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ABSTRACT

Short-term and decadal sea-ice prediction systems need a realistic initial state, generally obtained using
ice— ocean model simulations with data assimilation. However, only sea-ice concentration and velocity data
are currently assimilated. In this work, an ensemble Kalman filter system is used to assimilate observed
ice concentration and freeboard (i.e. thickness of emerged) data into a global coupled ocean- sea-ice
model. The impact and effectiveness of our data assimilation system is assessed in two steps: firstly,
through the use of synthetic data (i.e. model-generated data), and secondly, through the assimilation
of real satellite data. While ice concentrations are available daily, freeboard data used in this study are
only available during six one-month periods spread over 2005-2007. Our results show that the simulated
Arctic and Antarctic sea-ice extents are improved by the assimilation of synthetic ice concentration data.
Assimilation of synthetic ice freeboard data improves the simulated sea-ice thickness field. Using real ice
concentration data enhances the model realism in both hemispheres. Assimilation of ice concentration data
significantly improves the total hemispheric sea-ice extent all year long, especially in summer. Combining
the assimilation of ice freeboard and concentration data leads to better ice thickness, but does not further
improve the ice extent. Moreover, the improvements in sea-ice thickness due to the assimilation of ice
freeboard remain visible well beyond the assimilation periods.
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Abstract. Short-term and decadal sea-ice prediction systemd  Introduction

need a realistic initial state, generally obtained using ice—

ocean model simulations with data assimilation. However,

only sea-ice concentration and velocity data are currently as-

similated. In this work, an ensemble Kalman filter system is Even though sea-ice is an important component of the global
used to assimilate observed ice concentration and freeboarglimate system, it has been observed only rather recently.
(i.e. thickness of emerged) data into a global coupled oceanSea-ice observations are mainly limited to sea-ice concen-
sea-ice model. The impact and effectiveness of our data adration (the relative amount of area covered by ice, compared
similation system is assessed in two steps: firstly, through thé0 Some reference area), to ice drift (displacement of a sea-
use of synthetic data (i.e. model-generated data), and sedce field) and, recently, to total sea-ice freeboard (height of
ondly, through the assimilation of real satellite data. While the top of snow or sea-ice above sea level, hereafter called
ice concentrations are available daily, freeboard data usetfpe freeboard) and thickness. Ice concentration and drift have
in this study are only available during six one-month peri- been observed at large scale since the late 1970s, in both
ods spread over 2005-2007. Our results show that the simfh€ Arctic and Antarctic regions, using passive microwave
ulated Arctic and Antarctic sea-ice extents are improved byS€nsors on board satellites (e&oersen et al1992. Com-

the assimilation of synthetic ice concentration data. Assim-Paratively, ice thickness observations are much sparser, ham-
ilation of synthetic ice freeboard data improves the simu-Pering a proper estimate of the ice volume. Originally, they
lated sea-ice thickness field. Using real ice concentration datgt€émmed only from upward-looking sonar by submarines in
enhances the model realism in both hemispheres. Assimilathe Arctic (Rothrock et al.2008 and ship-based visual ob-
tion of ice concentration data significantly improves the total Se€rvations in the Southern Oceahidrby et al, 2008.
hemispheric sea-ice extent all year long, especially in sum- The launch of the Ice, Cloud, and land Elevation Satel-
mer. Combining the assimilation of ice freeboard and con-lite (ICESat) in 2003 with laser altimeter system was there-
centration data leads to better ice thickness, but does not fufore a valuable addition to the previous sea-ice observing
ther improve the ice extent. Moreover, the improvements incapabilities. This satellite has shown potential for estimat-

sea-ice thickness due to the assimilation of ice freeboard relnd ice freeboard, which may, when combined with snow
main visible well beyond the assimilation periods. depth estimates, be used to retrieve sea-ice thickikessk(

and Cunningham?2008 in the Arctic. Measuring cam-
paigns have been restricted to March—April and October—
November Kwok et al, 2007). However, sea-ice predictabil-
ity is likely to reside partly in its thickness. Therefore, an ac-
curate knowledge of the sea-ice thickness field is required to
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1502 P. Mathiot et al.: Global sea-ice data assimilation

understand and predict the sea-ice evolution, at least up t8.1 Model setup
3-5yr Blanchard-Wrigglesworth et aR011).

To complete the sketch outlined by the sea-ice observa2.1.1 The ocean model
tions, another source of information is provided by regional ) o _
or global ocean—sea-ice general circulation models. ThesdN€ ocean modelis OP_'&% free surface, primitive equation
models produce consistent fields useful to document and t9¢€an general circulation model. The grid, named ORCAZ,
understand the mean state and variability of sea-ice over th§ common to both ocean and sea-ice models. It has a nom-
last few decades (e.grichefet et al. 2003 Rothrock and inal, nearly isotropic, horizontal resolution 0?_2[10_km at
Zhang 2005. However, the ability of models to accurately 60°N and 90km at the North Pole). The vertical discretiza-
simulate the variability as well as summer features of the icelion includes 31 levels, with higher resolution near the sur-
cover remains limited (e.gassonnet et g12011). face (10 m) than below (500 m at 5500 m depth). Surface

Those model results and observations could be combine§oundary layer mixing and interior vertical mixing are pa-
to improve sea-ice state estimates using data assimilatiol@meterized according to a turbulent kinetic energy closure
techniques. Different data assimilation techniques have beefodel (see NEMO reference manudadec 2008. The
applied to coupled ocean—sea-ice models, assimilating ic@0ttom boundary layer parametrization is basedBerck-
concentration I(isaeter et al. 2003 Lindsay and Zhang ™Mann and Dscher(1997. More details can be found in the
2006 and drift Stark et al, 2008 data in the Arctic. How- NEMO reference manuaMadec 2008.
ever, no attention has been paid to the Southern Ocean re- _
gion and to ice freeboard data assimilation. Consequently2-1-2 The sea-ice model
the main objective of this study is to discuss first the im'.The sea-ice model is LIM2, a large-scale dynamic-

pact of sea-ice concentration data assimilation in both hem"hermodynamic model designed for climate studies. The

spheres, and second, ice freeboard data assimilation. To C{%ermodynamic component of LIM2 is th@emtner(1976

S0, we h_ave incorporated an ensemble Ka_lman filter (EnKF)three-Iayer model. The temperature profile of the snow-ice
system in the global coupled ocean—sea-ice model NEMO-

: . . . . tem i mput ne-dimensional heat diffusion
LIM2 (Madeg 2008. Since improving sea-ice drift does not System 15 compu ed_by a one-dimensional heat d rusio
. . : . equation, resolved using one snow layer and two sea-ice lay-
impact on ice concentration significantly (eStark et al.

2008, ice drift is not assimilated here. ers. Vertical snow and sea-ice growth and melt rates are de-

L ) . _rived from the energy budgets at the upper and lower in-

Data assimilation techniques can open many perspectives, . : .
. . . erfaces of the snow—ice system. Open water is taken into
For example, it has become possible to realise a reconstruc-

. . ) . nt using i ncentration rognostic variable.
tion of sea-ice over the last 40 yr, which could be ofgreatln—accou t using ice concentration as a prognostic variable

. . Within the ice pack, heat budget allows computing ice growth
terest for process studies. Furthermore, realistic current sea- pack, 9 putingiceg

. : L . n open water. Parameterizations of the most relevant sea-
ice states could be obtained to initialise operational forecas . ) .
. " : ice physical processes are included (brine pockets, lateral
models as well as climate prediction systems. In this study . . . .
; S melting, effective heat conduction due to unresolved subgrid-
we will focus only on the method and not on the applications.

. . . . cale ice thickness variations, surface albedo, penetration of
Section 2 describes the ocean—sea-ice model. Section % P

gives a brief overview of the EnKF method. The data u:~3ed.radI.at'O'.1 through_the ice, snow ice formation). The ve_Ioc-
. . . . ity field is determined from a momentum balance consider-
for this work is described in Sect. 4. In Sect. 5, we present

. ST c|I1g sea-ice as a two-dimensional viscous-plastic continuum
what improvements can be expected using ice freeboar L . : .
in dynamical interaction with atmosphere and ocddiblgr,

data assimilation by showing results using synthetic (model-1979 More details on LIM2 can be found ifichefet and
generated) data. In Sect. 6, the impact and benefit of real se"ﬁoral.es Maquedé1997
ice concentration and ice freeboard data assimilation are dis- g '

cussed. Our conclusions are drawn in the final section. 2.1.3 Forcing fields and initialization

Atmospheric forcing fields combine NCEP/NCAR dalily re-
analysis data of 10m wind speed and 2m temperature

All the simulations analyzed in this study are performed with (Kalnay et al, 1999 with monthly climatologies of relative
the global ocean modelling system NEM(Madec 2008 humidity (_Trenberth et aJ.19_89, tptal (_:Ioudlness_E(erlland
including LIM22 (Fichefet and Morales Maqued&997) as and Strokinal980 and precipitationXie and Arkin, 1997).

sea-ice component. This section briefly describes the modef guadratic bulk formula with a drag coefficient of4lx
the configuration and the atmospheric forcings. 10~ is applied to compute the surface wind stress. The
downwelling shortwave radiation, the net longwave radiation

and the turbulent sensible and latent heat fluxes are computed
following empirical parameterizations describedGoosse

2 Model description and validation

INEMO = Nucleus for European Modelling of the Ocean
2|IM = Louvain-la-Neuve sea ice Model 30PA=Ocean PArablise

Geosci. Model Dev., 5, 15011515 2012 www.geosci-model-dev.net/5/1501/2012/
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a) b) February 2010 for both the NH and the SH over 1979-2005. Our re-
sults are similar to those from simulations performed with
an earlier version of the modéelimmermann et al2005 in
both hemispheres, as detailed below.

September

2.2.1 Northern Hemisphere

The seasonal cycle of ice extent simulated by the model in the
NH is rather close to the observed one (Rig.and b). How-
ever, in September (Fida), the ice extent appears somewhat
overestimated. Sea-ice protrudes too far southwards in the
Baffin Bay and in the Barents and Kara Seas. Furthermore,
a comparison (not shown) with submaririRothrock et al.
2008 and satelite ice thickness estimat&svpk and Cun-
ningham 2008 Kwok et al, 2009 indicates that the model
largely overestimates the sea-ice thickness by ab@un in

the East Siberian Sea, in the Laptev Sea and in the Beaufort
gyre and by about 0.5m in the Kara Sea and near the North
Pole. In the Canadian Basin, the ice thickness is overesti-
mated by 0.5m. As ifimmermann et al(2005, the win-

ter sea-ice thickness overestimation and the summer melting
underestimation are related to each other. Note that the ice
thickness overestimation in the Beaufort, East Siberian and
Laptev Seas are also present in another recent study with an-
_ ) ) ) ) other model, forcing and resolutiob¢tila et al, 2012).

Fig. 1. Simulated mean sea-ice thickness (1979-2005) in September The modelled winter sea-ice thickness field in the Arctic

(a, c)and in Februaryb, d) in the NH (a, b) and SH(c, d). The . . .

dark and light grey lines correspond to the simulated and observe&F'g' 1b) featu_res fa pronounced gradient from abefitm in

sea-ice edges (15 % limit), respectively. Observations come fror’r‘Fhe western Slberllan Seaft.m mat the North Pole a”‘?'ﬁ m )

OSISAF Eastwood et al2010). along the Canadian Archipelago, in agreement with previ-
ous simulations with ORCA2-LIM2 Timmermann et aJ.

2005 and with other modelling studie¥gncoppenolle et gl.

(1997). Evaporation/sublimation is derived from the latent 2009 Hunke 2010. Results of the model from Arctic Ocean
heat flux. River runoff rates are prescribed from the clima-Model Intercomparaison Project (AOMIP) also indicate sim-
tological dataset oBaumgartner and Reich¢l975 com- ilar behaviour.Johnson et al(2012 demonstrate that the
bined with a mean seasonal Cyc|e derived from the G|obam0de|5 overestimate thickness of ice thinner than 2m and
Runoff Data Centre dataBRDGC, 2000. To avoid spurious Underestimate the thickness of measured ice thicker than 2 m.
model drift, a weak restoring of sea surface salinity towards
the seasonal Polar Science Center Hydrographic Climatol2.2.2 Southern Hemisphere
ogy (PHC;Steele et a).2007]) is applied. The time scale se-
lected for salinity restoring is 1 yr. In the austral winter (Figlc), the simulated sea-ice edge

The spin-up run (named REF), used to initialize all the agrees relatively well with observations. Besides, the sim-
assimilation experiments, covers the period 1960-2007. Inillated summer minimum ice extent is too small around
tial conditions of temperature and salinity are based on theAntarctica (Fig.1d). The sea-ice does not extend far enough
PHC climatology for REF simulation. Ice is assumed to be northwards along the eastern side of the Antarctic Peninsula

initially present where the sea surface temperature is belovnd sea-ice is absent in the model off East Antarctica.
0°C. Initial snow depth and ice thickness are 0.5 and 3m in The mean simulated Antarctic winter sea-ice thickness is

the Northern Hemisphere (NH) and 0.1 and 1 m in the South0.6 m. This value is close to the ASPeCt climatology (not

ern Hemisphere (SH). shown), which stems from visual ship-based observations
(Worby et al, 2008. In the western Ross Sea, the ice thick-
2.2 Model performance without data assimilation ness is smaller than the circumpolar average, which is con-

sistent with observations in this sectda¢obs and Comiso
Figurel shows the simulated mean sea-ice thicknesses anii989.
compares the mean sea-ice extentin February and Septemberin February (Fig.1d), the opening of the Ross Sea is
to the corresponding observations from the Ocean and Seawell reproduced by the model. A tongue of thick ice (maxi-
Ice Satellite Application Facility (OSISAHzastwood et al.  mum thickness about 1.5 m) is simulated from the Amundsen

www.geosci-model-dev.net/5/1501/2012/ Geosci. Model Dev., 5, 186G1t5 2012
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Sea to the eastern Ross Sea, as in the ASPeCT climatology. The analysis update is calculated in the ensemble space
Along the eastern side of the Antarctic Peninsula, the mod-{Hunt et al, 2007). This technique does not permit observa-
elled ice thickness is greater than in the rest of the pack, asonal errors to be correlated; so, we assume independent ob-
observed. Nonetheless, the ice thickness there appears uservational errors. Advantages of this technique are to reduce
derestimated by more than 2 m during both winter and sum+the cost of the EnKF and avoid scaling issues among differ-
mer, compared to both the ASPeCt climatology and satelliteent variables. This EnKF scheme is more commonly known
freeboard-based ice thickness estimazegdly et al, 2008. as a local Ensemble Transform Kalman Filter.

This is clasically attributed to a poor representation of the

cold barrier winds along the Antarctic Peninsula in the forc-3-1  Formulation of the EnKF

ing fields Timmermann et a).2005 Vancoppenolle et al. . . :
2009 Massonnet et 3l2019). The analysis step for the EnKF consists of the following up-

This brief overview identifies of a number of shortcom- dates performed on each of the ensemble members:

ings in the results of the control run conducted with the ;o _ ./ | (d- _ fo) 1)
model, which are consistent with earlier studies. The discus- /7 / / J
sion above demonstrates, however, that the model shows e control vector ; € R"*! contains all the relevant vari-

sufficiently good agreement with the seasonal behaviour ofpjes (i.e. all two-dimensional and three-dimensional oceanic
sea-ice cover in both hemispheres to permit a sound studygriaples and all sea-ice variables except sea-ice temperature
of the effect of sea-ice concentration and ice freeboard datgng heat content) on all grid points of the model for jhe
assimilation. th members of the ensemble. The sea-ice heat content and
temperature are largely non-linear (L distributidrisaeter
et al, 2003. An update of their fields by EnKF leads to non-
i physical behaviour (large melting/formation rate) during the
3 The ensemble Kalman filter first step of the forecast. Therefore, we decided to exclude
these variables from the control vectelis the dimension of

The EnKF is a sequential data assimilation technique thathe control vector for each ensemble membeéris the an-

approximates state estimation error statistics by using .a'?ilyzed state and’. is the forecast state whilé,; c RP¥1

Ense?]r:(:)lelggfgggl rLjAn? I-Irhﬁor:]]-el't:g:r 'rsngélg iesgggetg Nis a vector containing the available observations at that
v n( 3. A fully ! IS u time for the j-th members of the ensemble. The observa-

propagate the model error statistics. Gaussian error d'St.”fions used for thej-th member are perturbed according to

butions are, however, still assumed for the analysis as INhe uncertainties in the measurements:=d + ¢, where
. — ]1
Lisaeter et al(2003 2007). However, for many modelled d is the unperturbed observation vector andhe perturba-

varla_bles, this hypothes_ls is not necessarily realistic, partlcu-tion for the j-th ensemble member. The operakbe RP*"
larly in the case of sea-ice.

) L rojects the model state into the observational space. This
As we apply a sequential data assimilation, each ensembl%

member is first propagated up to the next time data are avail rojection ranges from a simple interpolation onto the obser-
propag P vational grid to complex transformations of the model vari-

able (once a day in our case). This is called the “forecast”a les to some observed quantitikssis called the “Kalman
step. Then, the data are used in the analysis step to correggin matrix”

the forecast by adding a term proportional to the misfit be-

tween observati inedi .3.1. -1

: vations and the forecast, as explainedin Sect. 3.1. _ PfeHT (HPIEHT + Re) ’ @)
This ensemble of analyses is then again propagated forwar
in time until the next analysis step. Re € RP*? is an approximation of the observation error co-

Our version of the EnKF is based on the code developedariance matrixP!, ¢ R”*" is an approximation of the model
by the Nansen Environmental and Remote Sensing Centeforecast error covariance matrix. The covariance matrix is ap-
and described iBurgers et al(1998. We use the localized proximated because the full error covariance matrix for ob-
analysis presented Bakov and Berting2010 to addressthe  geryations is poorly known, and — for the model — the matrix
limitations Stemming from the relatively small size of our en- is too |arge to be Computed exp“cmy in Oceanographic app“_
semble (25 members) compared to the size of the state spacgations. The EnKF approximates it by an ensemble of model

The localization radius applied in this study is 800 km. This statesE € R"*™, wherem is the number of members in the
method reduces the spatial domain of influence of observagnsemble. The ensemble of anomakies R"*™ is defined

tions during the update. Without localized analysis, there areyg

spurious correlations between distant and not physically con-

nected state vector elements (édgutekamer and Mitchell A =E <I — —11T> ,
2002, Keppenne and Rieneck€x002 Anderson 2007 due m

to the failure of an ensemble to adequately span the modelherel is a vector with all elements equal to one adns the
sub-space@ke et al, 2007). identity matrix. The approximated error covariance ma#ix

3

Geosci. Model Dev., 5, 15011515 2012 www.geosci-model-dev.net/5/1501/2012/
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is then

1 1 1
1 T TAT T
f T Y=—X'X=-—R R, =—R R
Pe = T]_AA . (4) m m p Q Q p m p p- (5)
. S . L whereQ € R™*"™ is an orthogonal matrix.

Since the assimilation scheme is multivariate, both ocean Therefore, a random perturbatidhe "> with the same

and sea-ice variables are updated in the analysis step. AS. &variance properties as the original data could be created as

Gaussian distribution of errors is assumed for sea-ice vari

. . follows:
ables, this can lead to non physical states. Consequently, we
verify that the sea-ice concentration and thickness as well ag, IERTZ ©)
snow thickness are non-negative everywhere (otherwise they ~ V m;m P™’

are set equal to zero). Furthermore, we impose a maximurr\1Nhere each element afe R™*1 is sampled from the normal
value of 1 for sea-ice concentration. Also, note that the EnKF P

is not associated with any freshwater or salt flux towards th distribution V(0. 1). To create a perturbed wind field state

ocean. Thus, the EnKF could be a potential mass sink/source, & partlclul'ar ensemple member on that d@yong has to
. . . add the original wind field state, to the perturbatior? to
in the system. Finally, the sea surface temperature is con-

: : getxp =xo+aP. In our casey, is the original wind field
strained to be greater or equal to the freezing temperature. of a day,xp the perturbed wind field and a scale factor.

We computed separate covariance matriBgsfor the
zonal and meridional components of the wind field. Never-
The initial conditions for all the members are provided by theless, to create consistent wind field perturbations, we used
the REF simulation without perturbation. Perturbations only the same perturbation vectorfor the two components. The
apply to the wind fields. Winds are particularly important for scale factorx selected here is.5. We did not assume any
both the sea-ice motion and surface heat in both hemispherdgmporal correlation between the perturbations. However, the
(Watanabe and HasumR0O5 Bitz et al, 2009. Conse- Mmodel smooths the effect of the perturbation. This leads to an
quently, to generate the ensemble of model states (25 mengffective scale factor lower than 0.5 (not diagnose here). Itis
bers in our case), we have chosen to perturb only the WindNOfth mentioning that no inflation was applled to enlarge the
forcing. As the surface fluxes are computed by the CLIO at-Spread of the ensemble.
mospheric bulk formulae in our experiments, a perturbation
of t_he wind field aff_ects b_oth the momentum and heat fluxes.4 Description of the assimilated data
This ensures the dispersion of our ensemble.

3.2 Ensemble generation

3.2.1 Wind perturbation 4.1 Synthetic observation data

In order to evaluate the potential of the EnKF data assimila-
tion system in a controlled framework, we first assimilated

. synthetic sea-ice data. The synthetic dataset was extracted
we selected an approach based on the covariance of the da y

. e ) om a simulation with perturbed forcing, supposedly repre-
We started by gathering samples of data (wind fields in Oursenting sea-ice observations. The snow, ice and water den-

case) at discrete times. The samples should be sufficientlgities were taken equal to 330.0 kg 915.1 kg nT3 and
different so that we could assume the data were not COIre; 053 g kg nT3, respectively. Localization in time and space

1 T mxn
lated. The sampled data were arranged in a malts® ’ are the same as the real sea-ice data described in the next

wher:emrLS :he tIOta| nlillmokljfrz of tse:mslest "’:"dl‘:’] ttr;‘e slz€ Off art. To ensure that the EnKF will correct the model ensem-
E;‘C d_sa pie (a lso _cz fe_ Idme' state vecto L € ca(;se Ot %Yje when using real observations, the synthetic data have to
o-dimensional Wind Ieldy 1S ny > n, , Wheten, andn, be built in such a way that the bias between synthetic data

2;223;;mvsgre(jt?;gepdo'tuf \?Ji?]ggfitgfjoégé?;/riitlggjysres_tart and model output is similar to or larger than the bias be-
; : . . R ‘tween real observations and model output. So, the synthetic
ing on 6 January, for 1950 to 2008, inclusive. This gave u b Y

. Sdata have been built as for the REF simulation but with the
a total ofm = 1947 atmospheric states that we assumed tODRAKKAR forcing set 4 (DFS4) described Brodeau et al.

be independent of each other. As a next sj[ep, we fOL_md th?2010 instead of the NCEP/NCAR forcing set. The simu-
mean state and subtracted itfrom eqch row,|mgs Creitx'gg lated ice extent and thickness are underestimated with the
the matr|x of anomalieX. The coyarlancixnlatrli €R DFS4 atmospheric forcing in both hemispheres (not shown),
could directly be constructed usinge R or _mtfn S&€ " thus the bias between the model ensemble and synthetic data
space and to speed up compl_Jtatlons — UBlpg R Ob'_ are larger, in both hemispheres, than in the case where real
tained from a QR-decomposition Hf= QRy as presented: sea-ice observations are used (comparison of green lines in
Figs.2 and3). The uncertainties in the synthetic observations
are identical to the ones of the real observations.

To create a perturbed wind forcing field that is consistent
with the spatial structure of the variability of observations,

www.geosci-model-dev.net/5/1501/2012/ Geosci. Model Dev., 5, 18615 2012
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Fig. 2. Time series of the sea-ice extent (top) and volume (bottom)Fig. 3. Times series of sea-ice extent over 2005-2@07 The ob-
difference compared to synthetic observations for both the NH (full servations are in black. The red lines correspond to the IC run and
lines) and the SH (dashed lines) over 2005-2007. Green lines repthe green lines to the FREE run. The dashed lines are for the NH
resent the FREE run difference, red lines the IC run difference, blueand the solid lines for the SHb) Differences between model and
lines the FB run difference and black line the FB-IC difference. observations are plotted with the same codes. Grey shading areas
Grey shading areas indicate periods when the ice freeboard data anmedicate periods when the ice freeboard data are available. A one

available. week smoothing is apply on both figures.

4.2 Real observational data putational costs, data were interpolated on the model grid us-
ing a bilinear interpolation scheme. The uncertainties in sea-

4.2.1 Sea-ice concentration ice concentration vary in time and in space. During summer,

the error was estimated up to 20 %, while during winter the
The sea-ice concentration data used in this study come frordeviation between ice concentration measurements and ice
the OSISAF frameworkEastwood et 82010, which pro-  charts are around 10 %. Close to the ice edge or in areas with
vides data and their uncertainties at daily frequency. OSvery compact sea-ice (sea-ice concentration of about 100 %),

ISAF sea-ice concentrations derive from the multi-channelthe uncertainties are lower, about 7 %, throughout the year.
microwave brightness temperatures collected by two satel-

lite instruments: the Scanning Multichannel Microwave Ra-4.2.2 Total sea-ice freeboard

diometer (SMMR) (1979-1987) and the Special Sensor Mi-

crowave/lmager (SSM/I) (1987-200Glpersen et al1992 The total sea-ice freeboard (hereafter called ice freeboard)
Cavalieri et al. 1997. The nominal resolution of this prod- is the sum of snow depth and sea-ice freeboard. Ice thick-
uct is 12.5km. To avoid indirect data, we excluded gap ar-ness can be derived from it if snow depth and density are
eas filled through extrapolation (missing orbit, missing scanknown. Kwok and Cunningham (2008) estimated the latter

lines and polar observation hole) as well as areas where asing Advanced Microwave Scanning Radiometer (AMSR)

coastal correction is applied. For our analysis, to limit com-sea-ice motion fields, European Centre for Medium-Range
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Table 1.1CESat Campaigns available from the National Snow Ice Table 2. Description of the simulations carried out with synthetic

Data Center. observations and real data assimilation.
Campaign name Period Span in days Experiment sea-ice concentration Ice freeboard
ONO5 4 Nov 1o 24 Nov 2005 21 (synthetic/real) (synthetic/real)
FMO06 22 Feb to 27 Mar 2006 34 FREE NO NO
MJ06 24 May to 26 June 2006 34 IC YES NO
ONO06 25 Oct to 27 Nov 2006 34 FB YES YES
MAO7 12 Mar to 14 Apr 2007 34
ONO7 2 Octto 5 Nov 2007 37

5.1 Experimental setup

Weather Forecasts (ECMWF) snow accumulation and a seaThe assimilation experiments covered the period 2005-2007.
sonal climatology of snow density\Marren et al.1999. As An ensemble of 25 members were used. Each member was
the determination of snow parameters carry substantial unforced with a slightly different wind field (see Se8t2). Ini-
certainties, it is recommended to directly assimilate ice freetial conditions for each member were taken from the REF
board into the model. simulation. Assimilated data were the synthetic observations
The ice freeboard data used in this study was provided byfescribed in the previous section. The assimilation scheme
the National Snow Ice Data Center. These data are availabl@as called each day.
only for the Arctic below 86N. The data spanned six ICE-  Three experiments were performed (see Tajle
sat laser campaigns (see Taljelslands, icebergs and land
areas were filtered out with a criterion based on large eleva-
tion variations (more than 4 m) along the track. A zero ice
freeboard was assigned to areas where ice concentration is — “IC” where sea-ice concentration data were assimilated;
below 20 %. This is an empirical limit to avoid the ice free- ) ] )
board contamination introduced by open ocean water waves. — B~ Where both sea-ice concentration and ice free-
Yi and Zwally (2010 give a complete description of the al- board data were assimilated;
gorithms used to process the data. As for sea-ice concentra- The giscussion below covers the ensemble means of each
tion data, ice freeboard data were interpolated on the moded;y,1ation.
grid each day. The uncertainties in ice freeboard data were
assumed equal to the standard deviation of all data availablg.2 Results
in each model grid cell, i.e. 15 cm on average over all the data
points and over all the periods. The FREE simulation shows, in comparison to synthetic ob-
servations, large discrepancies in Arctic sea-ice extent (up to
o _ _ 3 millions kn? at the beginning of September, Fiza) and
5 Impact of the assimilation of synthetic sea-ice data volume (up to 12 000 k&in August, Fig.2b). In the SH, dif-
In experiments with synthetic sea-ice data assimilation a”ferenceg between synthetic obsery ations anql FREE are also
the components of the system are known, in contrast t(; th !arge (Fig2). As ex_pected, IC.eXthItS a sea-ice extent that
real case in which only some observed v:ariables are avail-s c_Ioser to synthetic observations than FREE in NH as W.e”
as in SH. The root mean squared error (RMSE) of sea-ice

able. Furthermore, we knew that the unperturbed Symhet'cextent decreases by 85 % in IC in the NH, and by 87 % in the

observations are compatible with the model physics. As wegp (Table3). The RMSE of sea-ice volume also decreases
had access to the true control vector, we were able to eval-

; ; ; in IC by 66 % in NH and by 88 % in SH compared to FREE.
uate, W't.h t.h ose synthetic data, the |.mpr0vement prought byI'he adjustment of the sea-ice volume ends after the first sum-
data assimilation of an observed variable such as ice concens .- in both the NH and SH (Fi@). It is the time needed to
tr:tt_lggson;rr]: :Tfi:ﬂumve\}/garzzlzsé \ivoh'c:loﬁfgqliﬁ;eCoobnsse;transform the excess of multi-year sea-ice still present during
v (l,nt a<\jNanta Ies Io?ésses\g'n the aI'? olf thg data assi summer in FREE (compared to the synthetic observations)
que v g >Sing the quatity asSIM{ seasonal sea-ice in IC, which corresponds to the synthetic
lation procedure, the sensitivity of ice thickness to ass'm”a'observations

:Ir?gn?fdlsz fg?ﬁ:gg;ﬁ?a&snvﬁl:f; f?é/etgﬁapr(()jtentlal improve- . Assimilating both ice concentration a|_’1d ice freeboard (FB
: simulation) does not further affect the ice extent (Tab)le

This is due to the spatial coverage of ice freeboard data,

which do not reach the ice edge (data are automatically ex-

cluded if sea-ice concentration is lower than 20 %). How-

ever, the ice volume is improved in FB as compared with

— “FREE” where winds were perturbed but no data were
assimilated,;

www.geosci-model-dev.net/5/1501/2012/ Geosci. Model Dev., 5, 186G1t5 2012
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Table 3. Root mean squared error (RMSE) of sea-ice extent and
volume between data assimilation experiments using the synthetic
data and the synthetic observations themselves in the NH and Sk
respectively, from the begining of October and February (end of the
adjustment phase) to the end of the simulation. Within parenthese:
are the reductions of RMSE for each simulation (compared to the§
FREE simulation).

Ice fraction (IC) 20070917

Ice fraction (OBS) 20070917
N

Experiment RMSE (NH) RMSE (SH)

sea-ice extent{10® km?)

c) Ice fraction (IC) 20070219 d) Ice fraction (OBS) 20070219
o o
0

FREE 1.51 (n.a.) 3.83 (n.a.)
IC 0.22 (-85%) 0.51 87 %)
FB 0.22 (-85%) 0.51 (87 %)

sea-ice volumex10® kmd)

90°W

FREE 10.44 (n.a.) 4.25 (n.a.)
IC 3.55(-66%) 0.49 (88%) B
FB 3.06 71%) 0.49 (88%) 2,

180°W

IC in the NH. The RMSE is decreased (as compared with
FREE) by 71 % in FB, and 66 % in IC. It is worth noticing
that the improvements due to ice freeboard assimilation in
October—November and in March—April on sea-ice volumeFig. 4. Sea-ice concentrations during the minimum of sea-ice extent
remain throughout the year (Fig). The largest improve- in 2007 in the NHa, b) and SH(c, d). Colors show the sea-ice con-
ments are seen during the two first ice freeboard measurmergentration in IC simulatiorga, c)and in the OBSb, d). The thick
campaigns (ONO5 and FMO6). These improvements are acblack line represents the sea-ice extent in the FREE simulation.
companied by some discontinuity (Fig). clearly due to the

lack of data during several months.

These results show that the data assimilation method
brings the modelled ice extent and volume closer to the syn- 25
thetic data than in the FREE run in both hemispheres &ig.
The next part of this study examines if our conclusions re-
main valid when using real observations.

H H
10 20 30 40 50 60 70 80 90 100 %

ice volume

20

6 Impact of the assimilation of real sea-ice data

6.1 Experimental setup

Two simulations were carried out to highlight the utilily of
sea-ice concentration and ice freeboard data assimilation i
the case where real observations are used: an experime

with assimilation of real sea-ice concentration data (IC), and 2005 2006 2007
a simulation with assimilation of both real sea-ice concen- STruav s S ASOND JFMAM I S ASOND JFNAM T S ASOND
tration and ice freeboard data (FB) (Talle The reference Vol FB | = Vol.1C | —Vol. FREE | = Vol. Kwok etal. (2009)

simulation (FREE) is the same as in the previous section. AIIFig. 5. Time series over 2005-2007 of the sea-ice volume in the
these simulations cover the period 2005-2007. The modejciic Ocean for the FREE (green line), IC (red line) and FB (blue
setup, the initial conditions, the forcing fields, the model pa-|ine) runs. Black lines are the mean sea-ice volumes provided by
rameters, the assimilation method, the ensemble size and thewok et al. (2009. The two sea-ice volume estimates (model and
generation of the ensemble were the same as in the experobs) are on the domain usedKuwok et al. (2009 (i.e. the Arctic
ments conducted with synthetic data (S&t.The only dif-  Ocean). Gray areas indicate the periods when ice freeboard data are
ference between the previous experiments and these ones agedilable.

the type of data used. In the previous section, the data are

synthetic observations, while here real sea-ice concentration

and freeboard data are used.

Geosci. Model Dev., 5, 15011515 2012 www.geosci-model-dev.net/5/1501/2012/
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a) MAOQ7 FREE b) MAOQ7 IC

a) Ice thickness (IC-FREE) 20070301 b) Ice thickness (FB-IC) 20070301

Fig. 6. Sea-ice thickness differences at the 2007 maxinfanb)
and minimum(c, d) sea-ice extent in Arctic. Colors show the sea-
ice thickness differences between FB andibCd) and between IC
and FREHa, c).

Fig. 7. Sea-ice thickness during the MAO7 (March—April) campaign
in the FREE, IC and FB runs( b, crespectively), and in the ob-
servationgd) (Kwok et al, 2009.

6.2 Assimilation of real sea-ice concentration data

after 10 months (end of the first summer in the simulations),
6.2.1 Sea-ice cover in the Northern Hemisphere IC is clearly better during summer (Fi§). This change of

sea-ice concentration propagates into the multi-year ice. Af-
The impact of real data assimilation on sea-ice extent ander three years of simulation, the whole sea-ice pack is af-
volume are similar to those obtained with synthetic data.fected (Fig.6a and c). Areas where sea-ice is seasonal in IC
FREE overestimates the mean sea-ice extent, particularigand multi-year in FREE show a lower sea-ice thickness in IC
during summer months (Fig) along the Siberian coast and (ice thickness differences up 2 m). In areas where sea-ice
in Baffin Bay. Assimilation of ice concentration data reducesis, in both simulations, multi-year (or seasonal), differences
this bias (Figs4 and3) for all seasons, but particularly in are lower in both winter and summer (up-+t®.6 m).
summer when the errors of FREE are the largest. During Over the entire ice pack during both winter and summer
freeze-up, the sea-ice extent in both IC and FREE remair{(Figs.5, 7 and8), IC reduces the ice thickness overestima-
close to each other. tion seen in FREE. However, the decrease of ice thickness in

During the first months of 2005 (since May), the Arctic IC istoo strong along the ice edge, especially during summer

ice volume is similar in IC and FREE (Fid). After the in central Arctic (Fig8). This is a sign that the model tends to
first summer, the sea-ice volume in IC is much lower than inunderestimate ice thickness in summer and also to produce a
FREE (Fig.5). This is due to a lowered summer sea-ice ex-too thin sea-ice during the first winter months on the Siberian
tent in IC that induces a large substitution of multi-year sea-side of the Arctic. Several hypotheses can explain this too
ice (area covered by sea-ice in summer, mainly composed dbw ice thickness near the ice edge during summer: either the
sea-ice thickness greater than 2.50 m, Bjgpresent in the  atmosphere—ice heat flux, as derived from the forcing fields,
Beaufort and East Siberian Seas in FREE by a seasonal sei&-overestimated; or the model representation of mass source
ice (area covered by sea-ice in winter and not in summerand sink processes leads to excessive melting. During win-
mainly composed of sea-ice thickness lower than 2.50 m irter, sea-ice in IC is too thick in the Beaufort Sea. In the rest
winter) in IC (Fig.4a). In October 2005, the total Arctic sea- of the sea-ice pack, sea-ice thickness in IC is very close to
ice volume in IC is 5¢< 10 km® smaller than in FREE (40% observations. However, the sharp sea-ice thickness gradient
of Arctic volume in FREE during summer). As compared observed is much weaker north of the Canadian Archipelago
with the sea-ice volume estimate frakwok et al. (2009, in all the experiments.

www.geosci-model-dev.net/5/1501/2012/ Geosci. Model Dev., 5, 186G1t5 2012
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ONO7 FREE ONO7 IC Sea ice volume created each day
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Fig. 9. Times series over 2005—-2007 sea-ice volume produced each
day in the Arctic by the model (dashed line) and by the EnKF (solid
line) for FB (blue), IC (red) and FREE (green). Gray areas indicate
the periods when ice freeboard data are available.

not taken into account. Data assimilation leads thus to a net
Fig. 8. Sea-ice thickness during the ONO7 campaign in the FREE increase in oceanic salt content in IC, as compared to FREE

IC and FB runs4, b, crespectively), and in the observatioksok ~ (NOt shown).
et al, 2009. The black line corresponds to the sea-ice edge simu- ] ) ]
lated in FB at the minimum extent (17 September 2007). 6.2.2 Sea-ice cover in the Southern Hemisphere

In the Southern Ocean, FREE overestimates the winter ice
extent, while in summer, the agreement with observations is

These changes in sea-ice thickness and extent lead tquite good (Fig.3). However, this agreement in summer is
changes in ice production. Thin ice supports stronger condue to a compensation of errors in different regions (Big.
ductive heat fluxes than thick ic&ljert and Curry1993 and d). There is an excess of sea-ice in the Ross Sea and
Maykut, 1986. Therefore, the model produces more sea-icealong Dronning Maud Land Coast and a lack of sea-ice at
in IC than in FREE (Fig9) in winter. During the melting pe- the tip of the Antarctic Peninsula, along the East Coast of
riod, the sea-ice that is thinner in IC than in FREE disappeardntarctica and in the Bellingshausen Sea in FREE. Assimila-
faster, further enhancing the melting rate because of a moréon of ice concentration data corrects all these biases. How-
efficient ice—albedo feedback. ever, some problems persist. Areas where ice concentrations

As the FREE simulation overestimates the sea-ice extenare low (below 15 %) are missing in both FREE and IC. Sum-
and thickness during the melting period and in winter, themer ice concentrations below 50 % are almost absent. During
EnKF tends to keep the model in agreement with observafreeze-up, the sea-ice extents of both IC and FREE are simi-
tions and to remove the excess of sea-ice. However, betwedar until the end of June. Afterwards, until the end of winter,
July and September, each year, the EnKF creates sea-ickC is clearly more realistic than FREE (Fig).
This may seem surprising as FREE still has too large an Sea-ice thickness differences between IC and FREE are
ice extent at this time when the centre of the pack begins taignificant in both winter and summer (Fit0). During sum-
freeze, but the marginal sea-ice zone is still melting. EnKF ismer, the ice thickness differences correspond well to the dif-
producing sea-ice in the entire pack (except in marginal iceferences in ice edge location (Figc). During winter, ice
zone in Barents Sea) at a rate of about 1 cm of sea-ice pehickness is smaller in IC than in FREE almost everywhere
assimilation step for month of August 2006. This means that{(—30 cm), except in the western Weddell Sea (+40 cm) and
the ice does not consolidate fast enough in the pack and meltsear Pridz Bay (+20 cmY.immermann et al2004) in a sim-
too fast in the sea-ice edge in the Atlantic sector in NEMO-ilar model configuration had a lack of sea-ice in these area.
LIM. Causes of this behaviour might be biases in the forcingHowever, in the other locations, they found good agreement
or a too strong positive ice—albedo feedback during summerbetween the model results and the ASPeCT dstarify

In the present model setup, the EnKF does not conservet al, 2008. Therefore, the increase in ice thickness in the
oceanic salt in the model, since the ice—ocean freshwater fluWeddell Sea (and Pridz Bay) improves the simulation. In the
associated with the ice growth/melt induced by the filter is other areas, sea-ice in IC is too thin.

Geosci. Model Dev., 5, 15011515 2012 www.geosci-model-dev.net/5/1501/2012/
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Fig. 11.Boxplot showing the RMS of the innovation covariance ma-
trix (RMS(Q)) in blue and the RMS of the model plus observation
error-covariance matrix (RM&(+ HPeHT)) in red during May
and December in IC simulation. Thin crosses denote the outliers,
éi[hile the end (beginning) of the whisker corresponds to the 3rd

. st) quartile plus (minus) 1.5 times the interquartile range. Note
tion methoq used Ieadsf to good agrgement betwgen mod at)tr?e verticeFt)I axié is norzlinear. AllRMS estir%ates are tagll<en only
(IC simulation) and the ice C(_)ncentratlon observations (O_S'over cells where the observations have an ice concentration larger
ISAF). However, the estimation of the model error covari- ihan 0.

ance matrix by the filter (related to the choice of ensemble

generation and choice of the observation errors) has not been

evaluated. We will base our discussion on a simple compari€omparing the RM&) to RMSR + HPeH'), where RMS
son between the innovation vector (the vector difference beis defined by

tween observations and model state in the observation space)

and the error covariance matrix, as presented_ispeter RMS(Q) = ltrace(Q). (12)

et al. (2003. A short description of the method employed \ p

to compare innovation and errors is presented below.

6.2.3 The innovation vector

Previous sections have demonstrated that the data assimil

The innovation vector of membegr(} ;) is given as RMS(Q) and RMSR+HPeH) are shown in Figl1for the
months of May and December. The variability of the model
Aj=d—Hx;. (") and observation errors during May 2005 and 2006 and during

i ] December 2005 are very large. This is due to the presence of
~ We can define the second order momentum of the innovageyeral observation days presenting very large errors in the
tion (Q) as observations (outliers in Fid.1). After May 2006, the vari-

Q= x—jﬂ’ ®) a_lbilities of the errors and of the_ innova_ltion are almost iden-
tical. The median RMS of the innovation and of the EnKF
where the overbar defines an ensemble average. errors (forecast and observations) are commensurate (around
If we consider the model estimate and the observations t®.11 for the summer and winter). This could mean that we
be given as a true valuél;) plus an error, we obtain have accurately estimated the errors. However, a compari-
son of individual contributions (not shown) concludes that
Hax, = Hx, + €T (9)  the similarity between innovation and errors is mainly due
and to large observation errors. Consequently, the ensemble gen-

eration method would not be optimal if used with other ob-
d =Hx, + €% (10) servation products with lower observation errors. We may be
required, in this case, to increase the wind perturbation but
also perturb other forcing fields such as the temperature and
Assuming independence of the observation errors and théhe radiation.

models errors, this leads to o _ _
6.3 Assimilation of sea-ice concentration and freeboard

Q = (€9P5— €M% (€0bs— MO T = R - HPeH, (1) _ . -
To better constrain the ice thickness, we can also assimi-

where the overbar means an ensemble average. Evaluation l#te the ice freeboard in addition to the ice concentration.
the quality of the error estimates can now be simply done byAs shown in Sectb, assimilating both variables improves

www.geosci-model-dev.net/5/1501/2012/ Geosci. Model Dev., 5, 186G1t5 2012
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Fig. 12.Mean values of ice thicknega), snow depth(b) and ice freeboar¢c) (green for FREE, red for IC and blue for FB) in the central

Arctic at the same locations as ICEsat observations; observations are in light grey. Snow depth is extracted from ice freeboard data and sea-ic
thickness (derived from ICEsat freeboa¢diok and Cunninghan008. Snow density is assumed constant (330 kefin The numbers at

the top of the plot are the mean number of data points available each day during the corresponding ICEsat campaign.

the representation of sea-ice volume, as compared with assnow thickness is greater in FREE: +5% in fall and sum-
similation of ice concentration alone. Ice freeboard data ovemer, up to +15 % compared to IC and FB in winter. A com-
2005-2007 is cut into 6 campaigns (Tab)eEach data cam- parison between IC and FB indicates that the assimilation of
paign does not contain the same number of daily data (interice freeboard data improves the sea-ice thickness and slightly
polated on model grid), from 87 in MJO6 to 378 in MAO6 degrades the snow field. Unexpectedly, overestimation of ice
(Fig. 12). thickness and underestimation of snow depth in FREE lead
As ice freeboard is a combination of ice thickness andto a quite realistic ice freeboard, while IC and FB simulate
snow depth, the simulated ice freeboard could be realistian ice freeboard too smal-6 cm) during fall and summer
for bad reasons (error balance) and improvement on ice freedig. 12c). However, during winter, IC and FB ice freeboards
board fields could result only from an increased realism of iceare much more realistic than FREE ice freeboards. The main
thickness or snow depth alone. The comparison of the modreason is the large ice thickness error, which is not balanced
elled mean ice thickness over the central Arctic (Higa) by the snow depth underestimation.
shows a large overestimation in all simulations (up to +2m The mean snow depth, ice thickness and freeboard in IC
in FREE and +1.5m in IC and FB) during winter campaigns and FB are qualitatively close to each other. Furthermore,
and a reasonable agreement during summer campaigns in ltbese simulations show the same large scale geographical
and FB (+25cm). By contrast, the snow depth is underesti-distribution of ice thickness. However, during ONO7, as for
mated in all seasons (Fig2b). The simulated snow depths the MAO7 campaign (Fig®8 and7), ice is thinner in the cen-
are quite similar in IC and FB. Without data assimilation, tre of the Arctic Basin, by up to 70 cm near the North Pole
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(unobserved area due to satellite orbit) (Fépd). The in-  with thickness fields available during the ICESat campaign
trusion of thick sea-ice in the Beaufort Sea is also less proindicates an improvement of the modelled sea-ice thickness
nounced in FB, which is more realistic. and volume in FB as compared to IC. The overestimation of
In winter, sea-ice volume in the Arctic Ocean (as definedsea-ice thickness in the Beaufort Gyre is decreased by 20 cm.
by Kwok et al., 2009) is closer to observations in FB than However, the improvement in sea-ice volume comes at the
in IC (Fig. 5). In fall, the FB ice volume is smaller than ob- cost of less accurate snow cover; there is no effect on sea-ice
served, while multi-year sea-ice is better represented in FBextent. This improvement of sea-ice volume only concerns
(Fig. 8). This inconsistency is due to an error compensationthe Arctic region, and is minor compared to the one obtained
in IC. In IC, the too thin sea-ice close to the ice edge duringin IC as compared to FREE.
the minimum (new ice) is balanced by a thicker multi-year Experiments show that if the main error of the model is
sea-ice in Beaufort gyre. As the new sea-ice close to the icén the sea-ice extent, the simulation with data assimilation
edge is almost not affected by ice freeboard data assimilatiormeaches a new equilibrium state after the first summer both in
this error balance is less important in FB. the Arctic and in the Antarctic. One limitation of the assimi-
lation of ice freeboard data is the presence of discontinuities
in sea-ice volume during winter campaigns. An additional
7 Conclusions limit is that data used to validate the method stem from the
same dataset used in the assimilation step. This study demon-
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