Data

Database

The data used in our empirical study were obtained on Bloomberg and are based on a weekly

basis for the period from 29 December 1989 to 4 May 2018, which provides 1,480 weekly

returns. The prices showed correspond to the closing prices of each Friday. Also, we consider

43
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the following five asset classes:

• US large capitalization stocks: we used the S&P 500 equity index as a proxy. This index

represent a market value weighted index of the 500 larger cap companies in the United

States. It is constructed by adjusting the closing S&P 500 closing prices to corporate

actions (S&P Global (2016)). The index is denoted by the ticker SPXT Index.

• US Treasury bonds: we used the S&P US Treasury Bond Index as a proxy. This index

is a market-value weighted index that seeks to measure the performance of the United

States Treasury Bond Market. Treasury Bond, or Treasury-bill (T-bill), is a short-term

debt obligation backed by the U.S. government with a maturity of less than one year

(definition from Investopedia). It is seen as the safest investment that can be made,

which explain why a T-bill investment is usually referred as risk-free. It is denoted by

the ticker SPBDUSBT Index.

• Commodities: we used the S&P Goldman Sachs Commodity Index as a proxy. This

index is the first major commodity index which was originally developed by Gold-

man Sachs. It is designed to be investable by including the most liquid commodity

futures9. The index currently comprises 24 commodities from all commodity sectors:

energy products, industrial metals, agricultural products, livestock products and pre-

cious metals. It is denoted by the ticker SPGSCITR Index.

• US corporate bonds: we used the SPDR Bloomberg Barclays U.S. Corporate Bond

Index (Bloomberg Barclays U.S. Corporate Total Return Value Unhedged USD) as a

proxy. This index ”measures the performance of the investment grade U.S. corporate

bond market” (State Street Global Advisors (2018)). Each security that are included

into the index must be fixed rate, in U.S. dollar, taxable and rated investment grade

as defined by the Index methodology. It is denoted by the ticker LUACTRUU Index.

• Real Estate: we used the Dow Jones Equity All REIT Index as a proxy. This index is

designed to ”measure all publicly traded real estate investment trusts in the Dow Jones

9
A commodity is a basic good used in commerce such as oil, sugar, rice, etc.
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U.S. stock universe classified as equity REITs according to the S&P Dow Jones Indices

REIT Industry Classification Hierarchy” (from Dow Jones Equity All REIT Index).

Various Statistics

In Table 5.1, the main descriptive statistics of each asset class over the entire sample period

are presented. The average return and volatility are annualized but both Value-at-Risk com-

putations are done with weekly returns. We can observe that the lowest volatility is achieved

by the Treasury Bonds with 3.62%, which is logical given the nature of this asset class. The

second lowest volatility asset class is the corporate bonds with a 5.12% volatility. The re-

maining asset classes are much more volatile. Indeed, we can see that the bonds are at least

four times less volatile than the three other asset classes of our dataset. The S&P 500 index

present a volatility equal to 16.16% while Commodities and Real Estate show volatilities

above 20% (20.79% and 20.02% respectively). The interpretation of the risk linked to each

asset classes provided by the VaR is similar to that of the volatilities in the sense that for

both probability level (1-↵), the most volatile asset class is Commodities, followed by Real

Estate, S&P 500, Corporate Bonds and finally Treasury Bonds respectively. However, given

that the VaR are calculated on a weekly returns basis, their values represent the probability

that an asset class will lose at least ↵-percent of its value each week.

Table 5.1: Descriptive statistics of the returns of the asset classes

S&P 500 T. Bonds Commod. Corp. Bonds Real Estate

Average Return (%) 10.54 5.06 3.52 6.53 11.98
Volatility (%) 16.16 3.62 20.79 5.12 20.02
Sharpe Ratio10 0.39 1.38 0.06 1.25 0.50

VaR5 (%) 3.71 0.83 4.79 1.17 4.57
VaR1 (%) 5.24 1.17 6.77 1.65 6.47

It is interesting to notice that the asset classes which present the lowest volatilities, and thus

which are considered the less risky, have the highest Sharpe ratio (SR) that we mentioned in

section 3.2. Indeed, the Treasury Bonds have a SR of 1.38, closely followed by the Corporate
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Bonds with a SR of 1.25. In comparison the latter asset classes, the S&P 500 and Real Estate

index have much higher average returns, but their respective high volatilities lead to a much

lower SR (0.39 and 0.50 respectively).

Table 5.2 presents the correlations between de di↵erent asset classes. We can see that the

Treasury and Corporate bonds are negatively correlated with all the other asset classes ex-

cept with each other, presenting a highly positive correlation (93.07%). Commodities are

also negatively correlated with all the other classes and doesn’t seem to present any correla-

tion with the equity stocks (S&P 500). Finally, Real Estate appear to be highly positively

correlated with the S&P 500 Index.

Table 5.2: Correlation Matrix in %

S&P 500 T. Bonds Commod. Corp. Bonds Real Estate

S&P 500 100 -80.11 3.08 -58.24 80.46
Treasury Bond -80.11 100 -60.31 93.07 -66.97
Commodities 3.08 -60.31 100 -75.62 -4.67

Corporate Bonds -58.24 93.07 -75.62 100 -42.53
Real Estate 80.46 -66.97 -4.67 -42.53 100

To apply the ENB and PDI measures, we have also performed a Principal Component Analy-

sis (PCA) on the variance-covariance matrix estimated over the entire database. This allows

us to identify the factors that a↵ect the returns of each asset classes. The results are given in

the Table 5.3 below. Concretely it shows the e↵ects, or exposures, of each of the factors on

the di↵erent asset classes11. The variance of each factor represents the eigenvalues that are

obtained after performing the PCA, as explained in section 4.3.1. Moreover, all the factors

are obviously uncorrelated and explain the entire variability of the asset classes’ returns. The

interpretation of the factors resulting from the PCA is as follows:

• With an exposure equal to 82.99%, the first factor F1 seems to be related to the real

estate risk. Also, we can notice that F1 is significantly exposed to S&P 500 (53.68%).
11
The exposures is ranged between -100% and 100% but total position, or factor exposures can be greater

than 100%, as it can be observed
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This can be explained by the fact that the Real Estate and S&P 500 are highly cor-

related, as we can see in Table 5.2. Therefore, we can interpret this factor as a risk

coming mostly from Real Estate, but also from the equities composing the S&P 500

Index.

• The second factor F2 is surely related to the commodity risk, with an exposure of

98.63%. In addition, all the other weights have an absolute value of maximum 11.50%,

confirming this interpretation.

• The third factor F3 represents the remaining risk related to S&P 500 (83.16%) that

is not explained by F1. This can be confirmed by the fact that F3 is negatively and

significantly exposed to Real Estate (-54.99%).

• The fourth and last factor F4 is heavily loaded on Corporate Bonds (94.97%) but also,

on a smaller scale, on the Treasury Bonds (29.97%). Therefore, we could interpret F4

as an interest rate risk factor.

Table 5.3: PCA Factors’ Exposures (%)

F1 F2 F3 F4

S&P 500 53.68 11.50 83.16 7.01
Treasury Bond -4.11 -4.82 -4.48 29.97
Commodities -14.48 98.63 -4.91 5.68

Corporate Bonds -2.32 -5.28 -4.09 94.97
Real Estate 82.99 9.38 -54.99 0.59

Total Position 115.76 109.41 14.71 138.23

Variance 0.0404 0.0352 0.0037 0.0000
Percent Explained 50.95 44.39 4.67 0.00

Cumulative 50.95 95.33 100.00 100.00

Another thing that we can notice by looking at Table 5.3 is that half of the total variance

is explained by F1, which we have deduced related to Real Estate and equities (S&P 500)

too. This seems logical since Real Estate and equities are the second and third most volatiles

asset classes (see Table 5.1).
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5.2 Methodology

Concretely, the analysis we provide on the measures of diversification consists of two parts:

• Firstly, we analyze the results given by the di↵erent measures separately. In order to do

that, we generate randomly the weights of 10 portfolios and then apply the measures

of diversification on them. The creation of these 10 portfolios can be done thanks to

the Matlab function rand. We thus create 10 portfolios with weights assigned to the 5

di↵erent asset classes we are considering in our study. Once the portfolios created, we

can apply the diversification measures considered to them and to analyze the results

delivered.

• Secondly, we compute the maximum diversification portfolios by maximizing the func-

tion we have implemented for each measures of diversification. Therefore, we obtain

the optimal weights of 6 portfolios, each of them representing the optimal portfolio

associated to a measure of diversification. The risk and concentration profiles of these

portfolios is then analyzed, and we try to answer the research questions of the thesis.

The maximum diversification portfolios are implemented thanks to the Matlab function

fmincon.

Since the function needs a vector of weights as an input, we have decided to assign a

vector composed of equal weights. The consequence of this initial vector is that the

optimal portfolio constructed by maximization of the Shannon Entropy function is an

Equally-Weighted portfolio. Therefore, this allows us to analyze the risk profile of a

portfolio which is completely diversified from the concentration’s point of view and to

compare its results with the other optimal portfolios.

It is important to mention that for the construction of the portfolios, the Random ones or

the Maximum Diversification ones, we use no short-selling constrain, meaning the weights

can’t be negative. We back up this decision for two reasons. The first reason is that ”since

the constructed portfolio weights obtain through the maximum entropy approach are in the

form of probabilities, the weights are certainly non-negative” (Bera and Park (2008)). The
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second reason is that the no short-selling constraint allows to reduce the estimation error.

Jagannathan and Ma (2003) concluded, that no short selling constraint helps to reduce

estimation error in the covariance matrix, when one wants to use the returns of a higher

frequency, which is our case, as we use weekly returns in our analysis. Moreover, according

to the financial industry standards, most asset managers are not allowed to sell short.

Computation of Shannon’s Entropy and the Risk Contribution

Before going any further into the analysis, we have to describe the method we used in order

to implement the Shannon’s entropy but also explain how we compute the Risk Contribution

measure.

Calculation of Shannon’s Entropy from histograms We used an expression that

allows to calculate the entropy from histograms as developed by Harris (2006) for a discrete

distribution and by Rich and Tracy (2006) for a histogram.

To express the Shannon’s entropy from the situation where the density is represented as a

histogram, the range of the variable must be divided into n intervals (lk, uk), with k = 1, ..., n

so that

H(X) = �
nX

k=1

Z uk

lk

f(x) log f(x)dx (5.1)

After that, the kth term in this summation is related to the kth bin of a histogram, with

width xk = uk � lk. Therefore, the bin probabilities pk, for k = 1, ..., n, defined as

pk =

Z uk

lk

f(x)dx (5.2)

can be approximated by xkf(yk), the area of a rectangle of height f(yk) where yk is a repre-

sentative value within the interval (lk, uk) (Wallis (2006)). The kth integral in the sum above

can also be approximated by xkf(yk) log f(yk) and after rewriting the latter in terms of the

bin probabilities, we ended up with the new expression of the entropy:

H(X) = �
nX

k=1

pk log

 
pk

xk

!
(5.3)
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only for the case of xk = 1. When xk is constant but not equal to 1, then

H(X) = �
nX

k=1

pk log(pk) + log x (5.4)

If xk is not constant, equation 5.3 ”calls for bin-by-bin adjustments before comparisons of

entropy between histograms with di↵erent bin configurations can be made” (Wallis (2006)).

Implementation of the RC measure When we apply the Risk Contribution measure to

a portfolio, the results obtained represent a vector composed of values equal to the RC of each

portfolio’ assets, which is in our case, a vector of 5 RC. Since all the other measures analyzed

delivered a unique value, we use Shannon’s entropy to assess the results provided by the RC

measure. This allows us then to compare the values obtained with those of the other measures

considered. Such implementation was suggested by Riccardo Brignone (2015). Concretely,

instead of using the weight, we incorporate the RC into Shannon’s entropy, leading to the

following expression:

RCH(!) = exp
⇣
�

NX

i=1

�i(!) log �i(!)
⌘

(5.5)

Here also, the measure reaches a minimum equal to 1 if a portfolio is fully concentrated in a

single component and a maximum equal to N .



Chapter 6

Analysis

Based on the methodology detailed in chapter 5, we now report and analyze our results to

answer our research questions. First, we describe the results obtain from the Random Port-

folios and provide a short analysis. Then we describe the findings related to the computation

of the Maximum Diversification Portfolios. After that, we provide the main analysis of our

thesis and we try to assess the di↵erent measures of diversification according to the selected

criteria.

6.1 Random Portfolios: Results and Analysis

The allocations generated for each of the 10 portfolios can be found in Table B.1 of Appendix

A. The graphic representations of these allocations have also been provided in Figure A.1

of Appendix A. As a first step, we analyze the diversification level of the di↵erent portfolios

in terms of distribution of their weights, so basically in terms of their concentrations. The

measures used to do that are obviously the weights-based measures which are the Shannon’s

Entropy and Diversification Delta. After that we analyze the diversification level with regards

to the other measures that are more risk-based. Then we compare the results obtained with

the more traditional measures of portfolio risk before moving to the other part of our analysis

related to the Maximum Diversification Portfolios.

51
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6.1.1 Weight-based Analysis

According to the Shannon’s Entropy (SE), most of the random portfolios seem to be well-

diversified. Indeed, the SE’s values are mostly comprised between 4.03 and 4.9 and knowing

that the maximum attainable is 5, we can say that most of portfolios have a high level of

diversification from the SE’s perspective. The two only exceptions are P7 and P8 which

have an entropy on 2.94 and 3.94 respectively. When looking at the compositions of these

portfolios, we can see that P7 is mostly loaded on the S&P 500 index (60,97% of the total

allocations) and on the commodities (23,91%), while the three other asset classes remain

below 8.39%. The allocations of P8 are approximatively well distributed between the eq-

uities, the Treasury and Corporate bonds (29.20%, 24.64% and 33.70% respectively) while

the remaining weights are mainly allocated to the commodities (11.24% while the real estate

only represent 1.22%).

The portfolio having the maximum SE is P10. Its di↵erent allocations are more or less sim-

ilar to the one of an equally-weighted portfolio, with allocation varying between 14.63% and

24.78%. No surprise then than it nearly has a SE value close to the maximum of 5.

The results obtained from the Diversification Delta (DD) are clearly more mixed. Indeed,

bearing in mind that the values of DD are ranged between 0 and 1, the latter representing a

perfectly diversified portfolio, we can see that the portfolios don’t seem to be well-diversified

since the majority of them are presenting a DD comprised between 0.33 and 0.38. According

to these numbers, all the portfolios are more or less on the same level of diversification. It

is also interesting to notice that P8 is considered as one of the most diversified portfolios

according to DD. It is at the same level of diversification as P6, with a DD also equal to 0.38.

Notice that P6 has a high degree of diversification according to SE (4.51). P10 is therefore

not the most diversified portfolio anymore based on the DD. However, P7 is still considered

as the least diversified portfolio both with the SE and with the DD.
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Figure 6.1: Random Portfolios Generated
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6.1.2 Risk-based Analysis

Among the four remaining measures of diversification, three of them are directly related to

the diverse sources of risk present in a portfolio. Recalling what we mentioned in section

4.2.1, DR
2 represents the e↵ective number of independent risk factors represented in a port-

folio. The term e↵ective means that the the risk factors are never truly independent since the

di↵erent sectors and styles of a market often move in the same direction, albeit imperfectly.

Therefore, when looking at the values obtained in Table B.1 for DR
2, we can say that

the majority of portfolios are e↵ectively exposed to two or three (in fact the maximum is

2.57) independent risk factors (let us remember that we identified 4 di↵erent risk factors

according to the decomposition of the variance-covariance matrix given by the PCA). And

if we compare these results to the di↵erent values of the PDI obtained, we can see that they

are closely related, which is totally normal since both measures can be compared with each

other, as explained earlier.

Moreover, we can notice that for both measures, the portfolio with the lowest degree of di-

versification is P7 (PDI of 1.91 and DR2 equal to 1.69). Here also, the measures seems to

designate P7 as the least diversified portfolio, like the SE and the DD.

A last observation that can be made about the values of both measures is that the PDI

provided slightly less volatile results than the DR2. PDI is ranged between 2.19 and 2.40

(without taking account of the value of P7 of course) while DR2 varies between 2.17 and 2.57

(also without P7).

The results produced by the ENB measures are not really di↵erent than those previously

analyzed but some di↵erences do exist between them. First most portfolios (7 out of 10 to

be precise) seems to be exposed to less than 2 risk factors while the DR and the PDI show

an exposure to two or three risk factors. But one result that seems quite surprising is that

P10 is designated as the least diversified portfolio by ENB. So far, the measures we have

reviewed all considered P10 as the most or one of the most diversified portfolios of the group.
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A more detailed explanation of the ENB values can be found on Table B.3. It shows the

diversification distribution pi(!) calculated. We can see that each portfolio is more than 70%

exposed to the first risk factor F1 (factor related to real estate and equities). Given that, it

is easy to understand why ENB values don’t exceed two for most of the cases. And we see

also that P10 has the highest exposure to F1 with a p1(!) of 96.08%, explaining its status of

least diversified portfolio. The portfolio with the highest degree of diversification according

to the ENB measure is P8, with a p1(!) of ”only” 68.62%. This is more consistent with the

results of other measures.

Now if we look at the RC entropy, the results don’t seems to di↵er much from those of

previous measures. Recall that we first calculated the risk contributions for each portfolio,

then we implemented the Shannon’s entropy of the RC, resulting in the values shown in

Table B.1. Also, by construction, a portfolio which would have its risk contributions equally

allocated between the five asset classes would show an RC entropy of 5.

The values obtained thanks to the RC entropy are mainly located between 2.21 and 2.93,

with some outliers which present entropies equal to 3.17, 3.19 and 3.23, representing P10, P6

and P5 respectively. The most diversified portfolio of the group (P5) is therefore di↵erent

from the other candidates designated by the other measures, and the least diversified is P7,

which is here similar to previous conclusions.

Now if we look at Table B.2 of Appendix A, it is interesting to notice that some Risk

Contributions are negatives. Indeed, for P5 and P7 the Treasury Bonds asset classes have

a negative value equal to -0.01% and -0.12% respectively. The explanation of such results

can be found in the definition of the risk contribution and marginal risk contribution: as

explained in section 4.2.2, the risk contribution is computed as the product of the allocation

in asset class i with its marginal risk contribution and the latter is computed from the co-

variance matrix, which, by definition, can have negative values. In fact, the marginal risk

contribution (MRC) could more intuitively be expressed using a concept we have presented

previously, Beta, and thus the interpretation of a negative MRC is that it suggests we in-
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crease the weight of the asset class concerned in the portfolio12. Also, when looking at the

Table B.2, we can understand why P5 presents the highest RC entropy given the distribution

of its di↵erent risk contributions.

So, as a quick conclusion, we see that all the measures don’t come to the same conclu-

sion about the diversification of portfolios, even if some trends are noticeable. Indeed, the

di↵erent measures are showing some level of diversification that are similar for some portfo-

lios, but it seems that there is no collective agreement that has been reached on one unique

portfolio that is the most diversified, even if P8 is designated as a portfolio having one of the

highest diversification degree by all the measures, except for the SE.

12
This interpretation has been found on Risk Decomposed: Marginal Versus Risk Contributions
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6.1.3 Comparison with Overall Risk Performances of Portfolios

Now that we have analyzed the results provided by the di↵erent measures of diversification,

the logical following step is thus to link them with the portfolio risk measures and see if

the indications about the level of diversification in the portfolios given by the six measures

analyzed are well aligned with the level of risk. But before we begin, we want to mention

that since the volatility and VaR evolve in the same way, we choose to refer to the volatility

when describing the portfolio’ risk level.

First, if we begin with the analysis that has been made from the weights-based measures

SE and DD, we verify that P7 is indeed the portfolio with the lowest level of diversification

and by far. Its volatility is equal to 13.01% while the second least diversified portfolio has a

volatility only reaching 9.89%. Moreover, as indicated by its Sharpe Ratio, we can see that

this portfolio has a performance that is not very risk-adjusted. This conclusion about P7 is

also shared by the DR, the PDI and the RC entropy so it seems that almost all measures of

diversification, weights-based as well as risk-based, have reached the same conclusion about

the portfolio having the lowest diversification degree.

According to the ENB measure, it is P10 the least diversified but giving its volatility equal to

8.99%, it is not the case. Compared to other volatilities, P10 is indeed not the riskiest port-

folio, but it is also not the safest as indicated by the SE. The portfolio showing the smallest

volatility is P6 (6.36%) and it is also the one having the highest Sharpe Ratio (equal to 1.00).

It is interesting to notice that the portfolio which presents the most diversification according

to almost all the measures is a portfolio presenting an important level of concentration given

its SE (3.94 while the others have an entropy of over 4) compared to the other portfolios. A

portfolio that seems to be diversified according to the weights allocation criterion and the

risk minimization criterion is P6 which has a low 6.99% volatility, a high SE as well as a

high DD (4.51 and 0.38 respectively), and also high risk-based measures levels (RC entropy

= 3.19, ENB = 1.85, DR = 1.60 and PDI = 2.38).
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The review of the results showed us that the diversification concept of a portfolio is not

interpreted in the same way by the di↵erent measures we have analyzed. Indeed, the interpre-

tation given by each measure on the portfolio diversification can vary significantly depending

on the same portfolio. The following section is focused on portfolios that have been computed

thanks to the maximization of the measures of diversification analyzed. We will see if this

optimization allows us to obtain similar portfolios sharing some common characteristics.
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6.2 Maximum Diversification Portfolios: Results and

Analysis

The following step of our analysis is to create optimal portfolios constructed by the maximiza-

tion of the di↵erent measures of diversification. Concretely, the optimizations problems are

created with an objective function, which varies with the diversification’s measure optimized,

subject to the following two constraints: ! � 0 and
PN

i=1 = 1, meaning that short-selling is

not allowed. In addition, the initial weights vector which is used as an input of the optimiza-

tion problems is a vector of equal weights, meaning that the weight allocated in each asset

class is equal to 20%.

6.2.1 Results Analysis: Portfolios Compositions

The optimal allocations obtained are presented numerically in Table 6.1 below but a graphic

representation can be found in Figure 6.2.

We can observe that the composition of the portfolio obtained by maximizing the Shan-

non’s Entropy doesn’t change from the composition of the initial vector used. The resulting

portfolio is therefore an Equally Weighted Portfolio. This is not surprising since a portfolio

of equal weights already represents a portfolio with maximum diversification following the

SE characteristics. The portfolio obtained by maximization of the Diversification Delta is

also more or less equally allocated, which can be explained by the entropy-related nature of

the DD measure.

The compositions of the ENB, DR and PDI Portfolios are quite di�cult to understand if

we are strictly referring to the basic notion of diversification: the three of them are massively

loaded on a single asset class. ENB and DR Portfolios have more than 75% (75.31% and

75.54% respectively) of the total portfolio weights allocated to the Treasury Bonds and the

PDI Portfolio is composed at 78.68% of Corporate Bonds. Knowing the usual qualitative
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definition of portfolio diversification as expressed by the famous adage ”don’t put all your

eggs in one basket”, such compositions of portfolio are therefore a bit strange.

Finally, the RC Portfolio is more understandable compared to the three previously reviewed.

Indeed, the majority of the portfolio is invested in bonds, with 47.74% in Treasury Bonds and

26.61% in Corporate Bonds. The remaining part of the portfolio is invested at an equivalent

level in the equities, commodities and real estate.

Table 6.1: Maximum Diversification Portfolios Allocations (%)

SE Port. RC Port. ENB Port. DR Port. DD Port. PDI Port.

S&P 500 20.00 9.35 10.18 8.56 14.91 12.13
T. Bonds 20.00 47.74 75.31 75.54 22.21 0.01
Commod. 20.00 8.80 14.51 9.54 26.69 9.18

Corp. Bonds 20.00 26.61 0.00 0.00 20.46 78.68
Real Estate 20.00 7.49 0.00 6.37 15.74 0.00
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Figure 6.2: Maximum Diversification Portfolios
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6.2.2 Results Analysis: Risk and Scores of Measures

As we have seen, some composition of portfolios can be di�cult to understand. However,

those allocations have been obtained by maximizing the di↵erent measures of diversification

so normally the portfolios should present high scores of measures and thus high degree of

diversification.

If we look at Table 6.2 and at the results of the maximum SE Portfolio, which is basi-

cally an Equally Weighted Portfolio (EWP), we can see it has indeed the maximum SE value

of 5, meaning that it represents a highly diversified portfolio from the perspective of the

weights concentration. But it doesn’t seem to be the case for the other measures. According

to the ENB and DR measures, the EWP is the least diversified portfolio of the group. And if

we look at the VaR and volatility level, it is clearly the riskiest portfolio of all. Moreover, the

corresponding Sharpe Ratio of the EWP is very low (0.4), which indicates that the portfolio

is not well risk-adjusted.

Table 6.2: Risk and Performance Statistics of the Maximum Diversification Portfolios

SE Port. RC Port. ENB Port. DR Port. DD Port. PDI Port.

Aver. Ret. (%) 6.38 5.81 4.89 5.32 5.71 6.27
Variance (%) 0.72 0.20 0.19 0.17 0.69 0.25
Volatility (%) 8.53 4.52 4.43 4.15 8.31 5.02

VaR5 1.95 1.03 1.01 0.95 1.90 1.15
VaR1 2.75 1.46 1.43 1.34 2.68 1.62

Sharpe Ratio 0.40 1.28 1.10 1.28 0.69 1.25

SE 5.00 3.80 2.07 2.27 4.88 1.94
RC Entropy 3.31 5.00 2.74 3.81 3.06 2.46

ENB 1.23 2.11 3.06 2.58 1.58 2.47
DR 1.56 1.80 1.75 1.86 1.57 1.58
DR2 2.43 3.24 3.06 3.46 2.46 2.50
DD 0.37 0.43 0.42 0.45 0.37 0.37
PDI 2.31 2.48 2.75 2.77 2.29 3.06
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Another portfolio that presents a very high value for SE is the Diversification Delta Portfolio

(4.88). This is not very surprising since the DD is also an entropy-based measure, but it is

interesting to notice that the DD Portfolio has also an important level of risk with a volatility

equal to 8.31%. The two riskiest portfolios are thus those that are have been constructed

by minimizing the weights concentration (the maximization the entropy implies the mini-

mization of weights concentration). Therefore, following the observation of our results, it can

safely be said that the concentration criterion alone doesn’t seem to be adequate to construct

diversified portfolios.

Interesting also to notice the SE and DD portfolios have not a high diversification delta.

In fact, they have the lowest DD score with the PDI portfolio (0.37). This is quite surpris-

ing, especially for DD Portfolio because its construction is from the beginning based on the

maximization of the Diversification Delta. The portfolio with the highest DD score is the

one maximizing the Diversification Ratio of Choueifaty and Coignard (2008). Such portfolio

has actually be named ”Most Diversified Portfolio” by Choueifaty and Coignard and we can

see that it presents indeed some characteristics that we are looking for in a well-diversified

portfolio. First it is the less risky of the group with a volatility of 4.15 and it also shows the

highest Sharpe ratio (1.28). In addition, it has the highest score for most measures. The

only measure that doesn’t consider it as a well-diversified portfolio is the Shannon’s Entropy

(2.27), which is explained by the high percentage of its weights allocated to the Treasury

Bonds (75.54%). This extreme allocation is also traduced by a high percentage of risk con-

tributions in T-bills and a strong exposure to F4 as shown in Table B.4 and B.5 of Appendix

A. However, the portfolio seems to be e�ciently exposed to the di↵erent risk factors, as we

can see from the high scores of ENB, DR2 and PDI (2.58, 3.46 and 2.77 respectively).

The only portfolio having high scores in both entropy-based and risk-based measures is

the Risk Contribution Portfolio. The portfolio is constructed in a way that all asset classes

contributes to approximatively 20% of the total portfolio risk (this is not surprising given

that the portfolio maximizes Shannon’s entropy which uses the risk contributions instead of
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the weights as inputs). The result is that the portfolio has a RC Entropy of 5 and shows a

good distribution of weights as depicted by a score of 3.80 in SE. Moreover, its risk profile is

very low with a volatility of 4.52% and it shares the highest Sharpe Ratio of 1.28 with the DR

Portfolio. It also shows an e�cient exposure to all the risk factors (ENB=2.11, DR2=3.24

and PDI=2.48). Therefore, as the latter, the Risk Contribution Portfolio seems to present

lots of characteristics of a well-diversified portfolio, from the concentration perspective as

well as from the risk-minimization perspective.

We have seen it, the portfolios constructed with PCA-based measures (ENB and PDI Port)

are extremely concentrated, especially in the bonds, Treasury or Corporates. As a result,

they show a poor score in SE, as well as in RC entropy which implies that the risk is not well

distributed between the asset classes. However, given the construction of the portfolios, their

expositions to the various sources of risk is e�cient according to their scores for ENB, DR2

and PDI. The volatilities of ENB and PDI portfolios are also quite low (4.43% and 5.02%

respectively) and the Sharpe Ratios high (1.10 and 1.25 respectively). We are thus here in

the case of a portfolio construction which minimizes the risk but has an allocation of weights

that is extremely concentrated, which doesn’t really reflect the basic idea of diversification.
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6.2.3 Criteria of Diversification: Discussion

The results of our analysis have emphasized the point we have developed in the section 2.3:

some measures of diversification are only based on the risk minimization criterion and doesn’t

consider the weights concentration of a given portfolio. However, the only use of a measure

based on the entropy, like SE and DD, in order to quantify the diversification of a portfolio

doesn’t seem to be very e�cient. Indeed, our results have shown that a portfolio can have

weights that are well distributed between the di↵erent asset classes but have high volatility

level and thus a high risk profile. The Equally-Weighted portfolio created by maximizing the

Shannon’s entropy is a good example of that.

Moreover, following our analysis, the results we have obtained seem to indicate that the

Risk Contributions and the Diversification Ratio are more adequate measures in order to

quantify the diversification of a portfolio and also to create a well-diversified one. They are

indeed embodying the characteristics of diversification we have defined early on in Chapter

2 by providing high scores to portfolios which show a minimal risk profile but also small

concentrations in each asset classes.

Also, both measures verify some of the desirable properties that a measure of diversifica-

tion should have (section 2.2.2) like property 1, 2 and 3 as shown by Carmichael et al. (2015)

and Maillard, Roncalli and Teiletche (2009). However, since they don’t verify properties 4

and 5, we can be totally satisfied with the results they are providing. Also, the DR has been

critized by Lee (2011) and Taliaferro (2012) because the measure is not associated with a

clear objective function. Therefore, a portfolio constructed by maximizing the DR ”only has

desirable properties by accident” (Taliaferro (2012)).

The ENB and PDI have provided mitigates results because it doesn’t seem the measures

takes into account the concentration of the weights. As we have seen, the measures give

high scores, and thus indicate a high degree of diversification to portfolios that have weights
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concentrated on few asset classes. Carmichael et al. (2015) have also shown the measures are

not e�cient to quantify diversification. Based on Embrechts et al. (1999), they have demon-

strated that ENB has two major shortcomings: ”it does not distinguish between negative and

positive correlation (and thus cannot incorporate the benefits arising from negative correla-

tion) and it can only be computed if portfolio risk is measured by its variance or volatility,

which are adequate measures of risk only in the unlikely case that asset returns are normally

distributed”.
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Conclusion and Further Research

This thesis wished to provide a thorough study of six measures of portfolio diversification:

the Shannon’s Entropy, the Diversification Delta, the Diversification Ratio, the Risk Contri-

butions, the Portfolio Diversification Index and the E↵ective Number of Bets. The results

were obtained on a database composed of five asset classes. The data were collected from

Bloomberg and are based on a weekly basis for the period from 29 December 1989 to 4 May

2018.

The introduction of the thesis presented the research question that we wanted to tackle.

In short, we wanted to study the ability of the di↵erent measures to quantify the diversifica-

tion level of a portfolio from the perspective of the risk minimization criterion and from the

weights concentration criterion. After reviewing the relevant theoretical content in chapters

2, 3 and 4, chapter 5 detailed the methodology followed and chapter 6 finished with the

presentation and discussion of the results.

In this conclusion, we will be focus on the implications of the results and we will answer

to the question that has been raised at the beginning of the thesis. We will end up with the

limitations of our works as well as suggestions for future research.

67
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7.1 Implications of the Results

The main implication arising from our research is that it seems very di�cult to find a port-

folio which is well-diversified from the weights concentration perspective and also from the

risk minimization perspective at the same time. Indeed, the results we have obtained in our

analysis clearly show that if we want to obtain a portfolio with the minimum level of risk,

we have to do it at the cost of more concentration of the weights.

For example, based on our dataset, if we wanted to minimize the risk of a portfolio, it involved

more weights on the Treasury or Corporate Bonds. The Maximum Diversification Portfolios

constructed by maximization of the ENB, DR and PDI measures are good examples of that.

They concentrate more than 75% of their total weights in one of the two bonds asset class

to obtain a low risk profile. But such extreme allocations are not really in line with the

qualitative definition of diversification.

Another implication arising from our research is that the portfolios which have weights that

are (relatively) well distributed between the di↵erent asset classes are showing a riskiest

profile than the others. The SE and DD Portfolios reflect that pretty well. Moreover, it is

interesting to notice that their respective performances are not well risk-adjusted as repre-

sented by their Sharpe Ratio. This implication is quite surprising since lots of studies (we

can mention Bera and Park (2008), DeMiguel et al. (2005), Jorion (1985) as examples) have

been made on the subject of portfolios constructed with equal weights contribution and have

proven that such strategy (the 1/N asset allocation strategy to name it) delivers strong per-

formances. Therefore, we have decided to attribute the reason of such findings to the choice

of our database. Indeed, on one side we have the bonds which are characterized by a low

volatility and on the other side, we have the commodities, the equities and real estate which

are riskier asset classes.

Finally, the results of our study allow us to provide an answer to the research question

we have raised in chapter 1. Indeed, among the six di↵erent measures of portfolio diversifica-
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tion we have analyzed, the one which seems to capture the most e�ciently the diversification

from the two criteria perspective is the risk contributions measure. It is the only one which

seems to consider the risk minimization criterion as well as of the weights concentration cri-

terion when judging the diversification level of a portfolio. Moreover, the Risk Contribution

Portfolio formed by the maximization of the measure represents a portfolio where the risk

is equally distributed between the di↵erent asset classes and where the weights are not too

concentrated, as depicted by the score of its Shannons Entropy.
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7.2 Limitations and Suggestions for Further research

The results of our thesis need to be put into perspective. Indeed, as we have seen, the concept

of diversification is complex and hard to define in a financial context. In the framework of

our thesis, we have decided to compare the measures of diversification based on two criteria

but the choice of the latter can be challenged. Indeed, the absence of a common definition for

the concept of diversification in the literature makes it di�cult to perform a comparison of

di↵erent measures of diversification based on such imprecise definition. Moreover, the reality

of the market has proven that a large majority of academics and practitioners only consider

the risk minimization criterion when trying to diversify a portfolio. A clarification of the

concept is therefore something further research should put their attention on.

In addition, we choose to use the Shannon’s Entropy to analyze and quantify the concentra-

tions of a portfolio. However, such choice may not be the most appropriate. As a matter

of fact, several critics have been made about the use of Shannon’s Entropy as a measure of

portfolio diversification. For example, Carmichael et al. (2015) showed that the measure

doesn’t verify Property 2, 3, 4 and 5 that have been described in section 2.2.2. Therefore,

the use of another entropy in order to measure the diversification of a portfolio might be

necessary. The Rao’s Quadratic Entropy (Rao (1982)) has proved to be a strong candidate

by Carmichael et al. (2015). Such measure indeed verifies the five properties that are deemed

desirable for diversification measure and should be considered for further researches.

A last point would be about the choice of the variance/volatility and the VaR to measure

the risk of a portfolio. We have seen in section 2.1.2 that both variance and VaR can’t be

considered as coherent measures of risk. The variance violates the axiom of monotonicity

and the VaR does not obey the sub-additivity axiom. Therefore, it could be interesting to

analyze some measures of diversification which are considered as coherent measures of risk,

like the Conditional VaR (also called Expected Shortfall).
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Table A.4: Risk Contribution for Maximum Diversification Portfolios (%)

SE Port. RC Port. ENB Port. DR Port. DD Port. PDI Port.

S&P 500 29.17 19.99 16.94 18.77 19.04 19.41
T. Bonds 0.17 20.01 31.72 36.95 0.37 0.00
Commod. 31.22 20.00 51.34 27.04 52.72 16.56

Corp. Bonds 2.56 20.01 0.00 0.00 2.69 64.03
Real Estate 36.88 19.99 0.00 17.24 25.19 0.00

Cumulative (%) 100.00 100.00 100.00 100.00 100.00 100.00

Table A.5: Diversification Distribution for Maximum Diversification Portfolios (%)

SE Port. RC Port. ENB Port. DR Port. DD Port. PDI Port.

F1 95.45 54.89 38.56 52.31 87.74 30.34
F2 0.37 0.19 18.85 1.71 7.48 1.70
F3 0.15 0.09 2.01 0.05 0.01 3.28
F4 4.03 44.82 40.58 45.93 4.76 64.68

Cumulative (%) 100.00 100.00 100.00 100.00 100.00 100.00
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