
Available at: http://hdl.handle.net/2078.1/88461 [Downloaded 2024/04/23 at 19:38:58]

"An efficient FPGA Implementation of a flexible
JPEG2000 Decoder for Digital Cinema"

Descampe, Antonin ; Devaux, François Olivier ; Rouvroy, Gaël ; Macq, Benoît ; Legat, Jean-Didier

ABSTRACT

The image compression standard JPEG2000 proposes a large set of features, useful for today's multimedia
applications. Unfortunately, its complexity is greater than older standards. A hardware implementation
brings a solution to this complexity for real-time applications, such as Digital Cinema. In this paper, a
decoding scheme is proposed with two main characteristics. First, the complete scheme takes place in
an FPGA without accessing any external memory, allowing integration in a secured system. Secondly,
a customizable level of parallelization allows to satisfy a broad range of constraints, depending on the
signal resolution.

CITE THIS VERSION

Descampe, Antonin ; Devaux, François Olivier ; Rouvroy, Gaël ; Macq, Benoît ; Legat, Jean-Didier. An
efficient FPGA Implementation of a flexible JPEG2000 Decoder for Digital Cinema.EUSIPCO 2004 - Eurasip
2004 European Signal Processing Conference (Vienna, Austria, September 6-10 2004). In: Proceedings of
the EUSIPCO 2004 Conference, 2004 http://hdl.handle.net/2078.1/88461

Le dépôt institutionnel DIAL est destiné au dépôt
et à la diffusion de documents scientifiques
émanant des membres de l'UCLouvain. Toute
utilisation de ce document à des fins lucratives
ou commerciales est strictement interdite.
L'utilisateur s'engage à respecter les droits
d'auteur liés à ce document, principalement le
droit à l'intégrité de l'œuvre et le droit à la
paternité. La politique complète de copyright est
disponible sur la page Copyright policy

DIAL is an institutional repository for the deposit
and dissemination of scientific documents from
UCLouvain members. Usage of this document
for profit or commercial purposes is stricly
prohibited. User agrees to respect copyright
about this document, mainly text integrity and
source mention. Full content of copyright policy
is available at Copyright policy

https://hdl.handle.net/2078/copyright_policy
https://hdl.handle.net/2078/copyright_policy

AN EFFICIENT FPGA IMPLEMENTATION OF A FLEXIBLE JPEG2000 DEC ODER
FOR DIGITAL CINEMA

Antonin Descampe1,a, François Devaux1, Gäel Rouvroy2, Benôıt Macq1, and Jean-Didier Legat2

1Communications and Remote Sensing Lab., Stevin Building
E-mail : {descampe, devaux, macq}@tele.ucl.ac.be

2Microelectronics Lab., Maxwell Building
E-mail : {rouvroy, legat}@dice.ucl.ac.be

Université catholique de Louvain
Place du Levant, B-1348 Louvain-la-Neuve

Belgium

ABSTRACT

The image compression standard JPEG2000 proposes a large set of
features, useful for today’s multimedia applications. Unfortunately,
its complexity is greater than older standards. A hardware imple-
mentation brings a solution to this complexity for real-time applica-
tions, such as Digital Cinema. In this paper, a decoding scheme is
proposed with two main characteristics. First, the complete scheme
takes place in an FPGA without accessing any external memory,
allowing integration in a secured system. Secondly, a customizable
level of parallelization allows to satisfy a broad range of constraints,
depending on the signal resolution.

1. INTRODUCTION

Development and diversification of computer networks as well as
emergence of new imaging applications have highlighted various
shortcomings in actual image compression standards, such as JPEG.
The lack of resolution or quality scalability is clearly oneof the
most significant drawbacks. The new image compression standard
JPEG2000 [1] enables such scalability : according to the avail-
able bandwidth, computing power and memory resources, differ-
ent resolution and quality levels can be extracted from a single bit-
stream. In addition to this, the JPEG2000 baseline (part I ofthe
standard) also proposes other important features: good compression
efficiency, even at very low bit rates, lossless and lossy compression
using the same coder, random access to the compressed bit-stream,
error resilience, region-of-interest coding. A comprehensive com-
parison of the norm with other standards, performed in [2], shows
that from a functionality point of view JPEG2000 is a true improve-
ment.

The techniques enabling all these features are a wavelet trans-
form (DWT) followed by an arithmetic coding of each subband.
The drawback of these techniques is that they are computationally
intensive, much more for example than a cosine transform (DCT)
followed by an Huffman coding, which are those used in JPEG [2].
This complexity can be a problem for real-time applications.

Digital Cinema is one of these real-time applications. As ex-
plained in [3], edition, storage or distribution of video data can
largely take advantage of the JPEG2000 feature set. Moreover, a
video format named Motion JP2000 has been designed, which en-
capsulates JPEG2000 frames and enables synchronization with au-
dio data [4]. Nevertheless, a high output rate is required atthe de-
coding process and in order to meet this real-time constraint, a ded-
icated implementation of the most complex parts of the algorithm is
needed.

In this paper, a complete JPEG2000 decoder architecture in-
tended for video decoding is proposed. It has been implemented
in VHDL and synthesized in an FPGA (Xilinx XC2V6000 [5]). It

a A.Descampe is funded by the Belgian NSF.

Tile

Image

HL

LH HH

Wavelet

Transform

cblk cblk

cblk cblk

cblk cblk

Entropy

coding

Segment

Segment

Segment

. . .

Rate

allocation

+ Bit-stream

organization

header packet packet header

JPEG2000 code-stream

Figure 1: Coding steps of the JPEG2000 algorithm.

takes about 90% of the chip and the estimated frequency of oper-
ation is 90 Mhz. The proposed architecture decodes images line
by line without accessing any external memory. It is highly paral-
lelized and depending on available hardware resources, it can eas-
ily be adapted to satisfy various formats, from Digital Cinema to
Video-on-Demand, and specific constraints like secure decoding,
lossless capabilities, and higher precision (over 8 bits per pixel).

The rest of the paper is organized as follows. Section II briefly
describes the JPEG2000 algorithm. In Section III, we present our
decoder architecture as well as our implementation choices. The
performance of the system is discussed in Section IV and the paper
is concluded in Section V.

2. JPEG2000 OVERVIEW

In this Section, concepts and vocabulary useful for the understand-
ing of the rest of the paper are presented. For more details, please
refer to [1] or to [6]. Although adecoder architecture was achieved,
encoding steps are explained here because their succession iseasier
to understand. Decoding process is achieved by performing these
steps in the reverse order. Figure 1 presents the coding blocks which
are explained below.

First of all, the image is split into rectangular blocks called
tiles. They will be compressed independently from each other. An
intra-components decorrelation is then performed on the tile: on
each component adiscrete wavelet transformis carried out. Suc-
cessive dyadic decompositions are applied. Each of these uses a
bi-orthogonal filter bank and splits high and low frequencies in the
horizontal and vertical directions into four subbands. Thesubband
corresponding to the low frequencies in the two directions (contain-
ing most of the image information) is used as a starting pointfor the
next decomposition, as shown in Fig. 1. Two filter banks may be
used : either theLe Gall (5,3) filter bank prescribed for lossless en-
coding or either theDaubechies(9,7) filter bank for lossy encoding.

Every subband is then split into rectangular entities called code-
blocks. Each code-block will be compressed independently from

the others using acontext-based adaptative entropy coder. It re-
duces the amount of data without losing information by remov-
ing redundancy present in the binary sequence. “Entropy” means
it achieves this redundancy reduction using the probability esti-
mates of the symbols. Adaptivity is provided by dynamicallyup-
dating these probability estimates during the coding process. And
“context-based” means the probability estimate of a symbolde-
pends on its neighborhood (its “context”). Practically, entropy cod-
ing consists of

• Context Modeling: the code-block data is arranged in order to
first encode the bits which contribute to the largest distortion re-
duction for the smallest increase in file size. In JPEG2000, the
Embedded Block Coding with Optimized Truncation (EBCOT)
algorithm [8] has been adopted to implement this operation.
The coefficients in the code-block are bit-plane encoded, start-
ing with the most significant bit-plane. Instead of encodingthe
entire bit-plane in one coding pass, each bit-plane is encoded in
three passes with the provision of truncating the bit-stream at
the end of each coding pass. During a pass, the modeler suc-
cessively sends each bit that needs to be encoded in this passto
the Arithmetic Coding Unit described below, together with its
context.

• Arithmetic Coding: the modeling step outputs are entropy
coded using a MQ-coder, which is a derivative of the Q-coder.
According to the provided context, the coder chooses a prob-
ability for the bit to encode, among predetermined probability
values supplied by the JPEG2000 Standard and stored in a look-
up table. Using this probability, it encodes the bit and progres-
sively generates code-words, called segments.

During the rate allocationand bit-stream organizationsteps,
segments from each code-block are scanned in order to find opti-
mal truncation points to achieve various targeted bit-rates. Qual-
ity layers are then created using the incremental contributions from
each code-block. Compressed data corresponding to the samecom-
ponent, resolution, spatial region and quality layer is then inserted
in a packet. Packets, along with additional headers, form the final
JPEG2000 code-stream.

3. PROPOSED ARCHITECTURE

In this section, we first present the constraints we used for our
JPEG2000 decoder architecture. Implementation choices made in
order to meet these constraints are then explained. Finally, the com-
plete architecture is presented.

3.1 Constraints

As our decoder is designed for real-time video processing, three
main constraints have been identified :

• High output bit-rate: all implementation choices have been
made in order to increase this bit-rate. With the Xilinx
XC2V6000 used, we wanted our architecture to satisfy at least
the 1080/24p HDTV format. This means an output rate of about
1200 megabits per second (Mbps) for 8-bit 4:4:4 images.

• Security: no data flow may transit outside of the FPGA if it
is not crypted or watermarked. This constraint enables a com-
pletely secured decoding scheme, as the decompression block
might be inserted between a decryption block and a watermark
block, all these three blocks being in the same FPGA (Fig. 2).

• Flexibility : computationally intensive parts of the decoding
process must be independent blocks which can easily be dupli-
cated and parallelized. This allows the proposed architecture to
satisfy a broad range of output bit-rate constraints and therefore
to be easily adapted to upcoming Digital Cinema standards.

3.2 Implementation choices

To meet these constraints, the following implementation choices
have been made.

Decryption Decompression Watermarking

FPGA
Encrypted

and compressed

bit-stream

Watermarked

bit-stream

Figure 2: A secured decoding scheme.

HL2

LH2

LL3 HL3

LH3 HH3

HH2

cblk 1

cblk 2

. . .

cblk n

Figure 3: Customized code-block dimensions.

No external memoryhas been used which meets the security
constraint and also increases the output bit-rate. As internal mem-
ory resources are limited, large image portions cannot be stored and
the decoding process must be achieved in a line-based mode.

In order to increase the output bit-rate, threeparallelizationlev-
els have been used. The first one is a duplication of the entirear-
chitecture which allows various tiles to be decoded simultaneously.
The second parallelization level tries to compensate the compute
load difference between the entropy decoding unit (EDU) andthe
inverse wavelet transform (IDWT). The EDU is indeed much more
complex than the IDWT and must therefore be parallelized. This is
possible as each code-block is decoded independently from the oth-
ers. Finally, a third level of parallelization, known in theJPEG2000
standard as the parallel mode, is obtained inside each EDU. By de-
fault, each bit-plane is decoded in three successive passesbut spec-
ifying some options ([7], p.508) during the encoding process makes
it possible to decode the three passes simultaneously. Thisimplies
that each EDU contains one Context Modeling Unit (CMU) and
three Arithmetic Decoding Units (ADU).

Another option specified during the encoding process that in-
creases the output bit-rate of the decoder is thebypass mode
([7],p.504). The more correlated the probability estimates of the
bits to encode are, the more efficient the ADU is. This is especially
the case in the most significant bit-planes while the last bit-planes
are most of the time totally uncorrelated. With the bypass mode
enabled, these last bit-planes are therefore raw-coded1.

Some choices aboutimage partitioninghave also been made. A
512x512 tile partition avoids an external memory use and enables
one of the parallelization level mentioned above. Inside each tile,
even if the code-block maximum size specified in the norm is 4096
pixels, code-blocks in our implementation do not exceed 2048 pix-
els. As we shall see, this implies no significant efficiency loss but al-
lows a 50% memory resources saving. Furthermore, the code-block
dimensions have been chosen so that each of them systematically
covers the width of the subband to which it belongs (Fig. 3). As
the IDWT processes the subband data line by line, such code-block
dimensions enables a line-based approach of the overall process,
reducing the size of the image portions to store between EDU and
IDWT.

These last implementation choices (parallel mode, bypass mode
and image partitioning) imply an efficiency loss during the encoding
process. Table 1 shows the correspondingpsnr losses for various
compression ratio. In comparison to the improvements provided by
these choices, quality losses are quite reduced, especially for small
ratios which are the ones used in the targeted applications.

Another choice has to be made in order to enable a line-based

1This means they are inserted “as is” in the bit-stream.

Compression PSNR [dB]
ratio Default options Options used
1:50 37,36 35,83 (-1,53)
1:25 40,10 38,74 (-1,36)
1:10 43,25 42,40 (-0,85)
1:5 45,85 45,31 (-0,54)

Table 1: Average PSNR for a set of images 1920x1080, 8 bpp

processing of the image. To reconstruct one line of the original im-
age, the IDWT needs the corresponding line at each resolution. In
order to minimize the image portions size to store, data inside the
bit-stream is organized so that the whole compressed data corre-
sponding to a specific spatial region of the image is contiguous in
the bit-stream. Various progression orders are allowed during the
JPEG2000 encoding process and one of them enables such kind of
feature.

A last implementation choice aims at achieving some
lightweight operations in software. These operations are indeed es-
sentially data handling and are easily implemented using pointers
in C. To keep the decoding process secure, headers and markers
(needed by these operations) are not crypted and only the packet
bodies are.

As it can be seen, some options, known by any universal
JPEG2000 encoder, must be specified during the encoding process.
Our architecture is unable to decode a JPEG2000 code-streamthat
has not been encoded using these options. As this architecture is
dedicated to decode video data at the highest output bit-rate, we did
not consider it efficient to realize a universal decoder.

3.3 Architecture

Figure 4 presents the hardware part of our architecture. Each EDU
contains three ADU’s which reflects the parallel mode. The by-
pass mode is also illustrated by the bypass line under each ADU.
The Dispatch IN and OUT blocks are used to dissociate the entropy
decoding step from the rest of the architecture and enable the flexi-
bility mentioned above.

FIFO

FIFO

D
 I S

 P
 A

 T
 C

 H
 I N

PCI

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

.

.

.

C
M

U

FIFO

D
 I S

 P
 A

 T
 C

 H
 O

 U
 T

FIFO

FIFO

FIFO

(4x)

FIFO

(3x)

FIFO

(3x)

FIFO

(3x)

FIFO

(3x)

IDWT 4

IDWT 3

IDWT 2

IDWT 1

IDWT 0

DC Shift

to
w

a
rd

s
 th

e
 d

is
p

la
y

ADU

ADU

ADU

C
M

U

ADU

ADU

ADU

C
M

U

ADU

ADU

ADU

EDU

IDWT

.

.

.

.

.

.

EDU

EDU

Figure 4: Proposed architecture.

When Dispatch IN receives a new JPEG2000 code-stream from
the PCI, it chooses one of the free EDU’s and connects the data
stream to it. Dispatch OUT retrieves decompressed data fromeach
EDU and connects it to the correct subband FIFO. In this way, a
maximum of EDU’s is always used simultaneously.

Instead of explaining the whole architecture in details, we
present below some characteristics from the ADU, CMU and IDWT
blocks that are worth being noticed.

pass 1

pass 2

pass 3

RAM

Analysed bits

Figure 5: State variables transfer between the three passes.

3.3.1 Context Modeling Unit

During the Context Modeling step, each code-block is decoded
along its bit-planes. As mentioned above, the CMU decodes the
bits of a given bit-plane in three passes, each bit being decoded by
one of these three passes. Once the CMU decides to decode a bit, it
sends its context to the ADU and waits for the decoded bit. In order
to determine in which pass a bit need to be decoded, various state
variables are held up to date by the CMU.

The CMU architecture is based on the one developed by Andra
et al. in [9] and proposes various optimizations, most of them due
to the use of the parallel mode.
• As shown in Fig. 5, several registers are used to communicate

the state variables from one pass to another, offering significant
memory reduction.

• A unique counter for the three passes manages the code-block’s
characteristics, which enables highly simplified control parts for
the three blocks. It synchronizes the passes and controls the
code-block’s borders. This allows the three entities to work the
same way either they decode bits inside a code-block or either
on its border.

• As the EBCOT algorithm complexity makes the CMU the slow-
est component of the decoder, the memories designed to receive
the decoded code-blocks are able to take care of two code-
blocks at a time. In this way, the EDU can begin to decode a
new code-block while the previous one is still being processed
by the IDWT.

3.3.2 Arithmetic Decoding Unit

During the Arithmetic Decoding step, the ADU uses the context
provided by the CMU, together with the compressed bit-stream, to
output the decoded bit. The proposed architecture has several orig-
inal characteristics.
• The main control state machine consists of only 5 states. Fur-

thermore, the CMU is waiting for the ADU answer during only
three of them. Therefore a symbol may be decoded in 3 clock
cycles. The bypass mode still improves this result.

• In a direct implementation of the JPEG2000 Standard [1], the
bit-stream enters the ADU one bit at a time (left-shift oper-
ations). In our architecture, a speculative computation ofthe
number of left-shits is performed and all the shifts are thenreal-
ized in one clock cycle.

• The compressed data loading is performed in an independent
process and during non-critics moments of the whole decoding
process, i.e. when the CMU is not waiting for an answer.

3.3.3 Inverse DWT

In JPEG2000, the DWT is implemented using a lifting-based
scheme [10]. Compared to a classic implementation, it reduces the
computational and memory cost, allowing in-place computation.

To reconstruct one resolution level, an horizontal transforma-
tion is applied first, followed by a vertical one. In our architecture,
further detailed in [11], both transformations are entirely pipeline :
every new coefficient “pushes” the already present ones a little more

Slices 30,323 over 33,792 (89.7%)
Look-Up Tables 51,416 over 67,584 (76.1%)

RAM blocks (16kbits) 89 over 144 (61.8%)
CLK1 (EDU’s & Dispatch) 89.9 MHz

CLK2 (IDWT) 75,9 MHz

Table 2: Synthesis results of the decoding scheme in a Xilinx
XC2V6000

Compression 10-EDU IDWT Complete Scheme
ratio [Mbps] [Mbps] [#imgs(1920x1080)/sec]
1:10 728.0 2 440 14.63
1:20 1 290 2 440 25.92
1:32 2 137 2 440 42.94

Table 3: Bit-rates achieved by the Proposed architecture

through the pipeline, toward the output. Moreover, an efficient im-
plementation of the lifting scheme allows to buffer only twoentire
lines of the level being reconstructed, enabling a line-based image
processing.

The whole IDWT architecture has already been presented in
Fig. 4. In comparison with Chrysafis who presented in [12] such
kind of architecture, various optimizations have been made. First,
as mentioned above, the lifting scheme has been adopted for each
level. Second, interconnection of the blocks has been carefully stud-
ied and simplified. Each IDWTi-block (i = 0..4) reconstructs one
resolution level and behaves at its output like a FIFO. Therefore,
each block “sees” four FIFO’s as its inputs. Finally, the pipeline
characteristic, already present inside each level has beenextended
to the whole architecture. Thanks to the progression order chosen,
the sixteen FIFO’s (one per subband) are filled as uniformly as pos-
sible. As soon as its input FIFO’s contains data (including the one
simulated by the preceding level), an IDWTi-block begins to re-
construct its level. When the pipeline is full, coefficientsof the
reconstructed image are provided line by line at each clock cycle.

4. PERFORMANCES

The architecture presented has been implemented in VHDL and
synthesized and routed in an FPGA (Xilinx XC2V6000) using 10
EDU in parallel. Table 2 presents the resources used with this con-
figuration.

Table 3 presents the bit-rates achieved by our architecturewith
the configuration described above. 24bpp-images were encoded
using options explained in section 3.2. As we can see, this con-
figuration yet enables real-time 8-bit 4:4:4 video decodingfor the
1080/24p HDTV format and a compression ratio of 20. For a com-
pression ratio of 11, the same format is supported with 8-bit4:2:2
images.

Several other JPEG2000 hardware implementations have been
developed. The main differences between two recent ones andthe
proposed architecture are listed in Table 4.

Barco Arizona Proposed
Silex[13] Univ.[14] architecture

Technology FPGA ASIC 0.18µm FPGA
XC2V3000 XC2V6000

Tile size 128x128 128x128 512x512
Cblk size (max.) 32x32 32x32 64x32
Wavelet filters (5,3)-lossless (5,3)-lossless (5,3) lossy and

used (9,7)-lossy (9,7)-lossy lossless
Entropy coders 8 3 10

Table 4: Differences between two recent implementations and the
proposed architecture

5. CONCLUSION

In this paper, we have proposed a hardware JPEG2000 decoder for
real-time applications such as Digital Cinema. It has been imple-
mented in VHDL, and synthesized and routed in an FPGA.

Various previous contributions have been joined together and
optimized to provide a complete, flexible, secure, high performance
decoding scheme.

The system proposed is secure because no external memory is
used and the data flow is protected during the whole decoding pro-
cess.

Thanks to three different levels of parallelization and a line-
based data processing, high output rates are achieved. Witha com-
pression ratio of 20, the configuration synthesized in the FPGA sup-
ports the 1080/24p HDTV format for 8-bit 4:4:4 images.

Finally, the system proposed is highly flexible. In order to sat-
isfy a broad range of constraints, including upcoming standards,
two of the three parallelization levels are very easily customizable.
They allow the proposed architecture to fit in any FPGA without
further development.

REFERENCES

[1] ISO/IEC 15444-1: Information Technology-JPEG 2000 image
coding system-Part 1: Core coding system, 2000.

[2] D. Santa-Cruz, R. Grosbois, and T. Ebrahimi, “JPEG2000 per-
formance evaluation and assessment”,Signal Processing: Im-
age Communication, vol. 17, no. 1, pp. 113-130, January 2002.

[3] S. Foessel, “Motion JPEG2000 and Digital Cinema”, ISO/IEC
JTC 1/SC 29/WG1 N2999, July 2003.

[4] ISO/IEC 15444-3: Information Technology-JPEG 2000 image
coding system-Part 3: Motion JPEG 2000, 2002.

[5] VirtexTM-II platform FPGAs: Complete Data Sheet. Xilinx.
[Online]. Available: http://www.xilinx.com.

[6] M. Rabbani and R. Joshi, “An overview of the JPEG2000 still
image compression standard”,Signal Processing: Image Com-
munication, vol. 17, no. 1, pp. 3-48, January 2002.

[7] D. Taubman and M. W. Marcellin,JPEG2000: Image Com-
pression Fundamentals, Standards and Practice, Kluwer Aca-
demic, Boston, MA, USA, 2002.

[8] D. Taubman, “High performance scalable image compression
with EBCOT”, IEEE Trans. on Image Processing, vol. 9, no.
7, pp. 1158-1170, July 2000.

[9] K. Andra, T. Acharya, and C. Chakrabarti, “Efficient VLSI
implementation of bit plane coder of JPEG2000”, inProc. SPIE
Int. Conf. Applications of Digital Image Processing XXIV, vol.
4472, pp. 246-257, December 2001.

[10] I. Daubechies and W. Sweldens, “Factoring wavelet trans-
forms into lifting steps”, J. Fourier Anal. Applic., vol. 4, pp.
247-269, 1998.

[11] G. Dillen and B. Georis, “JPEG 2000 : étude et conception du
décodeur arithmétique et de la transformée en ondelettes”. Mi-
croelectronics Laboratory (DICE), UCL, Belgium, June 2001.

[12] C. Chrysafys and A. Ortega, “Line based, reduced memory,
wavelet image compression”,IEEE Trans. on Image Process-
ing, vol. 9, no. 3, pp. 378-389, March 2000.

[13] JPEG2000 Decoder: BA111JPEG2000D Factsheet.
Barco-Silex, October 2003. [Online]. Available:
http://www.barco.com.

[14] K. Andra, T. Acharya, and C. Chakrabarti, “A High-
Performance JPEG2000 Architecture”,IEEE Trans. on Circuits
and Systems for Video Technology, vol. 13, no. 3, pp. 209-218,
March 2003.

