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"Assessing pesticide leaching at the regional scale :
a case study for atrazine in the Dyle catchment/"

Leterme, Bertrand

ABSTRACT

The overall objective of this thesis is to better understand and assess pesticide leaching at the regional
scale, using both the analysis of monitoring data and spatially distributed modelling. Atrazine contamination
of the Brusselian aquifer (central Belgium) is poorly understood. Considerable uncertainty surrounds
whether the pollution is agricultural or non-agricultural in origin. The spatial and temporal covariance
of atrazine concentrations was studied by fitting semivariogram models to monitoring data. Correlation
ranges were found to be 600 metres and 600-700 days. A non-parametric one-way ANOVA found a
strong relationship between mean concentrations and land use, whilst other environmental variables were
found to be less important. Higher levels of pollution were detected in areas dominated by urban land use
suggesting that atrazine residues in groundwater resulted from non-agricultural applications. Modelling
pesticide leaching at the regional scale (Dyle catchment) was used to assess groundwater vulnerability.
Different approaches to process soil information were tested with both a linear (modified Attenuation
Factor) and a non-linear (GeoPEARL) leaching model. The CI (calculate first, interpolate later) and IC
(interpolate first, calculate later) approaches were identical for the linear model, but differences in the
amount of leaching were found for the non-linear model. The CI approach would be expected to give better
results than IC, but the CA (calculate alone) approach is probably the best method if no spatial output is
required. Finally, a methodology was ...

CITE THIS VERSION

Leterme, Bertrand. Assessing pesticide leaching at the regional scale : a case study for atrazine in the Dyle
catchment/.  Prom. : Vanclooster, Marnik ; Rounsevell, Mark http://hdl.handle.net/2078.1/5345

Le dépôt institutionnel DIAL est destiné au dépôt
et à la diffusion de documents scientifiques
émanant des membres de l'UCLouvain. Toute
utilisation de ce document à des fins lucratives
ou commerciales est strictement interdite.
L'utilisateur s'engage à respecter les droits
d'auteur liés à ce document, principalement le
droit à l'intégrité de l'œuvre et le droit à la
paternité. La politique complète de copyright est
disponible sur la page Copyright policy

DIAL is an institutional repository for the deposit
and dissemination of scientific documents from
UCLouvain members. Usage of this document
for profit or commercial purposes is stricly
prohibited. User agrees to respect copyright
about this document, mainly text integrity and
source mention. Full content of copyright policy
is available at Copyright policy

https://hdl.handle.net/2078/copyright_policy
https://hdl.handle.net/2078/copyright_policy


Chapter 7

Including Spatial Variability in

Monte Carlo Simulations of

Pesticide Leaching

The previous chapter showed that the choice of interpolating or calculating

first may have significant consequences in the case of non-linear GeoPEARL

simulations. However, this represents only a small part of the uncertainty

associated with spatially distributed simulations of GeoPEARL. In this chap-

ter, a stochastic methodology is proposed to adapt a classical parameter un-

certainty analysis to the spatial assessment of pesticide leaching potential.

7.1 Outline

A methodology is developed to quantify the uncertainty in a pesticide leach-

ing assessment arising from the spatial variability of non-georeferenced pa-

rameters. A Monte Carlo analysis of atrazine leaching is performed in the

Dyle river catchment (Belgium) with pesticide half-life (DT50) and topsoil

organic matter (OM) content as uncertain input parameters. Atrazine DT50

is taken as a non-georeferenced parameter, so that DT50 values sampled

from the input distribution are randomly allocated to spatial plots for every

simulation. OM content is a georeferenced parameter, so that each spatial

plot has a fixed uncertainty distribution. Spatially variable DT50 values are

found to have a significant influence on the amount of simulated leaching.

In the stochastic simulation, concentrations exist above the regulatory level

of 0.1 µg/L, but virtually no leaching occurs in the deterministic simulation.
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136 Chapter 7. Including Spatial Variability in Monte Carlo Simulations

It is axiomatic that substance parameters (DT50, sorption coefficient...) are

spatially variable, but pesticide registration procedures currently ignore this

fact. Including this spatial variability would have significant consequences

for future registration policies, especially if risk assessments are implemented

in a spatially distributed way1.

7.2 Introduction

Leaching modelling of plant protection products (PPPs) within the soil-crop

continuum is often used in the assessment of the risk of groundwater contam-

ination by surface applied PPPs. For example, the EU registration directive

EU/91/414 (European Commission, 1991) stipulates that modelled ground-

water concentrations of PPP may not exceed 0.1 µg/L for a single product.

Modelling procedures for groundwater risk assessment are standardised by

the FOCUS working groups following a tiered approach (FOCUS, 2000). At

the European level, leaching models are used in combination with a limited

number of standard scenarios to make conservative predictions of PPP con-

centrations in groundwater, across the european agricultural areas. Four

pesticide leaching models are currently used in these predictions: PEARL

(Tiktak et al., 2000), MACRO (Larsbo and Jarvis, 2003), PELMO (Klein,

1995) and PRZM (Carsel et al., 1998). At the level of individual mem-

ber states a variety of assessment methods are applied (e.g. van der Linden

et al., 2004). In the Netherlands, for example, assessments are based on

the GeoPEARL model (Tiktak et al., 2002, 2003), which couples PEARL

with spatial data derived from standard Geographical Information Systems.

Tiktak et al. (2004) demonstrated that a similar approach could be adopted

at the pan-european level. This would take account of soil and climate vari-

ability and thus allow the identification of potential high or low risk areas.

The harmonisation of pan-european risk assessment methods is currently in

progress (FOCUS, 2007).

Unfortunately, uncertainty is often insufficiently addressed in risk assess-

ment. Dubus et al. (2003b) described the different sources of uncertainty in

1This chapter is based on an article by Leterme B., Vanclooster M., van der Lin-
den A.M.A., Tiktak A. and Rounsevell M.D.A.; submitted to Environmental Science &

Technology.
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pesticide fate modelling. Uncertainty is present in the primary data (phys-

ical, chemical and environmental properties), arising (i) from the spatial

and temporal variability of environmental variables, (ii) from field-based

sampling procedures and (iii) from laboratory analysis. There is also un-

certainty in the estimation of model input parameters. This includes the

direct estimation of e.g. pesticide half-life (DT50) from laboratory data,

even though nearly identical results can be obtained with identical or simi-

lar boundary conditions and settings (FOCUS, 2006), and the use of indirect

methods such as pedotransfer functions and/or the interpolation of spatially

referenced variables (Dubus et al., 2003b; Brown and Heuvelink, 2005). The

structure and the solution of the model provide additional sources of uncer-

tainty (Addiscott et al., 1995; Brown and Heuvelink, 2005). Dubus et al.

(2003b) note that typical probabilistic approaches (e.g. Monte Carlo analy-

sis) often ignore the latter two sources of uncertainty.

Understanding the consequences of uncertainty is needed to improve risk

assessment as a decision-support tool (Brown and Heuvelink, 2005). This

paper addresses uncertainty in spatially distributed PPP leaching modelling.

A distinction is made between georeferenced and non-georeferenced param-

eters. For a spatially distributed simulation, georeferenced parameters are

defined as parameters that were already distributed in deterministic simu-

lations (e.g. soil properties), while non-georeferenced parameters are those

that were considered to be spatially constant (e.g. constant pesticide prop-

erties). This approach is analogous to the distinction between uncertainty

and variability in second-order Monte Carlo simulations (EUFRAM, 2005;

Wu and Tsang, 2004). This study differs from second-order Monte Carlo

simulations in using spatially distributed parameters. At a given location

georeferenced parameters are uncertain, while non-georeferenced parameters

display spatial variability.

Studies examining the effect of spatial variability on PPP leaching by

stochastic simulation have suggested that spatial variability can significantly

affect the leached fractions of PPPs (Jury and Gruber, 1989; van der Zee

and Boesten, 1991). In general, stochastic simulations are likely to generate

extreme events that are not captured within an ‘average’, deterministic sim-

ulation. Building on this, a number of modelling studies have used Monte

Carlo techniques to include the spatial variability of soil and/or pesticide

properties in risk assessment methods. Earlier work focused mainly on the
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variability of soil properties within soil units, while pesticide properties were

kept constant (Carsel et al., 1988; Petach et al., 1991; Foussereau et al., 1993;

Zhang et al., 1993). Soutter and Pannatier (1996) performed a Monte Carlo

analysis on soil profiles (i.e. on point support) and then interpolated output

percentiles to produce a vulnerability map.

Monte Carlo simulation was also applied to non-georeferenced parame-

ters. Zacharias et al. (1999) developed a stochastic framework at the field

scale in which multiple realizations of a hypothetical field were undertaken

with the same statistical distribution of soil properties. The Monte Carlo

simulation, however, considered all soil and pesticide parameters as non-

georeferenced (i.e. the outputs can only be examined at the field-scale).

Lindahl et al. (2005) combined georeferenced field management parameters

(such as pesticide application dose) with a range of non-georeferenced pa-

rameters to study the contamination of surface water. They found that

simulated values of pesticide loads reached concentrations similar to mea-

surements as a result of summer outflows captured in the stochastic ap-

proach.

The objective of this study is to determine whether leaching at the re-

gional scale is significantly affected by the inclusion of the spatial variability

of non-georeferenced parameters. This objective has been tackled by refin-

ing, applying and evaluating a Monte Carlo approach that samples both

georeferenced and non-georeferenced parameters in a spatially distributed

assessment of PPP leaching. A spatially distributed stochastic simulation

of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) leaching

was performed for a well documented case study, with soil organic mat-

ter content (OM; georeferenced parameter) and pesticide half-live (DT50;

non-georeferenced) as the uncertain input parameters. The issues of repro-

ducibility and truncation levels of the input probability density functions

were also addressed. Finally, although data availability limits direct valida-

tion, the results are discussed with respect to information about groundwater

contamination in the study area.
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7.3 Material and methods

The work presented in this chapter was undertaken in the part of the Dyle

catchment located in the Walloon region. Chapter 3 provided a description

of the study area.

7.3.1 GeoPEARL: model description and parameterisation

GeoPEARL couples the PEARL model (Tiktak et al., 2000) with spatial

data derived from standard Geographical Information Systems. PEARL is

a one-dimensional, dynamic, multi-layered model of the fate of pesticides

and relevant transformation products in the soil-plant system. The model is

linked to the Soil Water Atmosphere Plant model (SWAP; Van Dam, 2000)

for the hydrology. Soil water flow is described with the Richards’ equa-

tion and reference evapotranspiration is calculated with the FAO modified

Penman-Monteith approach (Allen et al., 1998). Pesticide transport is sim-

ulated with the convection-dispersion equation. Sorption onto the soil solid

phase is described with a Freundlich isotherm. The degradation of pesti-

cides is described with a first-order rate equation and a number of reduction

factors, which account for the influence of temperature, soil moisture and

soil depth (Boesten and van der Linden, 1991).

Annual (spring) applications of atrazine were simulated for silage maize

cropping. Atrazine coefficient of sorption on organic matter (KOM ) was as-

sumed constant (74 L.kg−1). The simulation period was fixed as 1980-2002,

including six initialisation years. Annual average concentrations of atra-

zine at 1 m depth were extracted from the results by dividing the annual

cumulative leached amount of pesticide with the annual cumulative water

drainage. Climatic variability was ignored, as test simulations in the catch-

ment showed it to be unimportant (results not shown). Over larger areas,

climatic conditions become more important (e.g. Bleecker et al., 1995).

Figure 7.1 shows a flow chart of the parameterisation of OM content

and texture for the stochastic simulation. Soil properties were interpolated

from soil profiles and a digital soil map (scale 1:20,000). The Aardewerk

database (Van Orshoven and Vandenbroucke, 1993) for Belgium consists of

more than 10,000 soil profile descriptions (texture, organic matter, pH, etc.)
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for the different horizons. 393 profiles with arable land use were available

within the arable part of the study area. A buffer zone of 4 km around

the study area was included because neighbouring soil profiles could provide

valuable information. Pedotransfer functions (PTFs) were used to estimate

soil input parameters not available in Aardewerk. Soil dry bulk density was

calculated with the PTF of Bollen et al. (1995) and parameters of the water

retention equations (van Genuchten, 1980) were derived with the PTFs of

Wösten et al. (2001).

Figure 7.1: Parameterisation of OM content and texture for the simulation
profiles.

Organic matter content of the surface horizon was interpolated using

ordinary kriging. Topsoil OM has changed since the 1950s (when the data

were collected) and so values were adjusted using a correction factor available

for each soil association and land use (see van Wesemael et al., 2004). The

resulting map is shown in Figure 7.2. Finally, an empirical relationship was

used to determine OM content with depth (Sleutel et al., 2003):

OM(z) = OMb + (OM0 − OMb) exp (−kz) (7.1)
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where z is the depth (cm); OM0 and OMb are the organic matter contents

in the top horizon (25 cm) and at the bottom of the soil profile (150 cm),

respectively; k is a study area specific constant. The average profile of OM

content and the mathematical fit are given in Figure 7.3.

Topsoil OM content (%)

3.0

 

1.5

Figure 7.2: Organic matter content (%) in the surface horizon. White areas
are non-arable land.

Interpolation of texture fractions in the surface horizons was based on

the Bayesian maximum entropy (BME) approach, which allows the inclusion

of hard (accurate) and soft (vague) data in a spatial estimation context

(Christakos, 1990, 2000). Hard data were the texture fractions of Aardewerk

profiles, and soft data consisted of the texture class given by the 1:20,000 soil

map at every estimation location. A variant of the regular BME algorithm

using a Monte Carlo procedure, called BME/MC (Bogaert and D’Or, 2002),

was used because it takes into account the fundamental constraints on the

textural fractions (they sum to one and belong to the [0, 1] interval).

The 1:20,000 soil map was then used to define average soil profiles with

depth. The Aardewerk profiles were associated with map units using a

‘class-matching’ procedure (see Van Orshoven, 1993). The following rules
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Figure 7.3: Average OM content profile observed in the study area and fit
to the data from 0.25 m to the bottom of the soil profile.

were used to determine the groups of soil series needing an average profile

with depth:� Texture class (A, L, Z. . . from the Belgian texture triangle; Tavernier

and Maréchal, 1958)� Profile development or not (e.g. Aba >< Abp)� Presence/absence of a sandy substrate (e.g. sAba2 >< xAba2)� Some groups were split into further subgroups if these had a high

number (>30) of Aardewerk profiles available to parameterise the sub-

groups (e.g. Aba → Aba and Aba(b))

This led to the definition of 16 groups of soil series. The drainage class was

not taken into account because most of the Aardewerk profiles were classified

as ‘well-drained’ and the number of profiles in other classes was not sufficient

to create a new group. For each group, the available Aardewerk profiles

were used to calculate average values of the texture fractions and depth to
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a sandy substrate for the deeper horizons (from 25 to 150 cm). Variable

horizon thicknesses were accounted for by discretising the soil profiles.

Due to the relatively small variability in OM and texture over the study

area, it was possible to reduce the number of plots from 26606 to 100 using

k -means cluster analysis. Test simulations proved that the results would not

be significantly affected by this clustering (results not shown). This substan-

tially reduced the run-time of the Monte Carlo analysis. The variables used

in the cluster analysis were (i) the soil series group (ensuring the correct

retention of these groups in the cluster analysis), (ii) OM content, (iii) silt

fraction, and (iv) clay fraction, in the top horizon (r = 0.0344 between silt

and clay fractions).

7.3.2 Uncertainty analysis

The uncertainty analysis was based on a Monte Carlo (MC) approach, mod-

ified to account for the spatial variability of non-georeferenced parameters.

The whole procedure can be divided into five steps: (i) selection of the

parameters to be included in the MC process, (ii) attribution of probabil-

ity density functions (PDFs) to the stochastic parameters, (iii) sampling,

(iv) automatic running of GeoPEARL, and (v) statistical evaluation of the

outputs.

Selection of the parameters for the Monte Carlo procedure

To evaluate the methodology, only two parameters were included in the

uncertainty analysis (one georeferenced and one non-georeferecend). The

choice of the parameters was based on a previous sensitivity analysis per-

formed on PESTLA (a predecessor of PEARL) (Dubus et al., 2003a), which

found the Freundlich exponent, KOM and DT50 to be the most sensitive

pesticide parameters, and OM content and bulk density the most sensitive

soil parameters. Thus, the analysis presented here focused, a priori, on the

uncertainty of atrazine DT50 and OM content, i.e. a non-georeferenced and

a georeferenced parameter respectively.
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Definition of the PDFs

OM content is a georeferenced parameter, because the interpolation using

ordinary kriging led to a spatially distributed characterisation of OM con-

tent. Following the cluster analysis, 100 values of OM content were assigned

to the corresponding clusters. For each cluster, the uncertainty distributions

around these values were obtained using block kriging. In other words, the

ordinary kriging (together with other variables) allowed the clusters delin-

eation, while block kriging performed on each cluster was used to estimate

the value (and its variance) over this cluster.

DT50 is a non-georeferenced parameter, because the initial parameteri-

sation of GeoPEARL assumed a constant value. However, it is widely rec-

ognized that pesticide DT50 values can show a large variability at the field

or catchment scale (Walker and Brown, 1983; Smith et al., 1987; Charnay

et al., 2005). This variability is mainly related to the properties that con-

dition microbial activity, such as the physico-chemical environment (deter-

mined by pedoclimatic conditions) or agricultural practices (Charnay et al.,

2005). Coquet et al. (2005) argued that whenever available, site-specific

data should be preferred over databases to limit bias in pesticide leaching

risk assessments at the catchment scale. Therefore, data from Pussemier

et al. (1997) were used to assess the distribution of DT50 values. These

data consist of 33 laboratory measurements of the atrazine degradation rate

in loam or sandy loam soils; most located in the Dyle catchment. DT50 of

less than 10 days was found in more than 60% of the soil samples. Figure 7.4

shows these data and the lognormal fit to them, together with the data of the

Dutch registration dossier (n = 27; Dorgelo, 2006). The site-specific DT50

measurements of Pussemier et al. (1997) are much lower than the Dutch

dossier data. The rapid dissipation observed by Pussemier et al. (1997) was

linked to the adaptation of microbial communities resulting from repeated

pretreatments with atrazine (intensive maize cropping). Such observations

are excluded from the Dutch registration dossier if the effect is known to

occur. Moreover, the all data collected for the Dutch registration dossier

do not necessarily come from the same soil types than in the study area.

The coefficients of variation for the two datasets are 117% (Pussemier et al.)

and 63% (Dutch dossier). Some samples taken from fields with less frequent

atrazine application produced higher DT50 values, which account for the

larger coefficient of variation.



7.3. Material and methods 145

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

DT50 (days)

C
um

ul
at

iv
e 

de
ns

ity
 fu

nc
tio

n

Pussemier et al.(1997) data
Lognormal fit
Dorgelo (2006) Dutch dossier
Lognormal fit

Figure 7.4: Cumulative density functions and lognormal fits of DT50 values
for atrazine using site-specific data (squares; Pussemier et al., 1997) or the
Dutch national database (circles; Dorgelo, 2006).
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Parameter sampling

OM content and DT50 input parameters were generated using a Latin Hy-

percube Sampling (LHS) procedure. LHS uses a probabilistic sampling

scheme that provides better coverage of the input distribution and has been

shown to be more efficient than the random or stratified sampling in MC

analysis (Helton and Davis, 2003).

A single MC simulation equates to one GeoPEARL simulation over the

study area. This corresponds to 100 PEARL runs (one for each unique

cluster) over the whole study area. The total number of PEARL runs is

therefore equal to N ×100, where N is the number of simulations in the MC

procedure.

For each unique cluster, the input distribution of the georeferenced pa-

rameter (OM content) was sampled N times. Furthermore, for each of the N

simulations, 100 values from the input distribution of the non-georeferenced

parameter (DT50) were drawn with LHS and randomly allocated to the 100

unique clusters. Thus a major difference between the georeferenced and

non-georeferenced parameters lies in the way their PDFs were sampled in

the MC analysis.

Truncation levels were arbitrarily set to the 1st and 99th percentiles of the

normal distributions used for OM content, and to the 5th and 95th percentiles

of the lognormal distribution used for atrazine DT50. The justification for

truncation stems from the modeller opinion that extremely small or large

values sampled from the (log-)normal distributions would be unrealistic.

Automatic running of GeoPEARL

A Matlab� (version 7.0) routine was created for the generation of LHS input

parameters and these replaced the default values in the GeoPEARL input

files. The N MC simulations (i.e. N × 100 model runs) were processed on

a grid of 256 Central Processing Units (CPUs) using batch files.

Stability of the results was tested by iteratively increasing the number of

samples, because the accuracy of the MC technique is inversely proportional

to the square root of the number of runs N (Brown and Heuvelink, 2005).

Accuracy means here the closeness with which the MC samples represent
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the joint distribution of uncertain inputs, and from which depends the level

of risk associated with a decision. N was successively fixed at 10, 50, 100,

150 and 200.

Analysis of the model outputs

An indicator of atrazine leaching potential was defined as the 80th percentile

of the annual average concentrations at 1 m depth (for a total of 17 simu-

lation years), i.e. for a given location in the catchment the 80th percentile

of leaching due to variations in weather conditions (FOCUS, 2000). This

indicator could be mapped for any of the N MC simulations. An indicator

of leaching risk at the catchment scale was chosen as the 80th percentile in

space (Vanclooster et al., 2003). Minimum, median and maximum values of

the latter indicator were reported against the increase in the number N of

simulations and were compared to the results of a deterministic GeoPEARL

assessment with average OM and DT50 values.

Another indicator that is potentially relevant for decision makers is the

area of the catchment where the regulatory limit of 0.1 µg/L is exceeded.

Again, minimum, median and maximum values of this indicator were com-

puted for increasing N to estimate the minimum required number of simu-

lations.

7.3.3 Reproducibility and the effect of truncation

Reproducibility should be examined when undertaking uncertainty analysis.

The study of reproducibility (or replicability) of MC simulations looks at

the influence that the generation of a random sample with a particular

seed number may have on the overall outcome of MC modelling (Dubus

and Janssen, 2003). The robustness of the MC analysis was assessed for

N = 50 by running the simulations with six different seed numbers in the

LHS method. The assessment of stability was restricted to median values

of model outputs, as the minimum and maximum values would be expected

to vary in an unpredictable way.

A major issue concerning the influence of modeller subjectivity is the

truncation level of the input PDFs (Beulke et al., 2006). The MC analysis
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for N = 50 was repeated with truncation set to the 1st and 99th percentiles

of the lognormal distribution for atrazine DT50. Truncation was kept to

the level of the 1st and 99th percentiles of the normal distributions for OM

content.

7.4 Results and discussion

7.4.1 Deterministic simulation

The 80th percentile of the annual average concentrations at 1 m depth was

lower than 1 × 10−6 µg/L for all the study area using average values for

OM and DT50, i.e. several orders of magnitude below standard detection

limits (Figure 7.5(a)). This result is explained by the low mean DT50 value

of 8.97 days, which was derived from the distribution fitted to the data of

Pussemier et al. (1997, Figure 7.4).

7.4.2 Stochastic simulation

Table 7.1 summarises the results of the Monte Carlo simulations. The two

leaching indicators are significantly different than in the deterministic sim-

ulation. The median 80th percentile in space is always around 0.0030 µg/L,

about two orders of magnitude lower than the regulatory limit of 0.1 µg/L.

The median value of this indicator appears to be stable with increasing N .

Furthermore, the range between the minimum and maximum values tends

to increase with a higher number of simulations (N). This could be expected

because as N increases, so does the probability that the (random) spatial

allocation of DT50 values to the 100 plots will produce extreme cases (e.g.

high DT50 values located in areas with low OM content, leading to higher

vulnerability).

Figure 7.5(b) shows the spatial pattern of leaching in the MC analysis,

by mapping the maximum simulated values of the 80th percentile of the

annual average concentrations of atrazine (µg/L) at 1 m depth. The location

of high concentrations is similar between the stochastic and deterministic

simulations (Figure 7.5(a)), although the stochastic simulations give much

larger absolute values. This suggests that the spatial pattern of leaching
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Figure 7.5: (a) 80th percentile of the annual average concentrations at 1 m
depth for the deterministic GeoPEARL assessment. (b) Maximum simulated
values of the 80th percentile of the annual average concentrations of atrazine
(µg/L) at 1 m (Monte Carlo analysis; N = 100 simulations). White areas
are non-arable land.
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Table 7.1: Results of the Monte Carlo analysis.

N 10 50 100 150 200

80th percentile in space Min. .0014 .0015 .0010 .0011 .0010
(µg/L) Median .0028 .0031 .0033 .0033 .0034

Max. .0046 .0092 .0073 .0097 .0102
Part of the study area Min. 6.8 6.7 5.1 6.2 5.7

> 0.1 µg/L (%) Median 9.2 8.9 8.6 8.7 8.6
Max. 10.7 10.6 12.1 11.9 12.3

Each column corresponds to a full set a N new simulations (i.e. no serial correlation).

risk does not depend on the adoption of a probabilistic approach. The

risk appears to be negatively correlated with organic matter content in the

surface horizon (Figure 7.2).

Figure 7.6 displays the lower, median and upper cumulative density func-

tions of atrazine leaching with N = 100. For clarity only the [0.8−1] interval

is shown. The 80th percentile in space remains below the 0.1 µg/L limit (cf.

Table 7.1). Moreover, Figure 7.6 shows the percentage of the study area

above the latter threshold. The exact values are presented in Table 7.1 and

vary between 5.1 and 12.1% (median = 8.6%) for N = 100. The median

value of the area above 0.1 µg/L is also found to be relatively stable for all

N . The results suggest that the median indicator values can be estimated

with confidence using N = 50 (= 25 × number of parameters).

The simulation of atrazine leaching was strongly affected by the inclusion

of spatial variability in DT50. The uncertainty in OM content (a georefer-

enced parameter) had a negligible influence on the results, due to a lower

coefficient of variation (3.9% on average). This does not seem to support

the choice of OM content as the most important georeferenced parameter.

This conclusion is probably specific to the study area, where the limited

variability in OM content leads to low block kriging variances.

The deterministic GeoPEARL assessment produced virtually no leach-

ing, due mainly to the very low average DT50 value extracted from the field

data of Pussemier et al. (1997). However, significant leaching was simulated

in the MC analysis using a lognormal distribution of DT50. Thus, the in-
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Figure 7.6: Cumulative density functions of the results of the Monte Carlo
simulations with N = 100. The vertical dash-dotted line indicates the reg-
ulatory limit of 0.1 µg/L. Note that the y-axis starts at the 80th percentile.

clusion of spatial variability of any non-georeferenced parameters is likely to

modify the conclusions drawn from simulations performed with spatially dis-

tributed models. In the context of pesticide registration, this finding needs

to be taken into account if future risk assessments are to be implemented in

a spatially distributed way.

7.4.3 Reproducibility and truncation

Table 7.2 presents the results of the simulations repeated with different seed

numbers and with a different truncation of the DT50 PDF for N = 50. The

different seed numbers did not appear to modify the examined outputs in a

significant way, especially considering the median values. The 80th percentile

in space was stable around 0.0031 and the percentage of the study area above

0.1 µg/L remained between 8.5 and 9%. These results suggest that the MC

analysis was robust with respect to the choice of the seed number.
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Table 7.2: Reproducibility of the Monte Carlo analysis and the effect of truncation (N = 50).

Seed number 1 2 3 4 5 6 1
Percentiles of PDF 5-95 5-95 5-95 5-95 5-95 5-95 1-99

truncation for DT50

80th percentile in space Min. .0015 .0014 .0013 .0016 .0015 .0015 .0030
(µg/L) Median .0031 .0035 .0029 .0031 .0034 .0032 .0071

Max. .0092 .0087 .0070 .0062 .0077 .0066 .0182
Part of the catchment with Min. 6.7 5.7 7.0 6.1 6.1 6.0 9.2

> 0.1 µg/L (%) Median 8.9 8.5 8.6 8.4 8.8 8.8 12.0
Max. 10.6 11.1 11.2 10.1 11.0 10.8 15.2
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Table 7.2 also gives the results of the MC analysis using a lower level

of truncation in the sampling of the DT50 PDF. When the 1st and 99th

percentiles of the lognormal distribution were chosen, the sampled values of

atrazine DT50 reached a maximum at about 78 days, while the maximum

was at about 41 days for the initial configuration (truncation at the 5th

and 95th percentiles). This led to a significant increase in the amount of

simulated pesticide leaching. The 80th percentile in space doubled and the

area above 0.1 µg/L increased to 12%.

This finding illustrates the importance of the subjective choices made

by the modeller in typical MC analyses, which introduce variability in the

probabilistic modelling. Beulke et al. (2006) argued that user subjectivity

biases truncation, type and parameterisation of the distributions, correlation

between parameters, methods for sampling and size of random samples.

In the present study, truncation of the input PDFs clearly had an impact

on the results, but it is rather difficult to define truncation thresholds in

an objective way. However, performing the Monte Carlo analysis with a

different level of truncation for atrazine DT50 provided information on the

impact of this choice on the simulation outputs.

7.4.4 Field samples vs. databases.

Coquet et al. (2005) recommended field-sample measurements rather than

databases to parameterise the distribution of DT50 and this was found to

be important here. Using DT50 data from the Dutch registration dossier

led to concentrations above 0.1 µg/L for more than 80% of the study area,

in all MC simulations with N = 50 (results not shown). However, the con-

tamination of groundwater by atrazine is believed to be mainly from non-

agricultural sources (CERVA, 2004; Leterme et al., 2006a). Thus, the DT50

of Pussemier et al. (1997) produced more realistic simulations i.e. rarely

exceeding 0.1 µg/L for the agricultural sources. This supports the appropri-

ateness of field-sample measurements when deriving pesticide parameters.

It should be noted, however, that model error was not assessed in this study

(among other sources of uncertainty), e.g. GeoPEARL does not account for

preferential flow. A good match of modelled and field observations would,

therefore, not be expected.




