"Impact of Peroxisome Proliferator-Activated Receptor Agonists on Myosteatosis in the Context of Metabolic Dysfunction-Associated Steatotic Liver Disease"

Boliaki, Nathan ; Henin, Guillaume ; Bale, Georgia Loiz ; Lanthier, Nicolas

ABSTRACT

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD), and more specifically steatohepatitis may be associated with fat infiltration of skeletal muscles which is known as myosteatosis. Pan-peroxisome proliferator-activated receptor (PPAR) agonists have been shown to promote metabolic dysfunction-associated steatohepatitis (MASH) remission. However, the effect of PPAR agonists on myosteatosis remains to be determined. The aim of this review is to evaluate the effect that PPAR agonists alone or in combination, have on myosteatosis in the context of MASLD. Methods: Original research reports concerning the impact of PPAR agonists on muscle fat in MASLD were screened from PUBMED and EMBASE databases following the PRISMA methodology. Results: Eleven original manuscripts were included in this review. Two preclinical studies assessed the impact of the PPARα agonist on fat content in the quadriceps muscle and the liver by extracting triglycerides in rats fed a high-fat diet and in insulinresistant mice. Both models showed muscle and liver triglyceride content reduction using WY14643. Fenofibrate had no significant impact on soleus intramyocellular lipids or liver fat content in insulin-resistant subjects based on proton magnetic resonance spectroscopy. Treatment with PPARδ agonists increased the expression of genes involved in fatty acid oxidation in two studies on muscle cell culture. PPARγ agonists were investigated in two preclinical studies and one clinical study using spectroscopy and computed tomography respectively. In the first preclinical study i...

CITE THIS VERSION

Le dépôt institutionnel DIAL est destiné au dépôt et à la diffusion de documents scientifiques émanant des membres de l'UCLouvain. Toute utilisation de ce document à des fins lucratives ou commerciales est strictement interdite. L'utilisateur s'engage à respecter les droits d'auteur liés à ce document, principalement le droit à l'intégrité de l'œuvre et le droit à la paternité. La politique complète de copyright est disponible sur la page Copyright policy

DIAL is an institutional repository for the deposit and dissemination of scientific documents from UCLouvain members. Usage of this document for profit or commercial purposes is strictly prohibited. User agrees to respect copyright about this document, mainly text integrity and source mention. Full content of copyright policy is available at Copyright policy

Available at: http://hdl.handle.net/2078.1/288518 [Downloaded 2024/06/28 at 04:26:27]
Impact of Peroxisome Proliferator-Activated Receptor Agonists on Myosteatosis in the Context of Metabolic Dysfunction-Associated Steatotic Liver Disease

Nathan Boliaki1, Guillaume Henin1,2, Georgia Bale1,2, Nicolas Lanthier1,2,*

1 Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, 1200 Brussels, Belgium
2 Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
*Correspondence: nicolas.lanthier@saintluc.uclouvain.be (Nicolas Lanthier)
Published: 20 June 2024

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD), and more specifically steatohepatitis may be associated with fat infiltration of skeletal muscles which is known as myosteatosis. Pan-peroxisome proliferator-activated receptor (PPAR) agonists have been shown to promote metabolic dysfunction-associated steatohepatitis (MASH) remission. However, the effect of PPAR agonists on myosteatosis remains to be determined. The aim of this review is to evaluate the effect that PPAR agonists alone or in combination, have on myosteatosis in the context of MASLD.

Methods: Original research reports concerning the impact of PPAR agonists on muscle fat in MASLD were screened from PUBMED and EMBASE databases following the PRISMA methodology. Results: Eleven original manuscripts were included in this review. Two preclinical studies assessed the impact of the PPARα agonist on fat content in the quadriceps muscle and the liver by extracting triglycerides in rats fed a high-fat diet and in insulin-resistant mice. Both models showed muscle and liver triglyceride content reduction using WY14643. Fenofibrate had no significant impact on soleus intramyocellular lipids or liver fat content in insulin-resistant subjects based on proton magnetic resonance spectroscopy. Treatment with PPARδ agonists increased the expression of genes involved in fatty acid oxidation in two studies on muscle cell culture. PPARγ agonists were investigated in two preclinical studies and one clinical study using spectroscopy and computed tomography respectively. In the first preclinical study in Zucker diabetic fatty rats, rosiglitazone reduced muscle lipids and hepatic steatosis. In a second preclinical study using the same animal model, pioglitazone reduced tibialis anterior intramyocellular lipids. In contrast, computed tomography analyses in patients with type 2 diabetes revealed a surface area increase of low-density muscles (suggesting an increase in muscle fat content) after a one-year treatment with rosiglitazone. Varying combinations of PPAR agonists (cevoglitazar, fenofibrate/pioglitazone and muraglitazar) were evaluated in two preclinical studies and one clinical study. In rats, these treatments showed variable results for muscle and liver depending on the combinations studied. In type 2 diabetic patients, treatment with muraglitazar (a PPARα/γ agonist) reduced the intramyocellular lipid content of tibialis anterior as well as liver fat content following spectroscopy assessment.

Conclusion: The combination of different PPAR agonists could have a positive impact on reducing myosteatosis, in addition to their effect on the liver. Some discrepancies could be explained by the different techniques used to assess muscle lipid content, the muscles assessed and the possible adipogenic effect of PPARγ agonists. Further clinical research is needed to fully assess the efficacy of these treatments on both MASLD progression and associated myosteatosis.

Keywords: PPAR; lanifibranor; MASLD; muscle; myosteatosis; muscle fat; insulin resistance; myokine

Introduction

The prevalence of obesity, as measured by the World Health Organization growth curves, has nearly tripled worldwide since 1975 [1]. This weight gain forecasts an increased burden of several diseases among Western populations, of which type 2 diabetes mellitus (T2DM), cardiovascular diseases and various cancers [2]. Faced with a growing number of cases of metabolic dysfunction-associated steatotic liver disease (MASLD) [3,4] causing concern in the public health sector, there is a need for it to be properly addressed [5,6].

MASLD and Metabolic Dysfunction-Associated Steatohepatitis (MASH): General Concepts and Liver Complications

MASLD is defined as the presence of hepatic steatosis (intrahepatic fat exceeding 5% of the whole liver volume on imaging or biopsy analysis), with the presence of at least one of five cardiometabolic risk factors [3]. The worldwide prevalence of MASLD saw a significant increase recently with 37.8% of the population being affected in 2016 compared to 25.5% in 2005, and is continuing to increase at an alarming rate [7]. The spectrum of MASLD ranges from...
isolated liver steatosis to MASH, a severe form of MASLD histologically defined by ballooning hepatocytes and lobular inflammation [8]. This histological pattern favors the subsequent development of progressive fibrosis [8,9], the last stage of which is cirrhosis which can lead to organ failure and hepatocellular carcinoma [10]. The definitive diagnosis of MASH relies on a liver biopsy [11] which is the gold standard for assessing the efficacy of treatments in clinical trials [12–14].

MASLD and Extrahepatic Complications

In addition to the hepatic complications such as cirrhosis and hepatocellular carcinoma, MASLD, and a fortiori MASH, can be associated with extrahepatic complications. These include cardiovascular disease, type 2 diabetes and myosteatosis. Understanding this is key in elaborating the ideal treatment for MASLD which should also have an impact on these extrahepatic parameters.

MASLD and Cardiovascular Diseases

Among MASLD patients, the leading causes of death are attributable to cardiovascular diseases [15]. Patients with MASLD are at substantial risk for the development of coronary heart disease, cerebrovascular accidents, cardiomyopathy and cardiac arrhythmias [16]. Furthermore, this cardiovascular risk is strongly associated with the histological severity of MASLD [17]. This can partly be explained by the close ties between MASLD and the cardiometabolic risk factors included in the metabolic syndrome, such as abdominal obesity, atherogenic dyslipidemia, hypertension, and hyperglycemia [18]. Moreover, the association of MASLD with cardiometabolic diseases may involve other pathways such as low-grade systemic inflammation, oxidative stress, and perturbations in the gut microbiota [19]. Interestingly, in a large number of investigations, MASLD and more particularly MASH, remains an independent risk factor for atherosclerotic cardiovascular disease even after adjustment for typical risk factor covariates [20], which suggests a role of specific factors originating in the liver. For example, authors recently showed that steatotic hepatocytes are the source of extracellular vesicles that can circulate in the bloodstream and contain microRNA that inhibits a protein that promotes cholesterol efflux from the vesicles thus increasing atheromatosis [21].

MASLD and T2DM

A meta-analysis of 33 observational studies showed that patients with MASLD have a doubled risk of T2DM, irrespective of obesity and other metabolic risk factors [22]. Conversely, over 80% of patients with T2DM also suffer from MASLD [23]. The mechanisms linking obesity, MASLD and T2DM are numerous. Firstly, prior to the development of visceral adiposity and obesity, hepatic steatosis can rapidly develop as a result of dietary changes [24,25]. This hepatic steatosis is itself associated with hepatic insulin resistance (IR) characterized by increased hepatic gluconeogenesis potentially leading to diabetes [26]. Additionally, the steatotic liver secretes cytokines called hepatokines that can lead to peripheral IR in tissues such as skeletal muscle and adipose tissue [27,28]. Lastly, the joint presence of IR contributes exponentially to the development of liver steatosis with elevated levels of glucose and free fatty acids, meaning more substrate is available for de novo hepatic lipogenesis [29,30]. Accumulation of adipose tissue, and more specifically visceral adipose tissue is associated with altered tissue function whereby adipocyte hypertrophy and a pro-inflammatory phenotype contribute to IR [30,31]. In the same way, hepatic fat accumulation [32,33] compounds the effects previously mentioned, playing a part in a vicious cycle in which MASLD, IR and T2DM are an integral part.

Chronic Liver Diseases and Myosteatosis

The beneficial role of healthy skeletal muscle has long been described [34]. In addition to the aforementioned factors, MASLD could be associated with ectopic fat deposition in other organs such as skeletal muscle. Skeletal muscle fat infiltration, also known as “myosteatosis”, is suspected with lowered skeletal muscle radiodensity on computed tomography (CT) [35], but confirmed with precision on quantitative magnetic resonance imaging (e.g., proton density fat fraction). However, only proton magnetic resonance spectroscopy (1H-MRS) allows for the separate measurement of intramyocellular lipids (IMCL) and extramyocellular lipids (EMCL) in vivo [35,36]. Intramuscular lipids (including IMCL and EMCL) can also be measured in vitro by tissue triglyceride extraction [36,37]. The link between liver disease and muscle was first demonstrated in the context of cirrhosis. Indeed, cirrhotic patients are at higher risk of muscle wasting, functional decay or sarcopenia [38,39], peripheral IR [40] and myosteatosis irrespective of the liver disease etiology [38,39].

This peripheral IR secondary to MASH is frequent and may be linked to muscle fat content [38,39]. Patients with MASLD at earlier disease stages also show greater increases in intramuscular fat content compared with healthy individuals [41,42]. Moreover, recent studies show that muscle fat content is strongly associated with MASLD severity evidenced by transient elastography [43], or more specifically, by histology [44]. Indeed, among MASLD patients, the development of myosteatosis is preferentially the characteristic of patients with MASH [45–48]. As the link between MASLD and myosteatosis has only recently been established, there is as yet no data on the prevalence of myosteatosis worldwide. The mechanisms associated with MASLD and myosteatosis are not yet fully understood. However, it is suspected that IR, mitochondrial dysfunction and diminished lipid storage capacity of subcutaneous adipose tissue, which all characterize MASLD, could contribute to muscle fat development [36]. Myosteatosis
seems to vary according to muscle fiber composition and related oxidative properties, but these data are ambiguous [49,50]. In terms of consequences, muscle fat could potentially decrease muscle strength [51] and is involved in the development of IR by altering insulin signaling pathways [52]. Interestingly, the degree of muscle fat content correlates with patient liver elastography and histology in such a way that a decrease in muscle fat is seen in parallel to an improvement in liver stiffness [44] and liver histology [48], reaffirming the dynamic association between myosteatosis and liver disease. This link highlights the importance of investigating the impact of MASH treatments on myosteatosis.

Current Treatments for MASH

Steatohepatitis has been shown to drive disease progression. Indeed, although liver steatosis may already be associated with extrahepatic complications (such as insulin resistance), it is MASH that appears to be more associated with myosteatosis and that will lead to hepatic complications (fibrosis, cirrhosis, hepatocarcinoma) [36]. Consequently, an indication for pharmacological treatment of MASLD at risk is considered when the histological activity score is high (presence of MASH) and there is fibrosis [53]. Treatment options for MASH are currently under investigation and since no drug treatment has yet been approved by the health authorities, present-day recommendations essentially consist of lifestyle modifications [54]. Physical activity coupled with body weight reduction has been shown to decrease hepatic steatosis, if the body weight reduction exceeds 5% and to contribute to histological remission of MASH if the body weight reduction exceeds 10% [55,56]. Unfortunately, although lifestyle modifications can be a successful intervention for MASH, this strategy has a poor long-term success rate. Multiple pharmacological treatments recently investigated have yielded disappointing results, due to the multifactorial and complex MASH pathophysiology [13,14]. However, recent phase 2 and 3 studies show promising results [14]. Among them, peroxisome proliferator-activated receptor (PPAR) agonists are currently being evaluated as a potential treatment for MASH [57]. PPARs are ligand-activated transcription factors of nuclear hormone receptors which are divided into 3 subtypes (Table 1) [57]. PPARα is mainly expressed in the liver, skeletal muscles and kidney. It reduces serum triglyceride levels and promotes fatty acid β-oxidation and regulation of energy homeostasis [58]. It also inhibits the expression of cholesterol 7α-hydroxylase (CYP7A1), thereby decreasing hepatic bile acid levels [59]. PPARβ/δ is mainly expressed in skeletal and cardiac muscle as well as in the liver and white and brown adipose tissue. It enhances fatty acid metabolism and has an anti-inflammatory function where liver macrophages take on an anti-inflammatory phenotype [60]. A reduction of CYP7A1 is also described [61]. Finally, PPARγ, mainly expressed in white and brown adipose tissues, intestines, liver and pancreatic β-cells, stimulates adipocyte differentiation and pancreatic insulin sensitivity [62]. PPAR agonists are artificial ligands that allow the activation of such receptors. Recently, treatment with lanifibranor (pan-PPAR agonist) showed impressive effects on MASH in a phase 2 study [63]. Compared to placebo, lanifibranor induced more frequent MASH resolution, regression of fibrosis, increased insulin sensitivity and decreased liver enzyme values, lipids and fibrogenesis markers such as cleaved pro-peptide of type III collagen (Pro-C3) [63]. For these reasons, a phase 3 study is currently underway (NATIV3, NCT04849728) [14].

Objective and Methods

Recent studies showed that patients with myosteatosis were more likely to have early MASH independently of age, sex and metabolic factors [45–48]. This suggests that myosteatosis could not only be a cause but also a consequence of MASH disease (Fig. 1) [36].

Due to the promising results of pan-PPAR agonists regarding MASH resolution [57,63], and considering the existing association between myosteatosis and MASLD severity [45–48,64], it stands to reason that PPAR agonists may also influence the development of myosteatosis (Fig. 1). This could explain the effectiveness of this type of treatment and serve as a marker to monitor treatment response.

Original research reports were screened using PUBMED and EMBASE databases. The review of articles was restricted to those published in English until March 2024. Considering that MASLD is a term recently coined [3,4], terms from the previous nomenclature were used, namely “NAFLD” for “non-alcoholic fatty liver disease”, “NASH” for “non-alcoholic steatohepatitis” and “MAFLD” for “metabolic dysfunction associated fatty liver disease” [65,66]. This review included only original articles. Systematic reviews, book articles and abstracts were excluded. Clinical and pre-clinical model studies were selected. Original articles were not restricted by region, language or period of time. We carefully examined each article and identified relevant results that align with our research topic. Extracted information included: study design, participant characteristics and outcome assessment.

Results

The first search, combining the words “PPAR agonist and myosteatosis” (N = 0), “PPAR agonist and muscle fat and MAFLD” (N = 0), “PPAR agonist and muscle fat and NAFLD” (N = 9), “PPAR agonist and muscle fat and MASLD” (N = 0), “PPAR agonist and intramyocellular lipids” (N = 15), “PPAR agonist and intramyocellular lipids and liver fat” (N = 10) with the “only articles” and “full text” filters, yielded 34 results (Fig. 2). After reading titles and removing duplicates, 24 articles were assessed for eli-
gibility according to our inclusion criteria. 13 articles were removed because they did not address the research question. 11 articles were finally kept and reviewed (Fig. 2), including 8 preclinical and 3 clinical studies. In the preclinical studies, skeletal muscle lipid content was assessed by tissue triglyceride extraction (3/8), and 1H-MRS (3/8). Fatty acid oxidation (FAO) gene expression levels were measured by real-time quantitative polymerase chain reaction (RT-qPCR) (2/8). In the clinical studies, muscle lipid content was assessed by CT (1/3) and 1H-MRS (2/3). In order to answer our research question, we decided to examine the effect each PPAR agonist subtype had on muscle and liver fat content, before looking at the effect of a combination of PPAR agonists.

PPARα Agonists and Myosteatosis

The impact of two different PPARα agonists on muscle fat was assessed in two pre-clinical studies and in one clinical study (Table 2, Ref. [67–69]).

In the first pre-clinical study [67], researchers investigated the effect of the PPARα agonist WY14643 on muscle lipids and insulin sensitivity in Wistar rats. Rats were divided into two groups: control or treated with WY14643 (N = 6–9/group). Treatment significantly decreased triglyceride levels in the quadriceps muscle (–34%) and in the liver (–54%). Moreover, total long-chain acyl-CoAs (LCACoAs), a lipid subspecies, were substantially lowered in the muscles of rats treated with WY14643 (–41%) compared to HFD-fed control rats. In the second pre-clinical study [68], the impact of the same PPARα agonist on muscle and liver steatosis was investigated in insulin-resistant lipoatrophic A-ZIP/F-1 mice. Wild-type controls were matched for age and sex. Mice were all fed a standard rodent diet. Mice were either treated for 2 weeks with WY14643 (0.1% of diet) or remained untreated for the same period in the control group (N = 6/group/genotype). Liver and muscle triglyceride levels were assessed by triglyceride extraction. In the second pre-clinical study [68], the impact of the same PPARα agonist, on muscle and liver steatosis was investigated in insulin-resistant lipoatrophic A-ZIP/F-1 mice. Wild-type controls were matched for age and sex. Mice were all fed a standard rodent diet. Mice were either treated for 2 weeks with WY14643 (0.1% of diet) or remained untreated for the same period in the control group (N = 6/group/genotype). Liver and muscle triglyceride levels were assessed by triglyceride extraction. In the second pre-clinical study [68], the impact of the same PPARα agonist, on muscle and liver steatosis was investigated in insulin-resistant lipoatrophic A-ZIP/F-1 mice. Wild-type controls were matched for age and sex. Mice were all fed a standard rodent diet. Mice were either treated for 2 weeks with WY14643 (0.1% of diet) or remained untreated for the same period in the control group (N = 6/group/genotype). Liver and muscle triglyceride levels were assessed by triglyceride extraction. In the second pre-clinical study [68], the impact of the same PPARα agonist, on muscle and liver steatosis was investigated in insulin-resistant lipoatrophic A-ZIP/F-1 mice. Wild-type controls were matched for age and sex. Mice were all fed a standard rodent diet. Mice were either treated for 2 weeks with WY14643 (0.1% of diet) or remained untreated for the same period in the control group (N = 6/group/genotype). Liver and muscle triglyceride levels were assessed by triglyceride extraction. In the second pre-clinical study [68], the impact of the same PPARα agonist, on muscle and liver steatosis was investigated in insulin-resistant lipoatrophic A-ZIP/F-1 mice. Wild-type controls were matched for age and sex. Mice were all fed a standard rodent diet. Mice were either treated for 2 weeks with WY14643 (0.1% of diet) or remained untreated for the same period in the control group (N = 6/group/genotype). Liver and muscle triglyceride levels were assessed by triglyceride extraction. In the second pre-clinical study [68], the impact of the same PPARα agonist, on muscle and liver steatosis was investigated in insulin-resistant lipoatrophic A-ZIP/F-1 mice. Wild-type controls were matched for age and sex. Mice were all fed a standard rodent diet. Mice were either treated for 2 weeks with WY14643 (0.1% of diet) or remained untreated for the same period in the control group (N = 6/group/genotype). Liver and muscle triglyceride levels were assessed by triglyceride extraction. In the second pre-clinical study [68], the impact of the same PPARα agonist, on muscle and liver steatosis was investigated in insulin-resistant lipoatrophic A-ZIP/F-1 mice. Wild-type controls were matched for age and sex. Mice were all fed a standard rodent diet. Mice were either treated for 2 weeks with WY14643 (0.1% of diet) or remained untreated for the same period in the control group (N = 6/group/genotype). Liver and muscle triglyceride levels were assessed by triglyceride extraction. In the second pre-clinical study [68], the impact of the same PPARα agonist, on muscle and liver steatosis was investigated in insulin-resistant lipoatrophic A-ZIP/F-1 mice. Wild-type controls were matched for age and sex. Mice were all fed a standard rodent diet. Mice were either treated for 2 weeks with WY14643 (0.1% of diet) or remained untreated for the same period in the control group (N = 6/group/genotype). Liver and muscle triglyceride levels were assessed by triglyceride extraction.
In both wild-type mice and A-ZIP/F-1 mice, treatment led to increased liver weight, probably due to hyperplasia and hepatocyte hypertrophy caused by PPARα agonists \(^70 \). Additionally, expression of mitochondrial and peroxisomal \(\beta \)-oxidation genes was significantly increased in both liver and muscle tissue of treated mice, another side-effect of PPARα agonists \(^71 \) that may explain the reduced tissue triglyceride content.

In the clinical study \(^69 \), fenofibrate, another PPARα agonist was investigated in elderly people (between 65 and 72 years of age). Following a baseline oral glucose tolerance test, subjects were stratified into one of two categories: healthy (N = 7) or insulin resistant (N = 12). Except for fasting glycemia and insulinemia, the two groups were similar. Patients were treated with 160 mg/day of fenofibrate for a total of 60 days and both soleus and liver fat content were assessed by \(^1\)H-MRS on days 1, 11 and 61. Administration of treatment had no significant impact on IMCL content in both groups. Moreover, liver fat content remained unchanged in either group (Table 2). It is important to note that IMCL and liver fat content were similar in both groups before treatment, despite the potential relationship between elevated liver and muscle fat content and IR \(^{52} \). Unfortunately, no evaluation of the EMCL was carried out despite the possibility of it being affected and the availability of \(^1\)H-MRS to ensure its measurement \(^{36} \).

PPARβ/δ Agonists and Myosteatosis

The literature on the impact of PPARβ/δ agonists on muscle fat content is limited. Only two articles were retained for this review, both of which investigated PPARβ/δ agonists using cell cultures of mouse and human myocytes respectively (Table 3, Ref. \(^{72,73} \)).

In the first pre-clinical study \(^{72} \), C2C12 mouse myocytes were treated with different compounds, including the PPARβ/δ agonist GW7042 (0.1 µM), and compared in terms of oxidative metabolism and secretory activity. FAO gene expression levels were measured using RT-qPCR. Compared to vehicle-treated cells, GW7042 significantly increased expression of the muscle lipid uptake gene,
Table 1. PPAR subtypes, natural ligands, localization and effects.

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Natural activating ligands</th>
<th>Localization</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPARα</td>
<td>Omega-3 fatty acids</td>
<td>Liver (hepatocytes, stellate cells, Kupffer cells)</td>
<td>↗ Fatty acid β-oxidation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>White and brown adipose tissue</td>
<td>↗ Lipid metabolism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skeletal and cardiac muscle</td>
<td>Anti-inflammatory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kidneys</td>
<td>↘ Hepatic bile acids</td>
</tr>
<tr>
<td>PPARβ/δ</td>
<td>Unsaturated fatty acids Components of very low-density lipids</td>
<td>Liver (stellate cells, Kupffer cells, hepatocytes)</td>
<td>↗ Anti-inflammatory macrophage polarization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skeletal and cardiac muscle</td>
<td>↗ Muscle glucose uptake</td>
</tr>
<tr>
<td></td>
<td></td>
<td>White and brown adipose tissue</td>
<td>↗ Fatty acid β-oxidation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>↘ Hepatic bile acids</td>
</tr>
<tr>
<td>PPARγ</td>
<td>Unsaturated fatty acids Prostaglandins</td>
<td>Liver (stellate cells)</td>
<td>↗ Insulin sensitivity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>White and brown adipose tissue</td>
<td>↗ Adipogenic and energy gene expression in adipose tissue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pancreas (β-cells)</td>
<td>↗ Adipocyte differentiation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skeletal and cardiac muscle</td>
<td>↗ Anti-inflammatory parameters by inhibiting TNF-α, IL-1β and IL-6 production in adipose tissue macrophages</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kidneys</td>
<td></td>
</tr>
</tbody>
</table>

↑: increased; ↓: decreased; TNF-α, tumor necrosis factor alpha; IL-1β, interleukin 1 beta; IL-6, interleukin 6.

Table 2. Summary of the impact of PPARα agonists on muscle and liver fat content.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Intervention</th>
<th>Model</th>
<th>Muscles studied</th>
<th>Technique for assessing muscle fat content</th>
<th>Effect of treatment on muscle fat content</th>
<th>Technique for assessing liver fat content</th>
<th>Effect of treatment on liver fat content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peroxisome proliferator-activated receptor (PPAR)-α Activation Lowers Muscle Lipids and Improves Insulin Sensitivity in High Fat-Fed Rats. (Ye et al., 2001) [67]</td>
<td>WY14643 3 mg/kg/day for two weeks</td>
<td>Wistar rats (N = 6–9/group)</td>
<td>Quadriceps</td>
<td>Tissue triglyceride extraction</td>
<td>↘</td>
<td>Tissue triglyceride extraction</td>
<td>↘</td>
</tr>
<tr>
<td>Wy14,643, a Peroxisome-activated Receptor α (PPARα) Agonist, Improves Hepatic and Muscle Steatosis and Reverses Insulin Resistance in Lipoatrophic A-ZIP/F-1 Mice. (Chou et al., 2002) [68]</td>
<td>WY14643 0.1% of the diet for two weeks</td>
<td>A-ZIP/F-1 mice (N = 6/group)</td>
<td>Quadriceps</td>
<td>Tissue triglyceride extraction</td>
<td>↘</td>
<td>Tissue triglyceride extraction</td>
<td>↘</td>
</tr>
<tr>
<td>Plasma triglycerides are not related to tissue lipids and insulin sensitivity in the elderly following PPARα agonist treatment. (Cree et al., 2007) [69]</td>
<td>Fenofibrate 160 mg/day for 60 days</td>
<td>Insulin-resistant elderly patients (N = 12)</td>
<td>Soleus</td>
<td>1H-MRS</td>
<td>↔ (vs baseline)</td>
<td>1H-MRS</td>
<td>↔ (vs baseline)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Healthy elderly patients (N = 7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

↑: increased; ↓: decreased; ↔: unchanged; 1H-MRS: proton magnetic resonance spectroscopy.
Table 3. Summary of the impact of PPARβ/δ agonists on muscle and liver fat content.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Intervention</th>
<th>Model</th>
<th>Muscles studied</th>
<th>Technique for assessing muscle fat content</th>
<th>Effect of treatment on muscle fat content</th>
<th>Technique for assessing liver fat content</th>
<th>Effect of treatment on liver fat content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retinoic acid increases fatty acid oxidation and Irisin Expression in Skeletal Muscle Cells and Impacts Irisin in vivo (Amengual et al., 2018) [72]</td>
<td>GW0742 (0.1 µM) for two days</td>
<td>C2C12 myocytes</td>
<td>/</td>
<td>RT-qPCR of fatty acid oxidation-related genes</td>
<td>CD36↗; UCP3↗; CPT1B↗; FNDC5↗</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Triglyceride: High-Density Lipoprotein Cholesterol Effects in Healthy Subjects Administered a Peroxisome Proliferator-Aktivated Receptor δ Agonist. (Sprecher et al., 2007) [73]</td>
<td>GW501516 (10 nmol/L) for two days</td>
<td>Human skeletal muscle cells</td>
<td>/</td>
<td>RT-qPCR of fatty acid oxidation-related genes</td>
<td>CD36↗; CPT1A↗; CPT1B↗; PDK4↗</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

↑: increased; ↓: decreased; ↔: unchanged; /: not investigated; RT-qPCR, real-time quantitative polymerase chain reaction; CD36, cluster of differentiation 36; UCP3, uncoupling protein 3; CPT1A, carnitine palmitoyltransferase 1A; CPT1B, carnitine palmitoyltransferase 1B; FNDC5, fibronectin type III domain-containing protein 5; PDK4, pyruvate dehydrogenase kinase 4.

Table 4. Summary of the impact of PPARγ agonists on muscle and liver fat content.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Intervention</th>
<th>Model</th>
<th>Muscles studied</th>
<th>Technique for assessing muscle fat content</th>
<th>Effect of treatment on muscle fat content</th>
<th>Technique for assessing liver fat content</th>
<th>Effect of treatment on liver fat content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid reversal of hepatic steatosis, and reduction of muscle triglyceride, by rosiglitazone: MRI/S studies in Zucker fatty rats. (Hockings et al., 2003) [79]</td>
<td>Rosiglitazone 3 mg/kg/day for 17 days</td>
<td>Male Zucker fatty rats (N = 8/group)</td>
<td>Tibialis anterior</td>
<td>¹H-MRS</td>
<td>IMCL: ↓; EMCL: ↔</td>
<td>¹H-MRS</td>
<td>↓</td>
</tr>
<tr>
<td>Pioglitazone treatment restores in vivo muscle oxidative capacity in a rat model of diabetes. (Wessels et al., 2015) [80]</td>
<td>Pioglitazone 30 mg/kg/day for 15 days</td>
<td>Zucker diabetic fatty rats (N = 6/group)</td>
<td>Tibialis anterior</td>
<td>¹H-MRS</td>
<td>IMCL: ↓; EMCL: /</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Pioglitazone 30 mg/kg/day for 15 days</td>
<td>Zucker lean rats (N = 6/group)</td>
<td>IMCL: ↔; EMCL: /</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Effect of PPARγ agonist on aerobic exercise capacity in relation to body fat distribution in men with type 2 diabetes mellitus and coronary artery disease: a 1-yr randomized study. (Bastien et al., 2019) [81] | Rosiglitazone 8 mg/day for one year | Type 2 diabetes male patients (N = 51–53/group) | Mid-thigh skeletal muscles | CT – surface of low-density muscles | / | / |

↑: increased; ↓: decreased; ↔: unchanged; /: not investigated. IMCL, intramyocellular lipids; EMCL, extramyocellular lipids; ¹H-MRS, proton magnetic resonance spectroscopy; CT, computed tomography.
Table 5. Summary of the impact of a combination of PPAR agonists on muscle and liver fat content.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Intervention</th>
<th>Model</th>
<th>Muscles studied</th>
<th>Technique for assessing muscle fat content</th>
<th>Effect of treatment on muscle fat content</th>
<th>Technique for assessing liver fat content</th>
<th>Effect of treatment on liver fat content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects of cevoglitazar, a dual PPAR-α/γ agonist, on ectopic fat deposition in fatty Zucker rats. (Laurent et al., 2009) [86]</td>
<td>Fenofibrate 150 mg/kg/day for 21 days</td>
<td>Male Zucker fatty rats (N = 10/group)</td>
<td>Tibialis anterior</td>
<td>1H-MRS</td>
<td>IMCL: ↓; EMCL: /</td>
<td>1H-MRS</td>
<td>↓</td>
</tr>
<tr>
<td></td>
<td>Pioglitazone 30 mg/kg/day for 21 days</td>
<td></td>
<td></td>
<td></td>
<td>IMCL: ↓; EMCL: /</td>
<td></td>
<td>←</td>
</tr>
<tr>
<td></td>
<td>Cevoglitazar 5 mg/kg/day for 21 days</td>
<td></td>
<td></td>
<td></td>
<td>IMCL: ↓; EMCL: /</td>
<td></td>
<td>↓</td>
</tr>
<tr>
<td>Discordance between intramuscular triglyceride and insulin sensitivity in skeletal muscle of Zucker diabetic rats after treatment with fenofibrate and rosiglitazone. (Nadeau et al., 2007) [87]</td>
<td>Fenofibrate 0.1% for 25 weeks</td>
<td>Male Zucker diabetic fatty rats (N = 6/group)</td>
<td>Gastrocnemius Tissue triglyceride extraction</td>
<td>↓</td>
<td>/</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rosiglitazone 0.005% for 25 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>←</td>
</tr>
<tr>
<td></td>
<td>Fenofibrate 0.1% + rosiglitazone 0.005% for 25 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↔</td>
</tr>
<tr>
<td>Metabolic effects of muraglitazar in type 2 diabetic subjects. (Fernandez et al., 2011) [88]</td>
<td>Muraglitazar 5 mg/day for 4 months</td>
<td>Type 2 diabetes patients (N = 20)</td>
<td>Tibialis anterior</td>
<td>1H-MRS</td>
<td>1H-MRS (vs baseline)</td>
<td>1H-MRS</td>
<td>1H-MRS (vs baseline)</td>
</tr>
</tbody>
</table>

↑: increased; ↓: decreased; ↔: unchanged; /: not investigated. IMCL, intramyocellular lipids; EMCL, extramyocellular lipids; 1H-MRS, proton magnetic resonance spectroscopy.
cluster of differentiation 36 (CD36), the carnitine palmitoyltransferase 1B (CPT1B) and the uncoupling protein 3 (UCP3) genes, which are all involved in lipid catabolism, and an increased expression of CD36, a protein that transports fatty acids from the bloodstream to the muscles where they are used for energy [74]. Therefore, GW0742 increases muscle lipid content as a readily available substrate for FAO. Its activation could therefore have the effect of increasing the lipid pool in the muscle participating in increasing myosteatosis. However, the simultaneous activation of this gene with genes such as CPT1, whose role is to transport fatty acids into the mitochondria to use them as a fuel source instead of glucose [75], could have a positive impact on muscle fat content. Finally, GW0742 treatment doubled the expression of the fibronectin type III domain-containing protein 5 (FNDC5), precursor of irisin, a myokine normally expressed during physical exercise, eventually stimulating lipolysis and adipose tissue browning [76,77].

In the second study [73], cultured human myocytes were treated with 10 nmol/L of the PPARδ agonist GW501516 for two days. No cell toxicity occurred since no reduction in cell viability was noted throughout the entire study. Thanks to RT-qPCR an analysis of the expression of genes implicated in FAO such as CD36, CPT1A, CPT1B, and pyruvate dehydrogenase kinase 4 (PDK4) was carried out. GW501516 increased the expression of mRNA of CD36, CPT1A, and CPT1B by approximately 2-fold, 5-fold and 3-fold respectively, compared to the vehicle treatment. The PDK4 gene, which promotes the use of fatty acids as a major source of energy instead of glucose [78], is roughly 200 times more active in response to GW501516 and was barely detectable in vehicle-treated cells. An FAO assay confirmed the use of fatty acids as the principal source of energy with GW501516 upregulating oleate oxidation by a factor of 7 compared to the untreated cells. This suggests that the PPARδ agonist will not only ensure the transport of lipids from the circulation to the muscles for storage but will also upregulate fatty acid metabolism.

PPARγ Agonists and Myosteatosis

Two PPARγ agonists (rosiglitazone and pioglitazone) have been investigated in pre-clinical studies. The impact of rosiglitazone on muscle fat content was also assessed in one clinical study in a cohort of T2DM patients (Table 4, Ref. [79–81]).

In the first pre-clinical study [79], the authors aimed to determine the effects of rosiglitazone, a PPARγ agonist, on hepatic steatosis and IMCL content in Zucker fatty (ZF) rats. Rosiglitazone is a member of the thiazolidinedione family of drugs, which improves whole-body insulin sensitivity and blood glucose levels in patients with T2DM by activating the transcription factor PPAR-γ. A ZF rat is an animal model in which there is a missense mutation in the leptin receptor gene, simulating obesity without diabetes and various features of the metabolic syndrome such as IR and increased liver and muscle fat content [82]. The control model in the study is called “Zucker lean” (ZL). Rats aged 26–28 weeks were divided into 3 groups: ZL control, ZF treated rats and ZF control (N = 8 males/group). No maintenance diet restriction was imposed on ZL control and ZF control. However, the treated ZF rats were fed the amount the ZF control rats had eaten the day before, in order to avoid bias caused by diet differences. Rats received either 3 mg/kg/day of rosiglitazone or vehicle treatment for 17 days. Tibialis anterior (TA) IMCL and EMCL contents were assessed by 1H-MRS at day 17 but not at baseline. Liver steatosis was assessed by 1H-MRS at baseline and day 17. Both ZF rat groups exhibited similar liver fat content at baseline. As expected, the amount of IMCL, EMCL and liver fat content was much lower in the ZL control group than in both ZF groups. Rosiglitazone decreased at least 40% of IMCL content compared to control ZF rats, but EMCL content remained unchanged. Additionally, rosiglitazone treatment resulted in a marked reduction of hepatic steatosis at day 17, compared to the ZF control group. Authors suggest that these results are consistent with the known adipogenic action of rosiglitazone [83] which leads to increased fat storage capacity and a reduction in circulating free fatty acids and triglycerides, resulting in extra-hepatic triglyceride storage and diminished integration of lipid droplets in the cytoplasm of skeletal muscle fibers.

The second pre-clinical study [80] aimed to determine the effect of pioglitazone, another thiazolidinedione-based PPARγ agonist, on in vivo and ex vivo muscle mitochondrial function in a rat model of diabetes. In this paper, the authors selected 12-week-old Zucker diabetic fatty (ZDF) rats and their lean controls. ZDF rats are a breed derived from the ZF strain and are widely used for studying T2DM associated with obesity since the onset of diabetes in these rats starts as early as 10 weeks of age with 100% of rats being affected at 20 weeks old [84]. Both groups of rats were either administered 30 mg/kg/day of pioglitazone (N = 6/genotype) or were on a strict water-only diet (N = 6/genotype) for 15 days. Once treatment was completed, in vivo muscle oxidative capacity was measured in TA muscle by performing a phosphorus MRS, while IMCL levels were assessed by 1H-MRS. EMCL and liver fat content were not assessed. After 15 days, IMCL content was 14 times higher in the water-treated ZDF rats than in the water-treated lean controls. In ZDF rats, compared to water only, treatment with pioglitazone significantly decreased IMCL (~43%) and remained eight-fold higher than in the water-treated lean controls. In contrast, pioglitazone had no impact on TA IMCL content in lean rats. Finally, phosphorus MRS measurement showed that administration of pioglitazone improved in vivo muscle oxidative capacity in ZDF rats, so much so that it was comparable to levels seen in lean rats. Interestingly, this improvement correlated with low plasma triglycerides, low TA IMCL and a normalization of TA β-oxidation which were all initially higher in ZDF rats.
Finally, in a randomized, double-blind, placebo-controlled study [81] researchers investigated the effect of PPAR-\(\gamma\) agonist rosiglitazone on aerobic exercise capacity in T2DM patients with stable cardiovascular disease. 104 men aged from 45 to 75 years old were randomized into two groups: rosiglitazone (N = 53) or placebo (N = 51). Rosiglitazone was administered at a dosage of 8 mg/day for a period of one year. Mid-thigh muscle fat content was assessed by CT. Measurements were divided into two categories: low-density muscle with hypothetically more abundant fat content, and normal-density muscle with a pre-defined normal fat content. However, this evaluation method did not allow for differentiation between IMCL and EMCL [36]. Liver fat content was not measured. In contrast to the placebo group where no change in the surface of low-density muscles occurred, subjects having received rosiglitazone for one year exhibited a significant increase in the surface of muscles of low-density muscles suggesting an increase in muscle fat content. Moreover, normal-density muscles noted a significant surface decrease. In addition, these changes were associated with improved insulin sensitivity as well as weight gain and marked volume of abdominal subcutaneous fat, a common effect of PPAR-\(\gamma\) agonist [85]. Low-density muscle surface, suggestive of increased fat infiltration caused by long-term treatment with rosiglitazone could therefore be explained by its adipogenic effect [83], which promotes fat storage not only in the liver but also in skeletal muscles.

Combination of PPAR Agonists and Myosteatosis

Combining PPAR agonists appears to be a promising treatment for MASH [63]. In this section, we will investigate its effect on myosteatosis. The combination of multiple PPAR agonists was investigated in 2 pre-clinical studies and one clinical study (Table 5, Ref. [86–88]).

In the first pre-clinical study [86], authors compared cevoglitazar, a dual PPAR-\(\alpha/\gamma\) agonist, with isolated administration of a PPAR-\(\alpha\) agonist (fenofibrate) and a PPAR-\(\gamma\) agonist (pioglitazone) alone on ectopic fat deposition in ZF rats. Six-week-old male ZF rats were placed on HFD. At eight weeks, rats were either treated with 5 mg/kg of cevoglitazar, 150 mg/kg of fenofibrate, 30 mg/kg of pioglitazone, or with only a vehicle treatment for the control group (N = 10/group). TA IMCL and liver fat contents were assessed by \(^1\)H-MRS on days 0 and 21. EMCL levels were not assessed. After 21 days, compared to the vehicle treatment, all three PPAR agonists significantly reduced IMCL levels, and to the same extent. Only fenofibrate and cevoglitazar reduced liver fat content, with cevoglitazar being the most effective.

In another pre-clinical study [87], researchers worked on the basis that a correlation between muscle fat content and IR was found in the previous study [89] in order to study the effect of fenofibrate, rosiglitazone and their combination on muscle triglyceride levels in insulin-resistant ZDF rats. To do so, they selected male ZDF rats (N = 24) and their lean controls (N = 6) of the same age. From the age of six weeks, rats were exposed to a mixture of standard food with either 0.1% fenofibrate, 0.005% rosiglitazone, a combination of both drugs or no treatment at all for 25 weeks (N = 6 per group). After the treatment period, gastrocnemius triglyceride content was measured by triglyceride extraction. Liver fat content was not recorded. As expected, muscle triglycerides were lower in lean control rats than in ZDF control rats. In this study, only isolated treatment with fenofibrate resulted in a significant reduction in gastrocnemius muscle triglyceride content in ZDF rats, compared to untreated ZDF rats. The association of fenofibrate and rosiglitazone did not significantly lower gastrocnemius triglyceride content in ZDF rats. Moreover, muscle triglyceride levels increased in ZDF rats treated with rosiglitazone alone when compared to untreated ZDF. Interestingly, when combined with fenofibrate, the increase in muscle triglycerides caused by rosiglitazone was limited. All three treatment groups saw a decrease in serum glucose and insulin levels, despite an increase in muscle triglyceride levels due to rosiglitazone, suggesting that muscle fat content and insulin sensitivity are not correlated. Authors suggest that a combination of PPAR-\(\alpha\) and PPAR-\(\gamma\) could be an ideal treatment for T2DM, by limiting the increase in weight and triglyceride content in adipose tissue and muscle caused by PPAR-\(\gamma\) alone, while decreasing insulin resistance.

In this last double-blind, placebo-controlled clinical study [88], authors investigated the effect of the PPAR-\(\alpha/\gamma\) agonist, muraglitazar, on T2DM patients. They selected 27 patients with T2DM, with good general health and without evidence of other chronic diseases. All patients had stable body weight for a period of 3 months, took 6 months of antidiabetic treatment, and none participated in any exercise program on a regular basis. Patients were randomized into 2 groups: 5 mg/day of muraglitazar (N = 20) or placebo (N = 7) for 4 months. TA muscle and liver fat content were assessed by \(^1\)H-MRS. The results showed that TA IMCL and liver fat content significantly decreased in the muraglitazar group but not in the placebo group. These changes were also accompanied by an increase in the hepatic insulin sensitivity index, as well as a reduction in liver transaminases.

Discussion

The findings of this research provide insight into how PPAR agonists could affect muscle fat content even though only a limited number (N = 11) of relevant articles pertaining to our research question were identified. Furthermore, among these original manuscripts, only three were clinical studies. This highlights a gap in the literature when it comes to the interaction of PPAR agonists with muscle fat infiltration, despite the existence of a variety of treatments that have been used for several years. This could be explained by the relatively recent emergence of the concept
of myosteatosis and its even more recent association with MASH. Indeed, myosteatosis is a recent term, generating a growing interest in the field of MASLD [36,46].

Collectively, the results show that PPAR agonists, isolated and in combination, are promising treatments for MASH-associated disorders such as myosteatosis. Alone, each PPAR agonist allowed a significant reduction of both myosteatosis [67,68,79,80,86–88] and liver steatosis [67,68,79,86,88] or activation of β-oxidation genes in the muscle in the case of PPAR/β/δ agonists [72,73]. These findings give a clue into whether PPAR agonists might have an effect on myosteatosis by mechanisms we would not have initially suspected. The few discrepancies observed appear to be associated with long-term treatment with PPARγ agonists [81,87] and could be explained by the differences in assessment method (CT for example) [81] and/or by the possible adiogenic effect of these treatments [83]. More importantly, this adipogenic effect can be countered with the concomitant administration of PPARα agonists [87]. In humans, the net effect of a PPARα agonist may be less marked if the initial muscle fat content is low [69]. It should also be borne in mind that, on average, PPARα expression in human hepatocytes is estimated to be 5–10% of the levels found in rodent hepatocytes [90]. Finally, a drop in density on CT with PPARγ agonists [81] is not necessarily a sign of fat overload and could possibly be linked to sodium and water retention, a common characteristic of this pharmacological therapy [91].

Even though myosteatosis could be simply defined as fat infiltration in skeletal muscle [92], the diagnostic criteria for myosteatosis are not well-established and there is currently no consensus on the diagnosis method or the cutoff values above which muscle fat content is abnormal or pathological [36,38]. Muscle fat content differs significantly within a population depending on various determinants such as body composition [93], degree of physical activity and muscle fiber type [94]. Although a high muscle fat infiltration is strongly associated with IR [95] and MASH [36], the limit at which this fat infiltration becomes pathological remains unclear. Furthermore, we cannot investigate myosteatosis without considering its physiological levels in healthy individuals. For example, higher muscle lipid concentrations can be found in endurance athletes compared to sprinters or untrained patients, probably due to a myocellular adaptation to energy demand [96]. Muscle fiber composition may also play a crucial role in lipid accumulation and metabolism in the muscle. Indeed, muscle fat content is related to muscle fiber type and seems to be greater in fibers that are more oxidative (“slow-twitch” type 1 fibers) compared to more glycolytic ones (“fast-twitch” type 2 fibers-rich muscles) [94]. In humans, type 1 fibers are characterized by a high oxidative capacity and more resistance to fatigue. Type 2A fibers predominantly use oxidative metabolism, while type 2X and 2B fibers use glycolytic metabolism [97]. The composition of these muscles also differs between humans and mice [98,99]. In this work, the studies include both human and animal models, as well as cell lines. All the previously mentioned characteristics could have influenced muscle lipid levels and their impact on metabolic health. Thus, the results observed in one model may not be predictive of the outcome in another.

This lack of consensus in the diagnosis of myosteatosis was highlighted in the reviewed manuscripts, as there was a disparity in the assessment methods. At present, the reference technique for assessing myosteatosis is 1H-MRS [36]. Some of the reviewed articles also used tissue triglyceride extraction [67,68,87], which implies post-sacrifice tissue harvesting and therefore makes initial analysis impossible. CT is also used [83] but involves exposure to radiation, does not differentiate between IMCL and EMCL in muscle tissue, and, above all, only measures muscle density [36] a parameter that can vary with the amount of muscle fat, water, perfusion and protein synthesis [100]. CT imaging is therefore not the test of choice for robust assessment of myosteatosis [36,100]. In addition, PPARγ agonists, for example, have shown benefits on muscle protein synthesis [101] and could therefore explain a direct effect on muscle density, unrelated to myosteatosis. Interestingly, some researchers have also used phosphorus magnetic resonance spectroscopy to dynamically evaluate muscle mitochondrial function [80]. This is considered the gold standard for assessing in vivo muscle oxidative metabolism and certain muscular pathologies in humans [102] and could lead to further understanding of the pathophysiology of steatotic liver diseases. In the clinical study evaluating lanifibranor in patients with fibrosing MASH [63], body composition and in particular skeletal muscles were not examined. According to the results of our systematic review, it is possible that the beneficial effects seen on the liver are associated with benefits in terms of reduction of myosteatosis. Compared to individual selective PPAR activators, lanifibranor provides an interesting synergistic effect in preclinical models [103,104], in particular by targeting the activation of hepatic macrophages [104] which play a key role in the pathogenesis of MASH and IR [25,105–107]. The effect this molecule could have on muscle would therefore be interesting to study and would support the hepatic (muscle-liver axis) and extra-hepatic (insulin resistance in particular) benefits associated with the treatment.

The limitations of our analysis are mainly linked to the fact that, in the research manuscript collected, the joint study of the severity of liver damage and fatty infiltration of the muscles were not the initial objectives of the studies. In addition, a precise study of liver histology has not been carried out, although it is known that it is particularly the severe form of MASLD (MASH) that is associated with myosteatosis and that is only defined histologically. Another factor could be the effect of PPAR agonists via a mechanism of action different from those usually described and evaluated (fatty acid oxidation, anti-inflammation). For example, the reduction in bile acid synthesis obtained with PPARα–δ agonists could potentially...
be beneficial. Changes in bile acid composition with an increase in systemic bile acids are indeed associated with MASH [108]. The other limitations of this analysis are the usual limitations of systematic reviews, namely the risks of selection bias, publication bias, and selective communication of results, as well as the risks of inconsistency due to the heterogeneity of the models and results. Finally, the presence of an external author with methodological expertise would be an additional asset.

Conclusion

PPAR agonists, and more specifically pan-PPAR agonists have emerged as a promising treatment for MASH. They could also have a positive impact on MASH extrahepatic complications such as myosteatosis, through their action on FAO and inflammation. However, further research on humans is necessary to establish cutoff values for the diagnosis of myosteatosis and use them as a baseline to fully assess the effectiveness of treatments on both MASH and muscle fat infiltration. Given the strong link that exists between MASH and myosteatosis, it follows that a future treatment that is active in MASH would also have a beneficial impact on muscle composition. Precise evaluation of future therapies for MASH, using spectroscopy for example, should be considered, given the muscle-liver axis suspected in the pathogenesis of the disease.

Availability of Data and Materials

Not applicable.

Author Contributions

NB and NL conceived and designed the analysis; NB collected the data, performed the analysis, and wrote the first draft of the manuscript; GH and GB were involved in data curation; NL, GH and GB revised and edited the manuscript for intellectual content and interpretation of the data; NL supervised the work; all authors revised final version and gave approval for publication; all authors agreed to be accountable for all aspects of the work.

Ethics Approval and Consent to Participate

Not applicable.

Acknowledgment

We would like to thank Charles De Smet from UCLouvain for his advice on bibliographic research and data interpretation.

Funding

This work was supported by a concerted research action grant “Myo-SLD” 22/27-122. Nicolas Lanthier has a mandate of Clinical Researcher from the Fonds de la Recherche Scientifique (FNRS), Belgium.

Conflict of Interest

Nicolas Lanthier is serving as Editor-in-Chief of this journal. We declare that NL had no involvement in the peer review of this article and had no access to information regarding its peer review. NL received speaker fees from Gilead Sciences, Fresenius Kabi and Orphalan; received travel grants from Abbvie, Gilead Sciences and Norgine; received grants from Gilead Sciences. Other authors have no conflict of interest to declare.

References

lary lipid metabolism and insulin resistance. Biophysics Reports. 2015; 1: 90–98.

