
Available at: http://hdl.handle.net/2078.1/230728 [Downloaded 2024/04/19 at 14:02:20 ]

"The Laplace-P-spline methodology for fast approximate
Bayesian inference in additive partial linear models"

Gressani, Oswaldo ; Lambert, Philippe

ABSTRACT

Multiple linear regression is among the cornerstones of statistical model building. Whether from a
descriptive or inferential perspective, it is certainly the most widespread approach to analyze the inuence
of a collection of explanatory variables on a response. The straightforward interpretability in conjunction
with the simple and elegant mathematics of least squares created room for a well appreciated toolbox
with an ubiquitous presence in various scientific fields. In this article, the linear dependence assumption
of the response variable with respect to the covariates is relaxed and replaced by an additive architecture
of univariate smooth functions of predictor variables. An approximate Bayesian approach combining
Laplace approximations and P-splines is used for inference in this additive partial linear model class. The
analytical availability of the gradient and Hessian of the posterior penalty vector allows for a fast and
efficient exploration of the penalty space, which in turn yields accurate point and set estimates of latent
field variables. Different simulation settings confirm the statistical performance of the Laplace-P-spline
approach and the methodology is applied on mortality data.

CITE THIS VERSION

Gressani, Oswaldo ; Lambert, Philippe. The Laplace-P-spline methodology for fast approximate Bayesian
inference in additive partial linear models.  Discussion Paper ; 2020/20  (2020)  34 pages http://
hdl.handle.net/2078.1/230728

Le dépôt institutionnel DIAL est destiné au dépôt
et à la diffusion de documents scientifiques
émanant des membres de l'UCLouvain. Toute
utilisation de ce document à des fins lucratives
ou commerciales est strictement interdite.
L'utilisateur s'engage à respecter les droits
d'auteur liés à ce document, principalement le
droit à l'intégrité de l'œuvre et le droit à la
paternité. La politique complète de copyright est
disponible sur la page Copyright policy

DIAL is an institutional repository for the deposit
and dissemination of scientific documents from
UCLouvain members. Usage of this document
for profit or commercial purposes is stricly
prohibited. User agrees to respect copyright
about this document, mainly text integrity and
source mention. Full content of copyright policy
is available at Copyright policy

https://hdl.handle.net/2078/copyright_policy
https://hdl.handle.net/2078/copyright_policy


The LapLace-p-spLine meThodoLogy for 
fasT approximaTe Bayesian inference in 
addiTive parTiaL Linear modeLs

Gressani, O. and P. LAMBERT

DISCUSSION PAPER  |  2020 / 20



The Laplace-P-spline methodology for fast
approximate Bayesian inference in additive

partial linear models

Oswaldo Gressani a,* and Philippe Lambert a,b

a Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA),
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Université de Liège, Place des Orateurs 3,
B-4000, Liège, Belgium

Abstract

Multiple linear regression is among the cornerstones of statistical model build-
ing. Whether from a descriptive or inferential perspective, it is certainly the most
widespread approach to analyze the influence of a collection of explanatory variables
on a response. The straightforward interpretability in conjunction with the simple
and elegant mathematics of least squares created room for a well appreciated toolbox
with an ubiquitous presence in various scientific fields. In this article, the linear de-
pendence assumption of the response variable with respect to the covariates is relaxed
and replaced by an additive architecture of univariate smooth functions of predictor
variables. An approximate Bayesian approach combining Laplace approximations and
P-splines is used for inference in this additive partial linear model class. The ana-
lytical availability of the gradient and Hessian of the posterior penalty vector allows
for a fast and efficient exploration of the penalty space, which in turn yields accurate
point and set estimates of latent field variables. Different simulation settings confirm
the statistical performance of the Laplace-P-spline approach and the methodology is
applied on mortality data.

*Corresponding author. E-mail address: oswaldo gressani@hotmail.fr

1



1 Introduction

The dawn of additive models traces back to Friedman and Stuetzle (1981) who suggest a
projection pursuit regression technique in which the response is approximated by a sum of
univariate functions of one-dimensional projections of the vector of covariates. The paper
by Buja et al. (1989) investigates a class of smoothers in additive models and studies the
properties of the iterative backfitting algorithm proposed in Breiman and Friedman (1985)
as the Alternating Conditional Expectation algorithm. Backfitting is a well-known tool
for estimating the additive components of the model and imposed itself as a benchmark
strategy in the literature with successful applications. Tjøstheim and Auestad (1994) and
Linton and Nielsen (1995) independently suggested an alternative non-recursive estimation
plan that consists in estimating the regression surface by a multidimensional smoother in
a first step and integrate it in a second step to obtain an estimator of the marginal smooth
function of interest, a method coined “marginal integration”. Complete book-length treat-
ment of additive models are found in Hastie and Tibshirani (1990) and Wood (2017).

We adapt the Laplace-P-spline (LPS) approach to additive models with Gaussian er-
rors and develop a fast and flexible methodology for approximate Bayesian inference in
this model class. Great efforts have been invested in the derivation of analytical formulas
for the gradient and Hessian of the posterior penalty vector, which offers a nonnegligible
computational gain when exploring the posterior penalty space. Moments of a skew-normal
family of random variables are used to accurately approximate the posterior distribution of
penalty parameters, thereby capturing the inherent asymmetric patterns. In Section 2.1,
the Bayesian-P-spline additive model is introduced and a method is proposed to overcome
identifiability problems. In Section 2.2 the priors on the penalty parameters are defined
and the likelihood function is derived together with the conditional posterior distribution
of the latent field vector. Section 3.1 is dedicated to the posterior of the hyperparameter
vector. The nuisance parameters are integrated out in Section 3.2 and the gradient and
Hessian of the penalty vector are obtained in closed-form in Section 3.3. Section 3.4 pro-
poses a strategy to explore the posterior penalty vector based on skew-normal matching
moments. In Section 4 the approximate posterior of the latent field is derived and Section
4.1 covers the derivation of pointwise credible intervals for marginal latent field elements
and smooth functions. Section 5 implements a simulation study to assess the performance
of the proposed methodology and Section 6 illustrates the LPS approach on mortality data
before concluding.

2 The Bayesian P-spline additive model

2.1 Additive structure and latent field prior

Let us consider the set D = {(yi,xi, zi)ni=1} of n independent observations, where yi is a re-
sponse variable, xi = (xi1, . . . , xiq)

> a vector of continuous covariates and zi = (zi1, . . . , zip)
>

a vector of additional continuous or categorical covariates. Each covariate group is assumed
deterministic such that we are in a fixed design. The additive model is written as follows:

yi = β0 + β1zi1 + · · ·+ βpzip + f1(xi1) + · · ·+ fq(xiq) + εi, (1)

for i = 1, . . . , n, with regression coefficients β = (β0, . . . , βp)
> and {εi}ni=1 a sequence of
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independent and Gaussian errors with mean 0, unknown variance σ2 < +∞ and precision
τ = 1/σ2. The above model is also referred to as the additive partial linear model (explored
among others in Opsomer and Ruppert, 1999; Fan and Li, 2003; Liang et al., 2008; Ma and
Yang, 2011) as one part is specified parametrically and the remaining additive components
are unknown smooth functions. Following the P-spline approach of Eilers and Marx (1996),
the additive smooth components fj, j = 1, . . . , q are approximated by a large number
of cubic B-splines and a discrete penalty on neighboring spline coefficients is imposed to
counterbalance the roughness of the fit:

fj(xij) =
K∑
k=1

θjkbjk(xij), j = 1, . . . , q, (2)

where the number K of basis functions bjk(·) is the same for every fj. The vector of B-
spline amplitudes associated to function fj is given by θj = (θj1, . . . , θjK)>, while the set
of all spline coefficients in the additive model is θ = (θ>1 , . . . ,θ

>
q )> and the vector of B-

spline basis functions at xij is bj(xij) = (bj1(xij), . . . , bjK(xij))
>. The roughness penalty on

finite differences of the coefficients of adjacent B-spline coefficients is θ>P(λ)θ, with block
diagonal matrix P(λ) that can be expressed compactly using a Kronecker product:

P(λ) := diag(λ1, . . . , λq)⊗ P =


λ1P 0 . . . 0

0 λ2P . . . 0
... . . .

. . . 0
0 . . . 0 λqP

 ,

where λ = (λ1, . . . , λq)
> is a vector of positive penalty parameters and P = D>r Dr+εIK is a

penalty matrix resulting from the product of rth order difference matrices Dr of dimension
(K − r) × K. Adding a diagonal perturbation εIK (with ε = 10−6, say) ensures that P
is a full rank matrix. In a Bayesian setting, Lang and Brezger (2004) suggest to interpret
the roughness penalty as a multivariate Gaussian prior on the spline coefficients θ|λ, τ ∼
Ndim(θ)

(
0, (τP(λ))−1

)
. Also, a Gaussian prior is imposed on the regression coefficients

β|τ ∼ Ndim(β)(0, (τVβ)−1) (see for instance Jackman, 2009 p.104 or O’Hagan et al., 2004)
with matrix Vβ = ζIp+1 and small precision (say ζ = 10−5). The latent field of the model
is written as ξ = (β>,θ>)> and includes the regression and spline coefficients with prior
distribution ξ|λ, τ ∼ Ndim(ξ)

(
0, (τQλ

ξ )−1
)

and the following matrix:

Qλ
ξ := Qξ(λ) =

(
Vβ 0
0 P(λ)

)
.

Without loss of generality, the covariates zi are mean centered. Let z̄l = n−1
∑n

i=1 zil, l =
1, . . . , p and write the centered design matrix Z and B-spline matrices Bj, j = 1, . . . , q as:

Z =

1 (z11 − z̄1) . . . (z1p − z̄p)
...

...
...

...
1 (zn1 − z̄1) . . . (znp − z̄p)

 , Bj =

bj1(x1j) . . . bjK(x1j)
...

...
...

bj1(xnj) . . . bjK(xnj)

 .
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The additive model in (1) suffers from an identifiability issue. This can be easily illustrated
through the simple model E(y) = β0 + f(x). Assume our goal is to estimate the expected
value E(y) from a sample {(xi, yi)}ni=1. Let c be any arbitrary constant and denote by
β̃0 = β0− c and f̃(x) = f(x) + c. It follows that E(y) = β̃0 + f̃(x) for any c, such that there
exists an infinite number of configurations for β̃0 and f̃ yielding the same expected value,
meaning that the model “parameters” cannot be uniquely identified and estimated for a
given data set. To reach an identifiable model, we follow an approach similar to Durbán
and Currie (2003) and define the centered B-spline matrices:

B̃j = Bj − (1n1
>
L/L)B̆j, j = 1, . . . , q,

where 1n and 1L are column vectors of ones of length n and L respectively and B̆j is a
B-spline matrix computed on a fine grid x̆1j, . . . , x̆Lj of equidistant values on the domain
of fj. The centered matrix can be written as:

B̃j =

bj1(x1j)−
1
L

∑L
l=1 bj1(x̆lj) . . . bjK(x1j)− 1

L

∑L
l=1 bjK(x̆lj)

...
...

...

bj1(xnj)− 1
L

∑L
l=1 bj1(x̆lj) . . . bjK(xnj)− 1

L

∑L
l=1 bjK(x̆lj)

 .

We denote by b̃j(xij)
> the ith row of matrix B̃j. Hence, the ith entry of the vector B̃jθj

is given by:

b̃j(xij)
>θj =

K∑
k=1

θjkbjk(xij)−
1

L

L∑
l=1

K∑
k=1

θjkbjk(x̆lj)

and according to (2), the identifiability constraint is translated as f̃j(xij) = fj(xij) −
L−1

∑L
l=1 fj(x̆lj), i.e. the additive functional components are centered around their average

value (computed over a fine equidistant grid). To see how this solves the identifiability
problem consider again the simple model E(y) = β0 + f(x) − f̄ , with f̄ = L−1

∑L
l=1 f(x̆l)

the average of f over a fine grid. Adding c to the intercept and subtracting the same
amount from f yields:

Ẽ(y) = β0 + c+ f(x)− c− L−1
L∑
l=1

(f(x̆l)− c)

= β0 + c+ (f(x)− f̄),

such that E(y) 6= Ẽ(y). Centering the B-spline matrices implies a rank reduction as stated
in the following proposition:

Proposition (Rank-reduction due to centering)

The rank of the centered B-spline matrix B̃j is K − 1.
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Proof:
Let us first use the property that 1n = Bj1K , i.e. the sum over the rows of matrix Bj is
equal to one, and write the centered matrix as follows:

B̃j = Bj −Bj(1K1>L/L)B̆j

= Bj(IK − B),

where B = (L−11K1>L)B̆j is a K ×K idempotent matrix. Indeed:

BB = L−1L−11K1>LB̆j1K1>LB̆j

= L−1L−11K(1>L1L)1>LB̆j using 1L = B̆j1K

= (L−11K1>L)B̆j

= B.

Provided the Schoenberg-Whitney conditions are satisfied, the B-spline matrix Bj will have
full column rank K (see Ma and Kruth, 1995). Using the product property of ranks, it

follows that rank(B̃j) = rank(IK − B). As B is idempotent, (IK − B) is also idempotent
and so its rank is equal to its trace:

rank(B̃j) = rank(IK − B)

= Tr(IK − B)

= Tr(IK)− Tr(L−11K1>LB̆j)

= K − L−1Tr(B̆j1K1>L)

= K − L−1Tr(1L1>L)

= K − 1. �

To ensure that all the spline coefficients can be estimated in a unique way, we follow Wood
(2017) and fix the Kth element of each spline vector θj to zero and delete the Kth column

in B̃j and difference matrix Dr. Hence B̃j has K − 1 columns and the latent vector has
dimension dim(ξ) = q× (K − 1) + p+ 1. Taking the identifiability constraint into account,

the ith entry of the vector B̃jθj becomes:

b̃j(xij)
>θj =

K−1∑
k=1

θjkbjk(xij)−
1

L

L∑
l=1

K−1∑
k=1

θjkbjk(x̆lj). (3)

With the identifiability constraint and the centered Z matrix, the additive model in (1) can
be expressed compactly as:

y = Zβ + B̃1θ1 + · · ·+ B̃qθq + ε

= Bξ + ε, (4)

where B is a side by side configuration of design matrices, B = [Z : B̃1 : · · · : B̃q] and
corresponds to the full design matrix of the model. In the next section, we summarize the
full Bayesian model and proceed with the derivation of the conditional posterior distribution
of the latent field.
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2.2 Latent field conditional posterior

The following priors are used for the penalty parameters λj|δj ∼ G(ν/2, (νδj)/2), j =
1, . . . , q and δj ∼ G(aδ, bδ), j = 1, . . . , q with aδ = bδ = 10−4 and ν = 3. Moreover, we
use Jeffreys’ prior for the precision p(τ) ∝ τ−1 and write the hyperparameter vector as
η = (λ>, δ>, τ)>, where δ = (δ1, . . . , δq)

>. The full Bayesian model is:

yi|ξ, τ ∼ N1

(
β0 +

p∑
l=1

βlzil +

q∑
j=1

bj(xij)
>θj, τ

−1
)
, i = 1, . . . , n,

θ|λ, τ ∼ Ndim(θ)

(
0, (τP(λ))−1

)
,

ξ|λ, τ ∼ Ndim(ξ)

(
0, (τQλ

ξ )−1
)
,

λj|δj ∼ G(ν/2, (νδj)/2), j = 1, . . . , q,

δj ∼ G(aδ, bδ), j = 1, . . . , q,

p(τ) ∝ τ−1.

Taking into account the centering of the covariates in the linear part and the identifiability
constraint of the smooth functions, the likelihood of the model is written as:

L(ξ, τ ;D) =
n∏
i=1

√
τ√

2π
exp

{
− τ

2

(
yi −

(
β0 +

p∑
l=1

βl(zil − z̄l)

+

q∑
j=1

b̃j(xij)
>θj

))2}
∝ τ

n
2 exp

{
− τ

2
(y −Bξ)>(y −Bξ)

}
.

The conditional posterior distribution of the latent field can be obtained as follows:

p(ξ|λ, τ,D) =
L(ξ, τ ;D)p(ξ,λ, τ)

p(λ, τ,D)

∝ L(ξ, τ ;D) p(ξ|λ, τ).

Using the previously specified latent field prior and likelihood we get:

p(ξ|λ, τ,D) ∝ exp
(
− τ

2

(
y>y − 2y>Bξ + ξ>B>Bξ

)
− τ

2
ξ>Qλ

ξ ξ
)

∝ exp
(
τy>Bξ − τ

2
ξ>(B>B +Qλ

ξ )ξ
)
. (5)

Note that (5) is the exponential of a quadratic form in ξ and can be written as a Gaus-
sian distribution. To find the mean vector we solve ∇ξ log p(ξ|λ, τ,D) = 0 and obtain

ξ̂λ = (B>B + Qλ
ξ )−1B>y. The precision is −∇2

ξ log p(ξ|λ, τ,D) = τ(B>B + Qλ
ξ ) and

so the conditional posterior of the latent field is characterized by the following Gaussian
distribution:

(ξ|λ, τ,D) ∼ Ndim(ξ)

(
ξ̂λ, τ

−1(B>B +Qλ
ξ )−1

)
. (6)
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3 Posterior of the penalty vector

The aim of this section is to derive the posterior of the hyperparameter vector η, an essential
step to obtain the joint posterior of the latent field. First, we give the expression of p(η|D)
and show how it can be integrated with respect to the nuisance hyperparameters δ and τ
resulting in a posterior for the roughness penalty vector. The gradient and Hessian of the
posterior penalty are then analytically derived and used to compute the posterior mode
through a Newton-Raphson algorithm.

3.1 Posterior of the full hyperparameter vector

The posterior of the full hyperparameter vector η is:

p(η|D) =
p(ξ,η|D)

p(ξ|η,D)

=
L(ξ, τ ;D)p(ξ,η)

p(D)p(ξ|η,D)

=
L(ξ, τ ;D)p(ξ|η)p(λ, δ|τ)p(τ)

p(D)p(ξ|η,D)
,

where p(ξ|η) = p(ξ|λ, δ, τ) = p(ξ|λ, τ) as ξ ⊥ δ|λ, τ and p(λ, δ|τ) = p(λ, δ) as λ, δ ⊥ τ .
Hence, the expression becomes:

p(η|D) ∝

L(ξ, τ ;D)p(ξ|λ, τ)

(
q∏
j=1

p(λj|δj)

)(
q∏
j=1

p(δj)

)
p(τ)

p(ξ|λ, τ,D)
,

where p(λj|δj) ∝ δ
ν
2
j λ

( ν
2
−1)

j exp
(
− ν

2
δjλj

)
and p(δj) ∝ δaδ−1j exp(−bδδj). Note also that:(

q∏
j=1

p(λj|δj)

) (
q∏
j=1

p(δj)

)
∝

(
q∏
j=1

δ
( ν
2
+aδ−1)

j exp
(
− δj

(
bδ +

ν

2
λj

)))

×

(
q∏
j=1

λ
( ν
2
−1)

j

)
.

Following Rue et al. (2009), the posterior of the hyperparameter vector can be evaluated
around the mode of the conditional posterior of the latent field, namely p(η|D)

∣∣
ξ=ξ̂λ

. Using

the previously derived expressions of the model:

p(η|D)
∣∣
ξ=ξ̂λ

∝ τ
n
2 exp

(
−τ

2
y>y + τy>Bξ − τ

2
ξ>B>Bξ

) ∣∣∣
ξ=ξ̂λ

× τ
dim(ξ)

2 |Qλ
ξ |

1
2 exp

(
−τ

2
ξ>Qλ

ξ ξ
) ∣∣∣

ξ=ξ̂λ

×

(
q∏
j=1

δ
( ν
2
+aδ−1)

j exp
(
−δj
(
bδ +

ν

2
λj

))) ( q∏
j=1

λ
( ν
2
−1)

j

)
× τ−1τ−

dim(ξ)
2 |B>B +Qλ

ξ |−
1
2 .
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Replacing ξ by ξ̂λ = (B>B +Qλ
ξ )−1B>y in the above expression, one obtains:

p(η|D)
∣∣
ξ=ξ̂λ
∝ τ (

n
2
−1)|B>B +Qλ

ξ |−
1
2 |Qλ

ξ |
1
2

(
q∏
j=1

δ
( ν
2
+aδ−1)

j

× exp
(
−δj
(
bδ +

ν

2
λj

))) ( q∏
j=1

λ
( ν
2
−1)

j

)
× exp

(
− τ

2
y>y + τy>B(B>B +Qλ

ξ )−1B>y − τ

2
y>B

×(B>B +Qλ
ξ )−1(B>B +Qλ

ξ )(B>B +Qλ
ξ )−1B>y

)
∝ τ (

n
2
−1)|B>B +Qλ

ξ |−
1
2 |Qλ

ξ |
1
2

(
q∏
j=1

δ
( ν
2
+aδ−1)

j

× exp
(
− δj

(
bδ +

ν

2
λj

)))
×

(
q∏
j=1

λ
( ν
2
−1)

j

)
exp

(
− τ

2
y>y

+τy>B(B>B +Qλ
ξ )−1B>y − τ

2
y>B(B>B +Qλ

ξ )−1B>y
)

∝ τ (
n
2
−1)|B>B +Qλ

ξ |−
1
2 |Qλ

ξ |
1
2

(
q∏
j=1

δ
( ν
2
+aδ−1)

j exp
(
−δj
(
bδ +

ν

2
λj

)))

×

(
q∏
j=1

λ
( ν
2
−1)

j

)
exp

(
−τ

2
y>y +

τ

2
y>B(B>B +Qλ

ξ )−1B>y
)

∝ τ (
n
2
−1)|B>B +Qλ

ξ |−
1
2 |Qλ

ξ |
1
2

(
q∏
j=1

δ
( ν
2
+aδ−1)

j exp
(
−δj
(
bδ +

ν

2
λj

)))

×

(
q∏
j=1

λ
( ν
2
−1)

j

)
exp

(
−τ

2
y>
(
In −B(B>B +Qλ

ξ )−1B>)y
)
.

Let us define the scalar function φ(λ) := 1
2
y>
(
In − B(B>B + Qλ

ξ )−1B>)y and write com-
pactly:

p(η|D)
∣∣
ξ=ξ̂λ
∝|B>B +Qλ

ξ |−
1
2 |Qλ

ξ |
1
2

(
q∏
j=1

δ
( ν
2
+aδ−1)

j exp
(
− δj

(
bδ +

ν

2
λj

)))

×

(
q∏
j=1

λ
( ν
2
−1)

j

)
τ (

n
2
−1) exp

(
− τφ(λ)

)
. (7)
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3.2 Integration with respect to the nuisance parameters

The nuisance parameter τ can be integrated out from (7) as expression τ (
n
2
−1) exp

(
−τφ(λ)

)
is up to a multiplicative constant the density of a Gamma distribution parameterized by
G(n/2, φ(λ)). Hence,

∫ +∞
0

τ (
n
2
−1) exp

(
− τφ(λ)

)
dτ = Γ

(
n
2

)
φ(λ)−

n
2 , where Γ(·) is the

Gamma function. Using this property, the integral is given by:

p(λ, δ|D) =

∫ +∞

0

p(η|D)
∣∣
ξ=ξ̂λ

dτ

∝ |B>B +Qλ
ξ |−

1
2 |Qλ

ξ |
1
2

(
q∏
j=1

δ
( ν
2
+aδ−1)

j exp
(
− δj

(
bδ +

ν

2
λj

)))

×

(
q∏
j=1

λ
( ν
2
−1)

j

)
φ(λ)−

n
2 . (8)

The above expression can be further simplified using the property that the determinant of
a block diagonal matrix is equal to the product of the determinants of the blocks:

|Qλ
ξ |

1
2 =

(
ζ(p+1) |Ip+1| |P |q

q∏
j=1

λ
(K−1)
j

) 1
2

= ζ
(p+1)

2 |P |
q
2︸ ︷︷ ︸

constant

q∏
j=1

λ
(K−1)

2
j ,

such that (8) becomes:

p(λ, δ|D) ∝ |B>B +Qλ
ξ |−

1
2

(
q∏
j=1

λ

(
ν+K−3

2

)
j

)

×

(
q∏
j=1

δ
( ν
2
+aδ−1)

j exp
(
− δj

(
bδ +

ν

2
λj

)))
φ(λ)−

n
2 . (9)

The posterior in (9) can be integrated with respect to δj successively for j = 1, . . . , q

since δ
( ν
2
+aδ−1)

j exp
(
− δj

(
bδ + ν

2
λj

))
is (up to a multiplicative constant) a Gamma density

parameterized by G(ν
2

+ aδ, bδ + ν
2
λj), so:∫ +∞

0

· · ·
∫ +∞

0

(
q∏
j=1

δ
( ν
2
+aδ−1)

j exp
(
− δj

(
bδ +

ν

2
λj

)))
dδ1 . . . dδq

=

q∏
j=1

(∫ +∞

0

δ
( ν
2
+aδ−1)

j exp
(
− δj

(
bδ +

ν

2
λj

))
dδj

)

=

(
Γ
(ν

2
+ aδ

))q( q∏
j=1

(
bδ +

ν

2
λj

)−( ν
2
+aδ)

)
(10)

and the posterior of the penalty vector is:

p(λ|D) =

∫ +∞

0

· · ·
∫ +∞

0

p(λ, δ|D) dδ1 . . . dδq

∝ |B>B +Qλ
ξ |−

1
2

(
q∏
j=1

λ

(
ν+K−3

2

)
j

)(
q∏
j=1

(
bδ +

ν

2
λj

)−( ν
2
+aδ)

)
φ(λ)−

n
2 .

(11)
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One can easily compute the ratio:

p(τ |λ,D) =
p(τ,λ|D)

p(λ|D)

∝ τ(n2−1) exp(−τφ(λ)),

such that the conditional posterior distribution for τ is (τ |λ,D) ∼ G (n/2, φ(λ)).

3.3 Gradient and Hessian of the posterior penalty

The analytical gradient and Hessian of the penalty vector can be derived to find its poste-
rior mode via a Newton-Raphson algorithm. The posterior mode as a measure of central
tendency is essential to construct a grid for exploring p(λ|D). To ensure numerical stability,
the penalty parameters are log transformed, vj = log(λj), j = 1, . . . , q, and the associated
vector is v = (v1, . . . , vq)

>. Using the multivariate transformation method on (11), the
posterior becomes:

p(v|D) ∝ |B>B +Qv
ξ |−

1
2

(
q∏
j=1

exp(vj)

(
ν+K−3

2

))

×

(
q∏
j=1

(
bδ +

ν

2
exp(vj)

)−( ν
2
+aδ)

)
φ(v)−

n
2

×

(
q∏
j=1

exp(vj)

)
, (12)

where
∏q

j=1 exp(vj) is the Jacobian of the transformation, φ(v) is the following function

of the log penalty vector φ(v) = 1
2
y>
(
In − B(B>B + Qv

ξ )−1B>
)
y and Qv

ξ is a symmetric

block diagonal matrix given by:

Qv
ξ =

(
ζIp+1 0p+1,q×(K−1)

0q×(K−1),p+1 diag(exp(v1), . . . , exp(vq))⊗ P

)
.

Taking the log of (12) yields:

log p(v|D) =̇ −1

2
log |B>B +Qv

ξ |︸ ︷︷ ︸
Term I

+

(
ν +K − 1

2

)
q∑
j=1

vj︸ ︷︷ ︸
Term II

−n
2

log φ(v)︸ ︷︷ ︸
Term III

−
(ν

2
+ aδ

) q∑
j=1

log
(
bδ +

ν

2
exp(vj)

)
︸ ︷︷ ︸

Term IV

. (13)
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Gradient

Using Jacobi’s formula for the partial derivatives of the determinant with respect to vj (see
Harville, 1997, Chapter 15), in Term I:

∂ log |B>B +Qv
ξ |

∂vj
=

1

|B>B +Qv
ξ |

∂

∂vj
|B>B +Qv

ξ |

=
1

|B>B +Qv
ξ |

Tr
(

adj(B>B +Qv
ξ )

∂

∂vj
(B>B +Qv

ξ )
)

=
1

|B>B +Qv
ξ |

Tr
(
|B>B +Qv

ξ | (B>B +Qv
ξ )−1

× ∂

∂vj
(B>B +Qv

ξ )
)

= Tr
(
Mv

ξPvj

)
, (14)

where adj(·) is the adjoint of a matrix (transpose of the cofactor matrix), Mv
ξ := (B>B +

Qv
ξ )−1 is a symmetric matrix and Pvj is a (symmetric) block diagonal matrix defined as:

Pvj :=
∂

∂vj
(B>B +Qv

ξ )

=

(
0p+1,p+1 0p+1,q×(K−1)

0q×(K−1),p+1 diag(0, . . . , exp(vj), . . . , 0)⊗ P

)
,

where diag(0, . . . , exp(vj), . . . , 0) is a q × q diagonal matrix, whose jth diagonal element is
exp(vj) and all other diagonal elements are zero. Derivation of Term II with respect to vj
is trivial:

∂

∂vj

(
ν +K − 1

2

)
q∑
j=1

vj =

(
ν +K − 1

2

)
. (15)

The partial derivative of Term III is:

∂

∂vj
log(φ(v)) =

1

φ(v)

∂φ(v)

∂vj

=
1

φ(v)

(
− 1

2

∂

∂vj

(
y>B(B>B +Qv

ξ )−1B>y
))

=
1

φ(v)

(
− 1

2

∂

∂vj
Tr
(
y>B(B>B +Qv

ξ )−1B>y
))

=
1

φ(v)

(
− 1

2

∂

∂vj
Tr
(
B>yy>B(B>B +Qv

ξ )−1
))

=
1

φ(v)

(
− 1

2
Tr
(
B>yy>B

∂

∂vj
(B>B +Qv

ξ )−1
))
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=
1

φ(v)

(
− 1

2
Tr
(
B>yy>B

(
− (B>B +Qv

ξ )−1Pvj

×(B>B +Qv
ξ )−1

)))
=

1

φ(v)

(
− 1

2
Tr
(
y>B

(
−Mv

ξPvjMv
ξ

)
B>y

))
=

1

φ(v)

(
− 1

2
y>B

(
−Mv

ξPvjMv
ξ

)
B>y

)
=

1

2φ(v)
y>BMv

ξPvjMv
ξB
>y. (16)

Taking the derivative of Term IV with respect to vj gives:

∂

∂vj

q∑
j=1

log
(
bδ +

ν

2
exp(vj)

)
=

ν
2

exp(vj)

bδ + ν
2

exp(vj)

=
1

1 + 2bδ
ν exp(vj)

. (17)

Finally, taking (14), (15), (16) and (17), the gradient ∇v log p(v|D) has entries:

∂ log p(v|D)

∂vj
= −1

2
Tr
(
Mv

ξPvj

)
+

(
ν +K − 1

2

)
− n

4φ(v)
y>BMv

ξPvjMv
ξB
>y

−
(
ν
2

+ aδ
)

1 + 2bδ
ν exp(vj)

, j = 1, . . . , q.

Hessian
To obtain the diagonal elements of the Hessian, the following differentiation is required:

∂

∂vj
Tr
(

(B>B +Qv
ξ )−1Pvj

)
= Tr

( ∂

∂vj
(B>B +Qv

ξ )−1Pvj

)
= Tr

(
−Mv

ξPvjMv
ξPvj +Mv

ξPvj

)
= −Tr

((
Mv

ξPvj

)2
−Mv

ξPvj

)
. (18)

In addition, recall from (16) that:

∂φ(v)

∂vj
=

1

2
y>BMv

ξPvjMv
ξB
>y. (19)
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Furthermore, note the following differentiation result:

∂

∂vj
y>BMv

ξPvjMv
ξB
>y

=
∂

∂vj
Tr
(
y>BMv

ξPvjMv
ξB
>y
)

=
∂

∂vj
Tr
(
B>yy>BMv

ξPvjMv
ξ

)
= Tr

(
B>yy>B

∂

∂vj
Mv

ξPvjMv
ξ

)
= Tr

(
B>yy>B

(
∂Mv

ξ

∂vj
PvjMv

ξ +Mv
ξ

∂Pvj
∂vj
Mv

ξ +Mv
ξPvj

∂Mv
ξ

∂vj

))

= Tr

(
B>yy>B

(
− 2
(
Mv

ξPvj

)2
Mv

ξ +Mv
ξPvjMv

ξ

))

= Tr

(
y>B

(
− 2
(
Mv

ξPvj

)2
Mv

ξ +Mv
ξPvjMv

ξ

)
B>y

)
= −2y>B

(
Mv

ξPvj

)2
Mv

ξB
>y + y>BMv

ξPvjMv
ξB
>y. (20)

Using (19), (20) and the quotient rule for derivatives yields:

∂

∂vj

y>BMv
ξPvjMv

ξB
>y

φ(v)
=

1

φ2(v)

(
− 2φ(v)y>B

(
Mv

ξPvj

)2
Mv

ξB
>y

+φ(v)y>BMv
ξPvjMv

ξB
>y

−1

2

(
y>BMv

ξPvjMv
ξB
>y
)2)

. (21)

Finally, note that:

∂

∂vj

(
ν
2

+ aδ
)(

1 + 2bδ
ν exp(vj)

) =
bδ
(
1 + 2aδ

ν

)
exp(−vj)(

1 + 2bδ
ν exp(vj)

)2 , (22)

and using (18), (21), (22), the diagonal entries of the Hessian of log p(v|D) are:

∂2 log p(v|D)

∂v2j

=
1

2
Tr
((
Mv

ξPvj

)2
−Mv

ξPvj

)
− n

4φ2(v)

(
− 2φ(v)y>B

(
Mv

ξPvj

)2
×Mv

ξB
>y + φ(v)y>BMv

ξPvjMv
ξB
>y − 1

2

(
y>BMv

ξPvjMv
ξB
>y
)2)

−
bδ
(
1 + 2aδ

ν

)
exp(−vj)(

1 + 2bδ
ν exp(vj)

)2 , j = 1, . . . , q.

To obtain the off-diagonal elements of the Hessian, note that for index s 6= j:
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∂

∂vs
Tr
(

(B>B +Qv
ξ )−1Pvj

)
= Tr

( ∂

∂vs
(B>B +Qv

ξ )−1Pvj

)
= Tr

(
−Mv

ξPvsMv
ξPvj

)
= −Tr

(
Mv

ξPvsMv
ξPvj

)
.

Furthermore, similarly to (20):

∂

∂vs
y>BMv

ξPvjMv
ξB
>y

=
∂

∂vs
Tr
(
y>BMv

ξPvjMv
ξB
>y
)

=
∂

∂vs
Tr
(
B>yy>BMv

ξPvjMv
ξ

)
= Tr

(
B>yy>B

∂

∂vs
Mv

ξPvjMv
ξ

)
= Tr

(
B>yy>B

(
∂Mv

ξ

∂vs
PvjMv

ξ +Mv
ξ

∂Pvj
∂vs
Mv

ξ +Mv
ξPvj

∂Mv
ξ

∂vs

))

= Tr

(
B>yy>B

(
−Mv

ξPvsMv
ξPvjMv

ξ −Mv
ξPvjMv

ξPvsMv
ξ

))

= Tr

(
y>B

(
−Mv

ξPvsMv
ξPvjMv

ξ −Mv
ξPvjMv

ξPvsMv
ξ

)
B>y

)
= −y>BMv

ξPvsMv
ξPvjMv

ξB
>y − (y>BMv

ξPvjMv
ξPvsMv

ξB
>y)>

= −2y>BMv
ξPvsMv

ξPvjMv
ξB
>y,

such that using the quotient rule, we have:

∂

∂vs

y>BMv
ξPvjMv

ξB
>y

φ(v)

=
1

φ2(v)

(
− 2φ(v)y>BMv

ξPvsMv
ξPvjMv

ξB
>y

−1

2

(
y>BMv

ξPvjMv
ξB
>y
)(

y>BMv
ξPvsMv

ξB
>y
))
.

Hence, the off-diagonal elements s = 1, . . . , q, j = 1, . . . , q and s 6= j of the Hessian are:

∂2 log p(v|D)

∂vs ∂vj
=

1

2
Tr
(
Mv

ξPvsMv
ξPvj

)
+

n

4φ2(v)

(
2φ(v)y>BMv

ξPvsMv
ξPvjMv

ξB
>y

+
1

2

(
y>BMv

ξPvjMv
ξB
>y
)(

y>BMv
ξPvsMv

ξB
>y
))
.
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To summarize, the gradient and Hessian entries of log p(v|D) are:

Gradient ∇v log p(v|D) entries for j = 1, . . . , q:

∂ log p(v|D)

∂vj

= −1

2
Tr
(
Mv

ξPvj

)
+

(
ν +K − 1

2

)
− n

4φ(v)
y>BMv

ξPvjMv
ξB
>y

−
(
ν
2

+ aδ
)

1 + 2bδ
ν exp(vj)

. (23)

Hessian ∇2
v log p(v|D), diagonal elements j = 1, . . . , q:

∂2 log p(v|D)

∂v2j

=
1

2
Tr
((
Mv

ξPvj

)2
−Mv

ξPvj

)
− n

4φ2(v)

(
− 2φ(v)y>B

(
Mv

ξPvj

)2
×Mv

ξB
>y + φ(v)y>BMv

ξPvjMv
ξB
>y − 1

2

(
y>BMv

ξPvjMv
ξB
>y
)2)

−
bδ
(
1 + 2aδ

ν

)
exp(−vj)(

1 + 2bδ
ν exp(vj)

)2 .

Hessian ∇2
v log p(v|D), off-diagonal elements s = 1, . . . , q, j = 1, . . . , q, j 6= s:

∂2 log p(v|D)

∂vs ∂vj
=

1

2
Tr
(
Mv

ξPvsMv
ξPvj

)
+

n

4φ2(v)

(
2φ(v)y>BMv

ξPvsMv
ξPvjMv

ξB
>y

+
1

2

(
y>BMv

ξPvjMv
ξB
>y
)(

y>BMv
ξPvsMv

ξB
>y
))
.

The R output below compares (for q = 3) the analytical gradient and Hessian formulas with
the numerical derivatives of log p(v|D) obtained with the grad() and hessian() functions
of the numDeriv package at a randomly selected point v with entries vj ∼ U(−5, 5), j =
1, 2, 3.

---------------Gradient-------------

"----------analytic----------"

-3.747028 -25.223528 -9.407790

"----------numeric-----------"

-3.747036 -25.223532 -9.407792
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--------------Hessian-------------

"----------analytic----------"

[,1] [,2] [,3]

[1,] -1.774439 0.849825 0.401218

[2,] 0.849825 -3.846784 1.759438

[3,] 0.401218 1.759438 -3.381276

"----------numeric----------"

[,1] [,2] [,3]

[1,] -1.774438 0.849825 0.401218

[2,] 0.849825 -3.846783 1.759438

[3,] 0.401218 1.759438 -3.381276

In Table 1, we show the largest difference (in absolute value) between the entries of the nu-
merical and analytical gradients and Hessians respectively computed across 1000 randomly
selected points v with entries vj ∼ U(−5, 5), j = 1, 2, 3.

v1 v2 v3
Gradient entries 0.000298 0.000141 0.001738
Hessian diagonal entries 0.010067 0.004479 0.034679
Hessian off-diagonal entries 0.000042 0.000207 0.000127

Table 1: Largest absolute difference between gradient and Hessian entries computed from
our analytical formulas and the numerical derivatives from the numDeriv package.

3.4 Exploration of the posterior penalty space

A crucial step to derive the approximate posterior of latent variables is to identify the
behavior of p(v|D). This is similar to a design problem in the sense that a set of points
has to be efficiently chosen in the domain of a response surface to capture the essence of
the functional pattern. A grid strategy is proposed that is sensible to asymmetries in the
response surface p(v|D), with the skew-normal family of distributions forming the back-
bone that manages the lack of symmetry. The grid will be constructed around the posterior
mode v̂ of the target log p(v|D) which can be obtained through a Newton-Raphson method
summarized in Algorithm 1, which contains the previously derived gradient ∇v log p(v|D)
and Hessian ∇2

v log p(v|D).
An elementary approach to explore p(v|D) could rely on a multivariate Gaussian approx-

imation to the posterior of the log penalty parameters v, namely p̃G(v|D) = Ndim(v)

(
v̂,
(
−

H∗
)−1)

, where the covariance matrix is obtained from the HessianH∗ = ∇2
v log p(v̂|D) eval-

uated at the mode v̂. However, as already pointed in Martins et al. (2013), the presence
of potential asymmetries would not be captured by a Gaussian approximation. Instead, to
efficiently explore the posterior penalty space, a grid strategy is proposed, which implic-
itly takes into account asymmetries by using skew-normal distributions to approximate the
conditional posterior of each penalty parameter through a moment-matching approach.
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Algorithm 1: Newton-Raphson to locate the mode of p(v|D)

1: Set tol=10−5, dist=3, v(0) =
(
v
(0)
1 , . . . , v

(0)
q

)
and m=0.

2: while dist > tol do

3: v(m+1) = v(m) −
(
∇2

v log p(v(m)|D)
)−1
∇v log p(v(m)|D).

4: dist=‖v(m+1) − v(m)‖.
5: end while
6: At convergence return v̂ = (v̂1, . . . , v̂q).

The skew-normal family was first introduced by Azzalini (1985), see Azzalini (2014) for
more details. In the univariate case, a random variable X has a skew-normal distribution
denoted by X ∼ SN(µ, ς2, ρ) if its probability density function at x ∈ R is:

p(x) =
2

ς
ϕ

(
x− µ
ς

)
Φ

(
ρ

(x− µ)

ς

)
, (24)

where µ ∈ R is a location parameter, ς ∈ R++ a scale parameter and ρ ∈ R a shape
parameter regulating skewness. Also, ϕ(·) and Φ(·) denote the standard Gaussian density
function and its cumulative distribution function respectively, such that setting ρ = 0 yields
the N (µ, ς2) distribution. We suggest to approximate the conditional posterior distribution
of (vj|v̂−j,D) (j = 1, ..., q) with a skew-normal distribution by matching its first three
empirical moments with the theoretical ones for the density in (24), where v̂−j denotes the
vector v̂ without the jth entry. The derivations to obtain µ∗, ς∗ and ρ∗ in the approximating
skew-normal distribution SNj(µ

∗, ς∗2, ρ∗) to p(vj|v̂−j,D) through moment matching are
shown below.

The first moment and the second and third central moments of X ∼ SN(µ, ς2, ρ) are
given by:

E(X) = µ+ ς

√
2

π
ψ,

E
(
(X − E(X))2

)
= ς2

(
1− 2

π
ψ2

)
,

E
(
(X − E(X))3

)
=

1

2
(4− π) ς3

(
2

π

) 3
2

ψ3,

where ψ = ρ/
√

1 + ρ2 ∈ (−1, 1). These theoretical moments will be matched with the
empirical moments of the the conditional distributions p(vj|v̂−j,D). The empirical moments
of the conditionals are computed on an equidistant grid {vjl}Ll=1 with interval length ∆l:

mj1 =
L∑
l=1

vjl p(vjl|v̂−j,D) ∆l,

mj2 =
L∑
l=1

(vjl −mj1)
2 p(vjl|v̂−j,D) ∆l,

mj3 =
L∑
l=1

(vjl −mj1)
3 p(vjl|v̂−j,D) ∆l.
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The skew-normal fit to p(vj|v̂−j,D) is found by matching the empirical and theoretical
moments, i.e. the following system needs to be solved:

mj1 = µ+ ς

√
2

π
ψ (25)

mj2 = ς2
(

1− 2

π
ψ2

)
(26)

mj3 =
1

2
(4− π) ς3

( 2

π

) 3
2
ψ3. (27)

From (26), we isolate ς:

ς =

√
mj2(

1− 2
π
ψ2
) > 0. (28)

Plugging (28) in (27) yields:

mj3 =
1

2
(4− π)

m
3
2
j2(

1− 2
π
ψ2
) 3

2

( 2

π

) 3
2
ψ3

⇔ ψ3(
1− 2

π
ψ2
) 3

2

=
2mj3π

3
2

(4− π)m
3
2
j22

3
2

⇔ ψ3(
1− 2

π
ψ2
) 3

2

=
mj3π

3
2

(4− π)
√

2 m
3
2
j2

⇔ ψ(
1− 2

π
ψ2
) 1

2

=
m

1
3
j3π

1
2

(4− π)
1
3 2

1
6 m

1
2
j2

.

Let κ := m
1
3
j3π

1
2/(4− π)

1
3 2

1
6 m

1
2
j2, so that the above equation becomes:

ψ = κ

(
1− 2

π
ψ2

) 1
2

⇔ ψ2 +
2κ2

π
ψ2 − κ2 = 0

⇔ ψ2

(
1 +

2κ2

π

)
− κ2 = 0.

The discriminant of the above quadratic equation in ψ is given by ∆ = 4
(

1 + 2κ2

π

)
κ2 > 0.

Even though there are two solutions, the only solution retained is the one whose sign
is the same as the sign of the third empirical central moment. Indeed, if mj3 is nega-
tive/positive, ψ∗ (and by extension ρ∗) should also be negative/positive to capture the
negatively/positively skewed pattern of p(vj|v̂−j,D). Hence, using the sign(·) function:

ψ∗ = sign(mj3)

√
4
(
κ2 + 2κ4

π

)
2 + 4κ2

π

. (29)

So, we have ρ∗ = ψ∗/
√

1− (ψ∗)2 and plugging (29) in (28), we recover:
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ς∗ =

√
mj2(

1− 2
π

(ψ∗)2
) . (30)

Finally, the location parameter is given by:

µ∗ = mj1 − ς∗
√

2

π
ψ∗. (31)

The skew-normal fit to the conditional p(vj|v̂−j,D) is written as follows SNj(µ
∗, ς∗2, ρ∗) and

can be used for the grid construction strategy.
Once a skew-normal distribution has been adjusted to the conditional p(vj|v̂−j,D), we

construct an equidistant grid {vjm}Mm=1 of size M from the 2.5th to the 97.5th quantiles of
the skew-normal fit denoted by SNj,0.025 and SNj,0.975 respectively. This process is repeated
across all dimensions j = 1, . . . , q and a Cartesian product of the univariate grids is taken,
ending up with a total of M q (multivariate) grid points. Next, a filtering strategy is
implemented to get rid of quadrature points associated to a small posterior mass.
Let us consider the normalized posterior R(v) = p(v|D)/p(v̂|D) and use the property that
−2 logR(v) is approximately distributed as a chi-square distribution with dim(v) degrees
of freedom denoted by χ2

dim(v). Then, an approximate (1−α) credible region for v is defined

by the set of values in Rdim(v) such that R(v) ≥ exp
(
−.5χ2

dim(v);1−α

)
. As an illustration,

take α = 0.05 and dim(v) = 2. If we decide to concentrate on quadrature points in the
95% credible region for v, then the preceding result would suggest to discard values v in
the bivariate grid for which R(v) < exp(−.5χ2

2;0.95) = .05, leaving M̃ grid points after
filtering. Figure 1 highlights the difference between the skew-normal match and the naive
Gaussian fit to the targets p(vj|v̂−j,D), j = 1, 2 with q = 2 nonlinear smooth functions in
the additive predictor and sample size n = 300. Figure 2 shows the surface plot of R(v).

−3 −2 −1 0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

v 1

target

SN−match

Normal−match

−9.0 −8.5 −8.0 −7.0 −6.5 −6.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−7.5 

v 2 

target

SN−match

Normal−match

Figure 1: Skew-normal fit (dashed) and naive Gaussian match (dash-dotted) to the nor-
malized conditional p(v1|v̂2,D) (left) and p(v2|v̂1,D) (right). The skew-normal fit is closer
to the target and captures the lack of symmetry.
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Figure 2: Surface plot of R(v) when q = 2.

Finally, Figure 3 summarizes the strategy behind the grid construction. In (a), an equidis-
tant univariate grid is constructed in each dimension resulting in a cross-shaped pattern
with center v̂. The Cartesian product of these univariate grids is computed and shown in
(b). Following our filtering rule, we only keep a subset of the Cartesian product grid as
shown by the blue points in (c). Figure 3 (d) shows the final grid which will be used for
further inference in the additive model.
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Figure 3: Grid strategy to explore log p(v|D). (a) Equidistant univariate grid in each
dimension. (b) Cartesian product. (c) Filtering out the points. (d) Final grid used for
further inference in the additive model.
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4 Approximate posterior of the latent field

The quadrature points derived in the previous section will serve to approximate the posterior
of the latent vector ξ and to construct pointwise estimators and credible intervals of latent
field elements. The posterior of the latent vector can be written as:

p(ξ|D) =

∫
R++

· · ·
∫
R++

p(ξ,λ, δ, τ |D) dλ1 . . . dλq dδ1 . . . dδq dτ

=

∫
Rq++

∫
Rq++

∫
R++

p(ξ|λ, τ,D) p(τ |λ,D) p(δ,λ|D) dλ dδ dτ

=

∫
Rq++

(∫
R++

p(ξ|λ, τ,D) p(τ |λ,D) dτ

) (∫
Rq++

p(δ,λ|D) dδ

)
dλ

=

∫
Rq++

(∫
R++

p(ξ|λ, τ,D) p(τ |λ,D) dτ

)
p(λ|D) dλ (32)

The integral with respect to τ results in a function of ξ that corresponds to a multivariate
Student distribution with n degrees of freedom. Indeed, let us reparameterize the condi-
tional posterior of the precision as (τ |λ,D) ∼ G (n/2, (nsλ)/(2n)), with the following scalar
quantity sλ = y>

(
In −B(B>B +Qλ

ξ )−1B>
)
y, so that the integrand can be written as the

product of the two distributions:

p(ξ|λ, τ,D) = (2π)−
dim(ξ)

2 τ
dim(ξ)

2 |B>B +Qλ
ξ |

1
2

× exp
(
−τ

2

(
ξ − ξ̂λ

)>(
B>B +Qλ

ξ

)(
ξ − ξ̂λ

))
p(τ |λ,D) =

(
sλ
n

)n
2
(
n
2

)n
2

Γ
(
n
2

) τ

(
n
2
−1
)

exp
(
− τ sλ

n

n

2

)
,

The integrand is thus given by:

p(ξ|λ, τ,D) p(τ |λ,D)

=
|B>B +Qλ

ξ |
1
2

(
sλ
n

)n
2
(
n
2

)n
2

(2π)
dim(ξ)

2 Γ
(
n
2

) τ

(
n+dim(ξ)

2
−1
)

exp

(
− τ

(
1

2

(
ξ − ξ̂λ

)>
×
(
B>B +Qλ

ξ

)(
ξ − ξ̂λ

)
+
sλ
n

n

2

))
.

Let u :=
(

1
2

(
ξ − ξ̂λ

)>(
B>B +Qλ

ξ

)(
ξ − ξ̂λ

)
+ (sλ/n)(n/2)

)
and consider the integral:∫

R++

τ

(
n+dim(ξ)

2
−1
)

exp(−τu) dτ = Γ

(
n+ dim(ξ)

2

)
u−

(n+dim(ξ))
2 .

Using the above result the integral is:
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∫
R++

p(ξ|λ, τ,D) p(τ |λ,D) dτ

=
Γ
(
n+dim(ξ)

2

)
|B>B +Qλ

ξ |
1
2

(
sλ
n

)n
2
(
n
2

)n
2

(2π)
dim(ξ)

2 Γ
(
n
2

)
×
(

1

2

(
ξ − ξ̂λ

)>(
B>B +Qλ

ξ

)(
ξ − ξ̂λ

)
+
sλ
n

n

2

)− (n+dim(ξ))
2

=
Γ
(
n+dim(ξ)

2

)
|B>B +Qλ

ξ |
1
2

(
sλ
n

)n
2
(
n
2

)n
2

(2π)
dim(ξ)

2 Γ
(
n
2

)
×
(
sλ
n

n

2

(
1 +

1

n

(
ξ − ξ̂λ

)>(
n s−1λ

(
B>B +Qλ

ξ

))(
ξ − ξ̂λ

)))− (n+dim(ξ))
2

=
Γ
(
n+dim(ξ)

2

) (
n
2

)−dim(ξ)
2 |B>B +Qλ

ξ |
1
2

(
sλ
n

)−dim(ξ)
2

(2π)
dim(ξ)

2 Γ
(
n
2

)
×
(

1 +
1

n

(
ξ − ξ̂λ

)>(
n s−1λ

(
B>B +Qλ

ξ

))(
ξ − ξ̂λ

))− (n+dim(ξ))
2

.

Note that: ∣∣∣B>B +Qλ
ξ

∣∣∣ 12(sλ
n

)−dim(ξ)
2

=
∣∣∣(sλ
n

)(
B>B +Qλ

ξ

)−1∣∣∣− 1
2
,

so that the integral is finally given by:∫
R++

p(ξ|λ, τ,D) p(τ |λ,D) dτ

=
Γ
(
n+dim(ξ)

2

)
Γ
(
n
2

)
n

dim(ξ)
2 π

dim(ξ)
2

∣∣∣ sλn (B>B +Qλ
ξ

)−1∣∣∣ 12
×
(

1 +
1

n

(
ξ − ξ̂λ

)>(sλ
n

(
B>B +Qλ

ξ

)−1)−1(
ξ − ξ̂λ

))− (n+dim(ξ))
2

.

The above formula is a multivariate Student distribution for ξ (see Jackman, 2009, p.508)

with n degrees of freedom denoted by tn

(
ξ̂λ, S̃λ

)
with location parameter ξ̂λ = (B>B +

Qλ
ξ )−1B>y and symmetric, positive-definite matrix S̃λ = sλ

n

(
B>B + Qλ

ξ

)−1
. Using the

above integral result, the posterior of the latent field in (32) simplifies to:

p(ξ|D) =

∫
Rq++

tn

(
ξ̂λ, S̃λ

)
p(λ|D) dλ. (33)

Using the log-transformation on the penalty parameters, (33) becomes:

p(ξ|D) =

∫
Rq
tn

(
ξ̂v, S̃v

)
p(v|D) dv, (34)
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where ξ̂v = (B>B + Qv
ξ )−1B>y and S̃v = (sv/n)

(
B>B + Qv

ξ

)−1
with the scalar sv =

y>
(
In −B(B>B +Qv

ξ )−1B>
)
y. Let ∆vj be the width of the jth univariate grid and

denote by ∆v = ∆v1 × · · ·×∆vq the discretized version of dv. Using the quadrature points

from the grid strategy {v(m)}M̃m=1, integral (34) can be approximated as follows:

p̃(ξ|D) =
M̃∑
m=1

tn

(
ξ̂v(m) , S̃v(m)

)
p(v(m)|D) ∆v. (35)

Furthermore, define the weights:

ωm =
p(v(m)|D) ∆v∑M̃
m=1 p(v

(m)|D) ∆v
, m = 1, . . . , M̃ . (36)

Dividing (35) by the denominator of ωm, one obtains a mixture of multivariate Student
distributions for the approximate posterior of the latent field:

p̃(ξ|D) =
M̃∑
m=1

ωm tn

(
ξ̂v(m) , S̃v(m)

)
. (37)

Note that ωm ≥ 0 and
∑M̃

m=1 ωm = 1, such that (37) is a probability density function.

Furthermore, tn
(
ξ̂v(m) , S̃v(m)

)
converges in law to Ndim(ξ)

(
ξ̂v(m) , S̃v(m)

)
as n → +∞ (see

Kroese et al., 2013, p.147), so for n sufficiently large, we can write (37) as a finite mixture
of multivariate Gaussian densities:

p̃(ξ|D) =
M̃∑
m=1

ωm Ndim(ξ)

(
ξ̂v(m) , S̃v(m)

)
. (38)

A point estimate for the latent vector is given by the posterior mean of (38) which is simply
the mixture of the location components (see Frühwirth-Schnatter, 2006):

ξ̂ =
M̃∑
m=1

ωm ξ̂v(m) . (39)

From (τ |v,D) ∼ G (n/2, φ(v)), a point estimate of the precision can be obtained by com-
puting the posterior mean of the Gamma at the posterior mode v̂ of log p(v|D), i.e.
τ̂ = 0.5 n (φ(v̂))−1. Hence, a point estimate of the standard deviation of the error is
σ̂ = τ̂−0.5.

4.1 Credible intervals

Approximate quantile-based credible intervals for latent field elements ξh, h = 1, . . . , dim(ξ)
can be straightforwardly constructed. Starting from the joint marginal posterior in (38),
we can write the univariate marginal posterior for element ξh as:

p̃(ξh|D) =
M̃∑
m=1

ωm N1

(
ξ̂h,v(m) , S̃hh,v(m)

)
, (40)
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where ξ̂h,v(m) is the hth entry of vector ξ̂v(m) and S̃hh,v(m) is the hth entry on the diagonal

of matrix S̃v(m) . Posterior (40) can then be used to numerically construct an approximate
(1− α)× 100% quantile-based credible interval for ξh as follows. Construct an equidistant
fine grid, say {ξhl}Ll=1 of width ∆l and evaluate the posterior at each element of that grid,

i.e. compute p̃(ξhl|D) =
∑M̃

m=1 ωm N1

(
ξhl; ξ̂h,v(m) , S̃hh,v(m)

)
, for l = 1, . . . , L. Then, find

the indices qlow ∈ {1, . . . , L} and qup ∈ {1, . . . , L}, such that
∑qlow

l=1 p̃(ξhl|D) ∆l ≈ α/2
and

∑qup
l=1 p̃(ξhl|D) ∆l ≈ 1 − (α/2). The resulting interval [ξhqlow , ξhqup ] is an approximate

(1− α)× 100% quantile-based credible interval for ξh.
To obtain pointwise set estimates of a smooth function fj, let {xl}Ll=1 be an equidistant

(fine) grid on the domain of fj and ξθj be the subvector of the latent field corresponding

to the spline vector θj = (θj1, . . . , θjK−1)
>. Also, denote by b̃>l = (b̃j1(xl), . . . , b̃jK−1(xl))

the vector of B-splines in the basis evaluated at xl. The function fj at point xl is thus

modeled as fj(xl|ξθj) = b̃>l ξθj and from (38) the posterior of ξθj is approximated by the
finite mixture:

p̃(ξθj |D) =
M̃∑
m=1

ωm NK−1
(
ξ̂θj ,v(m) , S̃θj ,v(m)

)
, (41)

where S̃θj ,v(m) is a submatrix of S̃v(m) corresponding to the variance-covariance matrix of ξθj .
As fj(xl|ξθj) is a linear combination of the spline vector, a natural candidate to approximate
the following posterior p(fj(xl|ξθj)|D) is to use a mixture of univariate normals:

p̃(fj(xl|ξθj)|D) =
M̃∑
m=1

ωm N1

(
b̃>l ξ̂θj ,v(m) , b̃>l S̃θj ,v(m)b̃l

)
.

A quantile-based credible interval for fj at point xl can easily be computed from the above
(approximate) univariate posterior.

5 Simulation study

The performance of LPS in additive models (with cubic B-splines and a third order penalty)
is assessed through different simulation scenarios and compared with results obtained using
the gam() function of the mgcv package in R (Wood, 2017), a popular and established
toolkit for estimating (generalized) additive models. Options of the gam() function are
carefully chosen so that the generated results can be meaningfully compared to these ob-
tained using our Laplace-P-spline approach. In particular, smooth terms are specified with
the gam() function using s(x, bs=“ps”, k=K, m=c(2,3)) , where x is the vector of covariate
values associated to the estimated smooth function and ps specifies a P-spline basis. The
scalar k is the basis dimension, the first entry in m = c(·, ·) refers to the order of the spline
basis (with order 2 corresponding to cubic P-splines), while the second entry refers to the
order of the difference penalty. Another chosen option in gam() is method = “REML”,
requiring an estimation of the penalty parameters λ by restricted maximum likelihood.
It corresponds to an empirical Bayes approach in the sense that a Bayesian log marginal
likelihood is maximized with respect to λ in a context where penalties come from Gaussian
priors on the spline coefficients (Marra and Wood, 2011; Wood et al., 2013). The optimiza-
tion method in gam is chosen to be optimizer=c(“outer”,“newton”) as it provides reliable
and stable computations.
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5.1 Simulation results for parameters in the linear part

The first set of simulations consists in S = 500 replications of a sample of size n = 300 with
three covariates in the linear part generated independently as zi1 ∼ Bern(0.5), zi2 ∼ N (0, 1)
and zi3 ∼ N (0, 1), for i = 1, . . . , n and coefficients β0 = 0.50, β1 = 1.60, β2 = −0.80, β3 =
0.40. The covariates for the smooth functions are independent draws from the Uniform
distribution on the domain [−1, 1]. The functions of interest are partly inspired from
Antoniadis et al. (2012) and are given by:

f1(x1) = cos(2πx1),

f2(x2) = 6
(
0.1 sin(2πx2) + 0.2 cos(2πx2) + 0.3 sin2(2πx2)

+0.4 cos3(2πx2) + 0.5 sin3(2πx2)
)
− 0.9,

f3(x3) = 3x53 + 2 sin(4x3) + 1.5x23 − 0.5.

Three noise levels are considered, namely σ ∈ {0.20, 0.40, 0.60}, corresponding to a high,
medium and low signal to noise ratio. Each smooth function is modeled by a linear combi-
nation of cubic B-splines with a third order penalty and K = 15 B-splines in [−1, 1]. The
frequentist properties of the Bayesian estimators are measured by the bias, the empirical
standard error (ESE), the root mean square error (RMSE) and coverage probability (CP)
of the 90% and 95% (pointwise) credible intervals for the linear coefficients. Figure 4 il-
lustrates the shape of the functions f1, f2 and f3 with a set of simulated data for n = 300
with medium signal to noise ratio (σ = 0.40).
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Figure 4: Illustration of functions f1, f2, f3 (solid lines) and simulated data (n = 300)
under medium signal to noise ratio (σ = 0.40).

The simulation results given in Table 2 show that our LPS estimation procedure exhibits
good performance for the three different noise levels. Nonsignificant biases are observed
and the estimated coverage probabilities are close to their nominal value in each setting.
Furthermore, LPS and gam() have similar results regarding the ESE and RMSE.

In Figure 5, we show the LPS estimaton of the smooth additive terms (gray curves) and
the pointwise median (dashed) curves across all replications when 50 B-splines are used for
each function. The estimated curves are close to their target on the entire domain except
on the boundaries where the estimates exhibit larger variability.
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Figure 5: Estimation of the smooth functions f1, f2 and f3 for S = 500 replications (one
gray curve per dataset), sample size n = 300 and σ = 0.40 using 50 B-splines for each
function. The solid (black) curve is the true function and the dashed curve is the pointwise
median of the 500 estimated curves.

5.2 Coverage of the smooth functions fj

To assess the quality of approximate pointwise credible intervals for a function fj, one can
work from a Bayesian perspective and consider a Uniform prior on the probability πsj that
the function fj at point xsj will be contained in the constructed (1 − α) × 100% credible
interval. This is denoted by πsj ∼ U(0, 1). In addition, let Snum denote the number of
constructed credible intervals at xsj containing the value fj(xsj) among S datasets. The
variable Snum follows a Binomial distribution, i.e. Snum ∼ Bin(S, πsj). From Bayes’ rule:

p(πsj|D) ∝ P (D|πsj) p(πsj)
∝ πsnumsj (1− πsj)S−snum .

Hence, a posteriori (πsj|D) ∼ Beta(1 + snum, 1 + S − snum). We say that the constructed
credible interval at xsj is compatible with the nominal value (1−α)×100% at the 99% level
provided (1−α) falls within the 0.5th and 99.5th quantiles of the Beta(1+snum, 1+S−snum)
distribution. This method is equivalent to the hypothesis test H0 : πsj = (1 − α) versus
H1 : πsj 6= (1 − α). If (1 − α) falls within the 99% posterior credible interval for πsj,
then we do not reject the null. Note also that the posterior mode of the Beta distribution
(πsj|D)mode = snum

S
corresponds to the point estimator of the coverage probability.

Tables 3 and 4 show the coverage estimates of 90% and 95% pointwise credible intervals
for the functions f1, f2 and f3 at selected points of their domain and for three different noise
levels with 50 B-splines for each function. The frequentist coverage of credible intervals are
compatible with their nominal value for all the considered noise levels for the LPS and
gam() methods.
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6 Application to Milan mortality data

In this section, the LPS methodology is illustrated on the Milan mortality data (Ruppert
et al., 2003) available in the SemiPar package on CRAN (https://CRAN.R-project.
org/package=SemiPar). The dataset contains observations on n = 3652 consecutive days
between January 1st, 1980 and December 30th, 1989 for the city of Milan in Italy for air
pollution indicators and health variables. The objective is to study how air pollution and
other meteorological indicators impact mortality using an additive partial linear model.
In that endeavor, the square root of the total number of death (Mortality) is taken to be
the response variable. Following Ruppert et al. (2003), the variable TSP measuring the
total suspended particles in ambient air enters as a linear predictor. The dichotomous
variable Holiday is an indicator of public holiday (1=public holiday; 0=otherwise) and is
also naturally added in the linear part of the model. The remaining predictors are modeled
as smooth functions, namely: the mean daily temperature in ◦C (Temperature), the relative
humidity (Humidity), a measure of sulfur dioxide (SO2) in ambient air and the number
of days (Numdays) elapsed as from December 31st, 1979. Figure 6 provides a graphical
illustration for some data variables. The quantile-quantile plot of the response variable
on the top-left graph confirms that Mortality is approximately normally distributed. The
scatter plots of the response with Temperature, Humidity and SO2 and the associated
locally estimated scatterplot smoothing (LOESS) fit in red suggest that the latter variables
are nonlinearly related to Mortality.
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Figure 6: The Milan mortality data. Top-left: Q-Q plot of the response variable Mortality.
Top-right: Scatter plot of Mortality and Temperature. Bottom-left: Scatter plot of Mortality
across Humidity. Bottom-right: Scatter plot of the response and SO2.
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The additive model for the mortality data is written as:

Mortalityi = β0 + β1TSPi + β2Holidayi + f1(Temperaturei)

+f2(Humidityi) + f3(SO2i) + f4(Numdays) + εi, i = 1, . . . , n, (42)

where εi ∼ N (0, σ2) and smooth terms fj, j = 1, 2, 3 modeled with 35 cubic B-splines and
a second order penalty. The B-spline basis for a smooth term fj is defined over the domain
[xj,min, xj,max], i.e. over the range of its observed values xj. Estimation results for TSP and
Holiday are summarized in Table 5. TSP has a small positive and significant effect on the
response, while Holiday has a negative and significant effect.

Parameters Estimates CI 95% sdpost

β1 (TSP) 0.0006 [0.0001; 0.0010] 0.0002

β2 (Holiday) -0.1240 [-0.2342; -0.0164] 0.0558

Table 5: Estimation results for the parametric linear part of the additive model. The
second column is the parameter estimate, the third column gives the associated 95% credible
interval and the last column is the posterior standard deviation.

Figure 7 shows the estimated additive terms with approximate 95% pointwise credible
intervals. We see that the conditional impact of Temperature on the mean response is
slightly decreasing until approximately 25◦C after which an explosive increase indicates
that higher temperatures are associated to an important increase in the expected number
of deaths. Humidity seems to have no significant impact on the response as it remains
stable around zero.
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Figure 7: Estimates of the nonlinear predictors with 95% pointwise credible interval.
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An increase in SO2 levels from 0 to 180 is associated to an increase in average mortality.
However, further increase of the SO2 concentrations in ambient air seems to have negligible
impact on the mean response as the smooth estimated term remains flat with a plausible
zero value for the slope. For Numdays, we observe the seasonal pattern already reported
in Ruppert et al. (2003), i.e. average mortality fluctuates over seasons with spikes arising
during winter.

Conclusion

The core contribution of this paper is to adapt the Laplace-P-spline (LPS) methodology
for fast approximate Bayesian inference in additive models with Gaussian errors. Working
from a Bayesian perspective, we model the smooth additive terms with penalized B-splines
and impose a Gaussian prior on the latent field, which is composed of linear regression
coefficients and spline amplitudes.

After having introduced the theoretical foundations of the model, we derive the condi-
tional posterior of the latent vector and use the latter to obtain an expression of the marginal
posterior of the penalty vector. Important efforts have been invested in the derivation of
the gradient and Hessian of the log posterior of the (log-) penalty vector as it enables to
avoid numerical differentiation to obtain its posterior mode and hence accelerates the com-
putational process behind Newton-Raphson.

To efficiently explore the posterior penalty space, we develop a strategy which consists
in adjusting a skew-normal distribution to the conditional posterior of the (log-) penalty
parameters at their modal value. This method has the merit of capturing potential asym-
metries in the posterior penalty and hence allows a precise grid-based exploration. The
constructed grid is then used to compute an approximate version of the joint posterior
latent vector resulting in a finite mixture of multivariate Gaussian distributions from which
point and set estimators can be derived.

The main limitation behind a grid exploration of the posterior penalty space is an ex-
ponentially growing computational budget with the number q of smooth functions in the
additive model. To alleviate the problem, a possibility is to implement a hybrid approach
that alternates between a grid for small or moderate q and a classic MCMC algorithm when
q is above a certain threshold. It is also worth noting that our LPS algorithm requires a
low computational budget even though the modeling approach is fully Bayesian.
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