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A depth-integrated diffusion problem in a depth-varying, unbounded domain for 
assessing Lagrangian schemes 

Eric Deleersnijder, June 14-17, 2015 

 

In a two-dimensional, depth-integrated tracer transport problem, if the velocity, the water 
column depth and the diffusivity are constant, several analytical solutions exist (e.g. Kärnä et 
al. 2010), which can be used to assess Lagrangian (or Eulerian) numerical schemes. 
Analytical solutions are also needed that can help in deciding whether or not the bathymetry 
is taken into account in a satisfactory manner in a Lagrangian model. Contributing to filling 
this gap is the objective of the present working note, which builds on the study of 
Deleersnijder (2011). The analytical solution derived hereinafter exhibits counterintuitive 
properties, since the centre of mass of the tracer distribution and the point of maximum 
concentration move at the same speed in opposite directions. The centre of mass and the 
position variance of the particle cloud simulated by means of the Lagrangian algorithm 
suggested below tend to behave as their exact counterparts as the number of particles 
increases. 

 

Depth-integrated diffusion problem 

Let t and x = x ex + yex  denote the time and the horizontal position vector, with x and y 
representing horizontal, Cartesian coordinates; ex  and ey  are orthonormal vectors. The 
domain of interest is unbounded, i.e. x !"2 . Now consider a passive — or inert — tracer, 
whose depth-averaged concentration1 is denoted 

! 

C(t,x). The tracer particles are subject to 
isotropic diffusion processes that are parameterised by means of diffusivity 

! 

" ; no other 
transport phenomena are at work. The height of the water column is position-dependent and is 
denoted h(x) . Assume that a mass M of the tracer under study is suddenly released into the 
domain at time 

! 

t = 0 and point 

! 

x = 0. If no tracer is present in the domain at time t<0, the 
tracer concentration is the solution of the following partial differential equation 

   

! 

"(hC)
"t

 =  # • (h$#C)  , (1) 

under the initial condition 

   C(0,x)!!=!! m0
!h0

"(x ! 0)"(y! 0)  , (2) 

where 

! 

h0 = h(0); the positive constant 

! 

"  represents the fluid density, while δ denotes the 
Dirac function. 
 Governing equation (1) may be rewritten as follows: 

                                                
1 The concentration used herein is defined as a mass fraction, implying that it is dimensionless. To obtain a 
concentration measured in kg m!3 , it necessary to multiply the aforementioned concentration by the density ρ of 
the fluid, which is assumed to be constant (Boussinesq approximation). 
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   !C
!t
!+!v•!C !!=!!! !2C  , (3) 

where the equivalent velocity v is defined to be 

   v!!=!!! "(h! )
h

 (4) 

Analytical solution and its properties 

There is little hope of finding an analytical solution of (3), unless the diffusivity 

! 

"  and the 
equivalent velocity v are constant. This is why the diffusivity is assumed to be constant, 
   ! !!=!!K  , (5) 
where K is a positive constant. In addition, without any loss of generality, the water column 
height is prescribed to be 
   h(x, y)!!=!!h0 ex/L  , (6) 
where the positive constant L is a relevant length scale. The corresponding equivalent velocity 
reads 

   v!!=!!!!K
L
ex  . (7) 

The concentration may then be seen to be 

   C(t,x)!!=!! M
4!"h0Kt

exp ! (x +Kt / L)
2 + y2

4Kt
"

#
$

%

&
'  (8) 

 Key properties of this solution are to be examined2. First, the total tracer mass present in 
the domain, 

! 

m(t), remains constant: 

  m(t)!!!!! ! h(x)C(t,x) dx
"2
# !!=!! M

4!Kt
exp $ (x $Kt / L)

2 + y2

4Kt
%

&
'

(

)
* dx

"2
# !!=!!M  , (9) 

with dx = dxdy . 
 The point where the concentration reaches its maximum value is located on the x-axis at 

   
xm(t)!!=!!!

Kt
L

ym(t)!!=!!0

"

#
$

%$
 (10) 

Thus, the point of maximum concentration moves towards the shallower part of the domain at 
speed K/L. The maximum of the concentration is readily seen to be  

   Cm(t)!!!!!C[t, xm(t), 0]!!=!!C(t,"Kt / L, 0)!!=!!
M

4!"h0Kt
  (11) 

Remarkably, the centre of mass, 

! 

rc(t) , moves at the same speed in the opposite direction (i.e. 
toward the deeper part of the domain): 

                                                
2 To establish the key properties of the solution (8), it is necessary to evaluate somewhat intricate integrals, 
which may be achieved with the help of the following expressions (e.g. Gradshteyn and Ryzhik 2007): 

e!a! 2 d!
0

"

# !=! "
4a
!,!!!! ! 2 e!a! 2 d!

0

"

# !=! "
16a3

!,!!!!a > 0   . 
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rc(t)!!!!!
1
M

! h(x)C(t,x)x dx
"2
# !!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!=!! 1
4!Kt

exp $ (x $Kt / L)
2 + y2

4Kt
%

&
'

(

)
* x dx

"2
# !!=!!Kt

L
ex

 (12) 

Upon defining the components 

! 

rc(t)  as follows rc(t) = xc(t)ex + yc(t)ey , (12) is obviously 
equivalent to 

   
xc(t)!!=!!

Kt
L

yc(t)!!=!!0

!

"
#

$#
 (13) 

The centre of mass of the tracer patch moves at velocity K / L  along the x-axis though the 
velocity appearing in (3) has the same magnitude but the opposite sign. In other words, the 
velocity in advection-diffusion equation (3) is v , which is the velocity of the point of 
maximum concentration, but the velocity of the centre of mass is !v . This key property may 
seem to be counterintuitive if one considers only equation (3). However, if the centre of mass 
were moving at velocity v, it would imply that the tracer particles would concentrate in the 
shallower part of the domain, which is also somewhat counterintuitive. 
 A quantity that is also of interest is the vertical inventory, J(t,x) ! !h(x)C(t,x) , which 
represents the mass per unit area — in the horizontal plane. As a consequence, the vertical 
inventory may be expressed in kgm!2 . Combing (6) and (8), this variable is readily seen to 
be  

   J(t,x)!!!!!! h(x)C(t,x)!!=!! M
4!Kt

exp " (x "Kt / L)
2 + y2

4Kt
#

$
%

&

'
(   . (14) 

It is readily seen that the maximum of the vertical inventory is located at the same point as the 
centre of mass of the tracer distribution, i.e. rc(t) = (Kt / L)ex . 
 Finally, the position variance of the tracer distribution, which is defined to be 

   ! 2(t)!!!!! 1
M

" h(x)C(t,x) x" rc(t)
2 dx

#2
$  , (15) 

is worth calculating, for ! (t)  may be regarded as a measure of the width of the tracer patch. 
This leads to the unsurprising result 

   ! 2(t)!!=!! 1
4"Kt

exp ! (x !Kt / L)
2 + y2

4Kt
"

#
$

%

&
' x ! Kt

L
(

)
*

+

,
-
2
+ y2

"

#
$
$

%

&
'
'
dx

.2
/ !!=!!4K t  (16) 

 

Lagrangian approach 

If one opts for a Lagrangian representation, then N particles are to be released into the domain 
at t=0 and x=0. The mass of every particle is 

! 

M /N . The position vector of the n-th particle is 
denoted 

! 

rn (t)  (

! 

n =1,2...N ). The centre of mass and the position variance of the particle 
distribution are defined as 
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! 

˜ r c(t)  =  1
N

rn (t)
n=1

N

"  (17) 

and 

   

! 

˜ " 2(t)  =  1
N

rn (t) # ˜ r c(t)
2

n=1

N

$ , (18) 

respectively. 
 The simplest Lagrangian scheme is of the Euler forward type in the sense of the definitions 
presented in Gräwe et al. (2012), for instance. For the transport problem under consideration, 
this scheme reads (e.g. Heemink 1990, Spagnol et al. 2002) 

   rn(t +!t)!!=!!rn(t)!!!v!t !+!
2K!t
µ

Rn(t)  (19) 

where !t  is a suitable time increment and Rn = Rx,n ex + Ry,n ey  is a horizontal vector whose 
components are random numbers having zero mean and a variance equal to µ2 . In other 
words, the aforementioned random vector satisfies 

   lim
N!"

1
N

Rn
n=1

N

#
$

%
&
&

'

(
)
)!!=!!0   , (20) 

   lim
N!"

1
N

Rn
2

n=1

N

#
$

%
&
&

'

(
)
)!!=!! limN!"

1
N

(Rx,n2 + Ry,n2 )
n=1

N

#
$

%
&
&

'

(
)
)!!=!!2µ

2   . (21) 

 Whatever the number N of particles, the Lagrangian schemes conserves mass. This is 
trivial. In the limit N!"  (i.e. the number of particles is arbitrarily large), the movement of 
the centre of mass of the particle cloud and the rate of increase of its position variance should 
be similar to those of exact solution of the problem. Demonstrating that these properties are 
satisfied by a Lagrangian scheme is not trivial — even for the simple, Euler forward 
algorithm suggested above. 
 Combining (17) and (19) leads to 

   lim
N!"
!rc(t +!t)!!=!! lim

N!"
!rc(t)!#!v!t !+! 2K!t

µ
lim
N!"

1
N

Rn(t)
n=1

N

$
%

&
'
'

(

)
*
*

+

,
-
-

.

/
0
0

=0,!see (19)
" #$$$ %$$$

  , (22) 

which, using (7), simplifies to 

   lim
N!"
!rc(t +!t)!!=!! lim

N!"
!rc(t)!+!

K !t
L
ex  (23) 

At t = 0 , since the particles are all located at x = 0 , the position of the centre of mass of the 
particle obviously is !rc(0) = 0 . Therefore, (23) leads to 

   lim
N!"
!rc(t)!!=!!#v t !!=!!

K t
L
ex  (24) 

which is equivalent to (12), as expected. 
 After some calculations, the position variance of the particle cloud may be seen to obey 
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   lim
N!"

!! 2(t +!t)!!=!! lim
N!"

!! 2(t)!+!2K!t
µ2

lim
N!"

1
N

Rn(t)
2

n=1

N

#
$

%
&
&

'

(
)
)

*

+
,
,

-

.
/
/

=2µ2,!see!(20)
" #$$$$ %$$$$

 , (25) 

which transforms to 
   lim

N!"
!! 2(t +"t)!!=!! lim

N!"
!! 2(t)!+!4K"t  (26) 

Since all the particles are located a the same point at the initial instant, the initial value of 
their position variance is !! 2(0) = 0 , implying  
   lim

N!"
!! 2(t)!!=!!4Kt  (27) 

  
According to the above theoretical developments, in the limit N!"  (number of particles 
arbitrarily large), the centre of mass of the particle cloud and the associated position variance 
exhibit a behaviour that is equivalent to that of the exact solution of the transport problem 
under consideration. In other words, in the limit N!" , the centre of mass of the particle 
cloud moves toward the deeper part of the domain at speed K/L, whilst the position variance 
increases linearly in time and is equal to 4Kt. 

 

Illustration 

To illustrate the solution of the present diffusion problem and some of its properties, it is 
convenient to introduce dimensionless space coordinates and time, 

   (!," )!=! (x, y)
L
!,!!!# !=! t

L2 /K
  , (28) 

as well as the following scaling of the concentration 

   ! (" ,#,$ )!!=!! 4%&h0L
2

M
C(t, x, y)  . (29) 

Then, using the normalised variables, the solution and its properties may be re-written without 
any dimensionless parameter. In other words, the expressions below contain all of the solution 
of the problem under study. 
 Combining (28) and (29), the normalised concentration is readily seen to be 

   ! (" ,#,$ )!!=!!1
"
exp ! (# +" )

2 +$ 2

4"
"

#
$

%

&
'  . (30) 

This concentration and some of its properties are illustrated in Figures 1 and 2. 
 The following scaling of the vertical inventory of the tracer under study is worth 
introducing 

   ! (" ,#,$ )!!=!! 4%L
2

M
J(t, x, y)  . (31) 

Then, combining (14), (28) and (31) yields  

   ! (" ,#,$ )!!=!!1
"
exp ! (# !" )

2 +$ 2

4"
"

#
$

%

&
'  . (32) 
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Figure 1. Panel (a) displays the water column depth as a function of the space 
coordinate η. As may be seen in panel (b), the centre of mass, xc(t)  (solid curve), 
and the point of maximum concentration, xm(t)  (dashed curve), move in opposite 
directions at the same speed. The position variance is proportional to the elapsed 
time (panel (c)). Panel (d) displays the evolution of the maximum of the 
normalised concentration (dashed curve) and the concentration at the centre of 
mass (solid curve). 

 

 

Figure 2. Iso-lines of the concentration at different instants. The values of the 
concentration related to these iso-lines are C[t, xm(t), 0] / 3 , C[t, xm(t), 0] /10 , and 
C[t, xm(t), 0] / 30 . The iso-lines are circles, but appear as ellipses in the graphs 
above, since their aspect ratio is not equal to unity. These graphs clearly illustrate 
the motion of the point of maximum concentration toward the shallower part of 
the domain and the progressive widening of the concentration distribution.  
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Figure 3. Iso-lines of the vertical inventory at different instants. The values of the 
vertical inventory related to these iso-lines are J[t, xc(t), 0] / 3 , J[t, xc(t), 0] /10 , 
and J[t, xc(t), 0] / 30 . The iso-lines are circles, but appear as ellipses in the graphs 
above, since their aspect ratio is not equal to unity. These graphs clearly illustrate 
the motion of the point of maximum vertical inventory toward the deeper part of 
the domain and the progressive widening of the distribution of the vertical 
inventory. 
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