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"Embryonic expression of encephalopsin supports
bioluminescence perception in lanternshark photophores"
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ABSTRACT

Counterilluminating animals produce a ventral light to hide their silhouette in the water column. This
midwater camouflage technique requires a fine and dynamic control of the wavelength, angular distribution,
and intensity of their luminescence, which needs to continuously match ambient downwelling light.
Recently, extraocular opsins have been suggested to play a role in the bioluminescence control
of several organisms, such as squids, comb jellies, or brittle stars, providing a way for photogenic
structures to perceive their own light output. By analysing a growing embryonic series of the velvet
belly lanternshark, Etmopterus spinax, we show that the development of lanternshark luminescence
competence is associated with the expression of encephalopsin within epidermal cells and in the
light-regulating structure of the photogenic organs. Such an intra-uterine expression of encephalopsin
strongly supports this blue-sensitive extraocular opsin to allow bioluminescence perception in lanternshark
photophores and suggests a clear physiological interaction between photoemission and photoperception.

CITE THIS VERSION

Duchatelet, Laurent ; Claes, Julien ; Mallefet, Jérôme. Embryonic expression of encephalopsin supports
bioluminescence perception in lanternshark photophores. In: Marine Biology : international journal on life
in oceans and coastal waters, Vol. 166, no.21, p. 1-5 (2019) http://hdl.handle.net/2078.1/216122 -- DOI :
10.1007/s00227-019-3473-9

Le dépôt institutionnel DIAL est destiné au dépôt
et à la diffusion de documents scientifiques
émanant des membres de l'UCLouvain. Toute
utilisation de ce document à des fins lucratives
ou commerciales est strictement interdite.
L'utilisateur s'engage à respecter les droits
d'auteur liés à ce document, principalement le
droit à l'intégrité de l'œuvre et le droit à la
paternité. La politique complète de copyright est
disponible sur la page Copyright policy

DIAL is an institutional repository for the deposit
and dissemination of scientific documents from
UCLouvain members. Usage of this document
for profit or commercial purposes is stricly
prohibited. User agrees to respect copyright
about this document, mainly text integrity and
source mention. Full content of copyright policy
is available at Copyright policy

https://hdl.handle.net/2078/copyright_policy
https://hdl.handle.net/2078/copyright_policy


Vol.:(0123456789)1 3

Marine Biology (2019) 166:21 
https://doi.org/10.1007/s00227-019-3473-9

SHORT NOTE

Embryonic expression of encephalopsin supports bioluminescence 
perception in lanternshark photophores

Laurent Duchatelet1   · Julien M. Claes1 · Jérôme Mallefet1

Received: 6 October 2018 / Accepted: 10 January 2019 / Published online: 18 January 2019 
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Counterilluminating animals produce a ventral light to hide their silhouette in the water column. This midwater camouflage 
technique requires a fine and dynamic control of the wavelength, angular distribution, and intensity of their luminescence, 
which needs to continuously match ambient downwelling light. Recently, extraocular opsins have been suggested to play 
a role in the bioluminescence control of several organisms, such as squids, comb jellies, or brittle stars, providing a way 
for photogenic structures to perceive their own light output. By analysing a growing embryonic series of the velvet belly 
lanternshark, Etmopterus spinax, we show that the development of lanternshark luminescence competence is associated 
with the expression of encephalopsin within epidermal cells and in the light-regulating structure of the photogenic organs. 
Such an intra-uterine expression of encephalopsin strongly supports this blue-sensitive extraocular opsin to allow biolumi-
nescence perception in lanternshark photophores and suggests a clear physiological interaction between photoemission and 
photoperception.

Introduction

Counterillumination is an active camouflage method by 
which a midwater animal produces a ventral light to match 
the wavelength, intensity, and angular distribution of the 
background downwelling light to cloak its silhouette from 
both predators and prey passing below (Clarke 1963; Warner 
et al. 1979; Denton et al. 1985). Widespread in non-trans-
lucent mesopelagic organisms such as crustaceans, mol-
lusks (cephalopods), and fishes, this fascinating camouflage 
strategy requires a fine and dynamic bioluminescence tun-
ing to be effective, since any deviation from background 
light may attract the attention of upward-looking predators 
(Harper and Case 1999; Johnsen et al. 2004; Haddock et al. 
2010). This control is performed via sophisticated opti-
cal structures [e.g., reflectors, wavelength-specific filters, 
lenses, etc. (Denton et al. 1972, 1985; Jones and Nishiguchi 

2004)] and/or complex physiological control mechanisms, 
i.e., the use of neuromodulators, vasodilation, or regulation 
of oxygen supply (Nealson and Hastings 1979; Young and 
Mencher 1980; Latz 1995; Krönström et al. 2005, 2007, 
2009). Counterillumination typically requires simultaneous 
perception of bioluminescence and ambient light via visual 
(e.g., the eyes) or non-visual organs (e.g., pineal organs 
in bony fishes, photoreceptive vesicles in cephalopods) 
closely associated with light organs (photophores) (Young 
et al. 1979). In some cases, light perception may occur 
within the photophore/photocyte itself via an extraocular 
opsin (Tong et al. 2009; Schnitzler et al. 2012; Delroisse 
et al. 2014). The recent discovery in ventral photophores 
of adult Etmopterus spinax specimens, of an extraocular 
opsin, encephalopsin (opsin 3), that is primarily controlled 
by hormones produced by the pineal gland and the retina 
(Claes and Mallefet 2009), suggested that bioluminescence 
and auto-perception mechanisms may concomitantly occur 
within photogenic tissues in a single species (Delroisse et al. 
2018). Interestingly, E. spinax is a bioluminescent ovovi-
viparous species, whose developing embryos are known to 
produce light ventrally, laterally, and dorsally in utero (Claes 
et al. 2010a, 2015; Claes and Mallefet 2008, 2014). E. spi-
nax emits a blue–green glow [486 nm; Claes et al. (2010a)] 
from lanternshark-specific photophores, distributed mainly 
within the ventral epidermis. These structures are composed 
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of multilayer cup-shaped pigmented cells that form a dark 
granular sheath enclosing the emitting cells, the photocytes, 
which are capped by one or several lens cells. A cell zone 
called the iris-like structure (ILS) is present between the 
lens cells and photocytes (Claes and Mallefet 2009; Ren-
wart et al. 2014). As mentioned previously, shark light emis-
sion is under a hormonal control. Melatonin and prolactin 
trigger light emission, while alpha melanocyte stimulating 
hormone inhibits it (Claes and Mallefet 2009). Modulation 
of bioluminescence also involves GABA and NO in lantern-
shark (Claes et al. 2010b, 2011). Currently, the biochemical 
compound underlying the bioluminescent reaction occurring 
within photocytes of lanternsharks is not known (Renwart 
and Mallefet 2013; Oba et al. 2016).

This study set out to characterize the development of bio-
luminescence and encephalopsin photoreception during the 
morphogenesis of photophores from lanternshark E. spinax. 
We have assumed a close interaction between photoemission 
(i.e., bioluminescence) and photoperception (i.e., through 
encephalopsin) in photophores based on observations from 
adult E. spinax (Delroisse et al. 2018). We used fluorescence 
microscopy and immuno-histochemistry to first demonstrate 
that light perception is present when light emission appeared 
during the embryogenesis of E. spinax.

Materials and methods

Specimen collection

Gravid females of E. spinax were collected during field ses-
sion in January 2017 by longlines lowered at 200 m depth in 
the Raunefjord, Norway (60°15′54″N; 05°07′46″E). Living 
specimens were brought to Espeland marine station (Espe-
grend, Norway), kept in a tank filled with 6 °C sea water 
and placed in a dark cold room. Sharks were weighed and 
sized before to be euthanized following techniques outlines 
in Claes and Mallefet (2009). Female uteri were excised 
to access the embryos. Embryos from each uterus were 
counted and measured to the nearest millimeter before being 
euthanized by a quick incision in the spinal cord. Embryo 
measurements were used to assign life stages. A total of ten 
embryos (50–127 mm TL) from four different litters [two 
embryos from litter 1; two embryos from litter 2 (both were 
unpigmented embryos and lacking photogenic organs); three 
embryos from litter 3; and three embryos from litter 4 (both 
were pigmented embryos with photogenic organs)] form-
ing a growing embryonic series as well as six adult females 
(stage V) were analysed for this study (Fig. 1). The yolk 
sac of each embryo was removed before daylight as well 
as bioluminescence photographs captured thanks to a Sony 
alpha 7S II camera (Sony Corporation, Japan) (Fig. 1a, b). 
Ventral skin patches (1 cm2) between the pectoral and pelvic 

fins were dissected from each embryo and females with a 
metal cap driller (0.6 cm diameter) following the method 
described in Claes and Mallefet (2009), fixed in phosphate 
buffer saline (PBS) with 4% paraformaldehyde for 12 h, and 
stored in PBS prior to experimentation.

Encephalopsin localization

Preserved ventral shark skin patches were immersed in 
a series of PBS baths with increasing concentrations of 
sucrose (10% for 1 h, 20% for 1 h and 30% overnight) for 
cryoprotection. Each tissue was then embedded in optimal 
cutting temperature compound (OCT compound, Tissue-
Tek, The Netherlands) and rapidly frozen at − 80 °C. Cry-
ostat microtome (CM3050 S, Leica, Solms, Germany) was 
used to perform 10 µm sections that were laid on coated 
Superfrost slides (Thermo Scientific) and left overnight to 
dry. To visualize the encephalopsin expression and localiza-
tion within the photophore, an immunofluorescence tech-
nique was applied on E. spinax embryo and female ventral 
skin sections. Slides were rinsed 15 min with Tris buffer 
saline 1% Tween [TTBS: Trizma base (Sigma) 20 mM, NaCl 
150 mM, pH 7.5 + 1% Tween 20 (Sigma)], then blocked 
with TTBS containing 10% bovine albumin serum (BSA, 
Amresco). Following Delroisse et al. (2018), slides were 
incubated overnight with the anti-encephalopsin primary 
antibody (anti-encephalopsin Pab in Homo sapiens, Gene-
tex, GTX 70609, lot number 821 400 929) at a dilution of 
1/500 in TTBS 5% BSA. Slides were bathed again in TTBS 
during 30 min before to be incubated in the dark with the 
secondary antibody Alexa Fluor® 594 Goat Anti-Rabbit 
IgG (Goat Anti-Rabbit, Alexa Fluor® 594, Life Technolo-
gies Limited) at a dilution of 1/200 in TTBS 5% BSA and 
rinsed 15 min in TTBS. Finally, slides were subjected to 
15 min DAPI (DAPI nucleic acid stain, Invitrogen) nucleus 
staining, rinsed 10 min in TTBS, and mounted with Mowiol 
(Mowiol® 4-88, Sigma). Sections were observed under Poly-
var SC epifluorescence microscope (Leica Reichter Jung) 
equipped with a Nikon DS-UI digital camera coupled with 
NIS elements FW software. Control sections (i.e., omis-
sion of the primary antibody as well as immunodetection in 
dorsal skin and retina; immunoblot) were made following 
Delroisse et al. (2018). Immunodetection experiments were 
performed on each embryo and applied on at least ten sec-
tions for each embryo.

Results

Figure 1 summarizes the different embryonic developmen-
tal stages (stages I–IV) leading to the adult (stage V) in E. 
spinax (Fig. 1a). Spontaneous luminescence (ventral, lateral, 
and dorsal) was observed only in stage IV embryos and in 
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stage V adult specimens (Fig. 1b). Ventral skin morphogen-
esis (Fig. 1c) shows pigmented cells dispersed within the 
epidermis layer (stages I, II), but lacks photogenic struc-
tures or encephalopsin immunoreactivity (Fig. 1d). Stage III 
embryos displayed protophotophores, with protophotocytes 
lacking fluorescent vesicles and hence without luminescent 
capabilities (Fig. 1c, d). Protophotocytes were embedded in 
an integrated layer of pigmented cells that was capped by an 
iris-like pigmented structure (ILS) and a lens cell (Fig. 1c, 
d). This, in turn, was surrounded by epidermis cells that 
labelled positively for encephalopsin (Fig. 1d). Stage IV 
embryos showed functional photophores (i.e., photophores 
containing photocytes with autofluorescent vesicles). A 
strong encephalopsin labelling was observed within ILS and 
photophore-topping epidermis cell membranes from stage 
IV embryos (Fig. 1d). Stage V encephalopsin labelling was 
similar to those observed in Delroisse et al. (2018) in the 

ventral epidermis of E. spinax adult specimens (Fig. 1d). 
Immunodetections were not observed within photocytes, 
while weaker labelings were detected at the level of the 
epidermis surrounding the photophore for these two former 
stages (Fig. 1d). Moreover, observed immunolabelings were 
consistent through the repetition of the experimentation for 
each stage. All controls (data not shown) produced results 
consistent with those reported in Delroisse et al. (2018).

Discussion

The photophore development steps observed in this study 
are similar than those described in Claes and Mallefet 
(2008), which supports the idea that lanternshark photo-
phore development follows a stereotypical trajectory during 
embryogenesis. The development of luminous competence 

Fig. 1   Joint appearance of encephalopsin and photophores during 
Etmopterus spinax photophore embryogenesis within the ventral 
skin epidermis. a Developmental series of E. spinax in natural light 
(stages I–IV come from four distinct litters collectively constituting 
an embryonic series, while stage V is an adult female specimen). 
Arrowheads depict the ventral location sampled for histological and 
immunodetection experiments. b Images taken in the dark high-
lighting spontaneous luminescence, when present. Contour dot line 
depicted the non-luminous embryo from stage I to III. c Histologi-
cal section of the ventral epidermis under bright light highlighting the 

presence and the ontogeny of photophore structures, when present. d 
Histological section of the ventral epidermis under UV stimulation 
highlighting the presence of photophore structures, when present. The 
autofluorescence of the photocyte vesicles (green fluorescence, only 
present in mature photocytes) and encephalopsin immunodetection 
(red labelling) is shown. Dapi blue staining associated with to the cell 
nucleus. c connective tissue, cp pigmented cells, e epidermis, i iris-
like structure cells, l lens cells, p photocytes, pp protophotocytes, s 
pigmented cell layer. Scale bars represent 5 cm in a and b; 50 µm in 
c and d 
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during embryogenesis is associated with the appearance 
of encephalopsin expression in the cell membranes of the 
light organ ILS. This structure is known to act as a dia-
phragm that regulates the amount of light emitted to the 
outside (Claes and Mallefet 2010; Claes et al. 2011). This 
and the embryonic luminescence, that can only be detected 
by encephalopsin, within the female’s uteri strongly suggests 
a close association between the development of photorecep-
tion and bioluminescence in lanternshark photophores. The 
extraocular perception of bioluminescence could represent a 
feedback control mechanism analogous to the one suggested 
for squid Euprymna scolopes (Tong et al. 2009), which has 
to be present before the photophore starts to produce light or, 
at least, before embryos hatch and start to rely on counteril-
lumination for predator evasion (Claes and Mallefet 2008). 
In addition, a recent research highlighted the blue light sen-
sitivity and the regulatory role of melanocyte for the human 
homologous encephalopsin (Regazzetti et al. 2018), add-
ing further evidence of a potential link between extraocular 
opsin and the blue–green light emitted, at 486 nm (Claes 
et al. 2010a, b), by this lanternshark. The link between pho-
toreception and regulation of light by pigmentation might be 
mediated by encephalopsin (Delroisse et al. 2018) regulating 
melanocytes dispersion in ILS (Renwart et al. 2014, 2015).

The pattern of encephalopsin expression observed in 
this study is very similar to the immunoreactivity of GABA 
within the shark photogenic tissue (Claes et al. 2011). GABA 
is known to play an inhibitory role on the light emission of 
E. spinax (Claes et al. 2011) and hence could act jointly with 
different transduction pathways on the ILS cells to regu-
late the light output (Bertolesi et al. 2015). All together, 
hormones and neuromodulators controlling the light emis-
sion [melatonin, alpha melanocyte stimulating hormone and 
GABA (Claes and Mallefet 2009; Claes et al. 2010b, 2011), 
as well as extraocular opsin (i.e., encephalopsin)] could act 
in concert to regulate the ILS cells’ pigmentation and refine 
the bioluminescence output. Simultaneous emission and 
perception of light by a single organ have only been sug-
gested for Hawaiian bobtail squid Euprymna scolopes, warty 
comb jellies Mnemiopsis leidyi, and brittle stars Amphiura 
filiformis (Tong et al. 2009; Schnitzler et al. 2012; Delroisse 
et al. 2014). The presence of a similar dual capability in 
the photophores of a vertebrate supports the idea that light 
perception might be common in counterilluminating photo-
phores. Further research is required to better understand the 
role of this extraocular opsin and confirm its implication in 
the control mechanism of lanternshark photophores.
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