"Pure and modified nickel and cobalt molybdates as catalysts for the oxidative dehydrogenation of propane"

Maione, Andrea

Abstract
This work deals with the search for new molybdate-type catalyst formulations for the activation of light alkanes and their conversion to alkenes. In the first part, we showed that is possible to stabilize the beta-phase of NiMoO$_4$ (as pure phase) by incorporating a certain amount of Co in its lattice. The sol-gel method was also applied to the synthesis of solid solutions of NiMoO$_4$ and CoMoO$_4$. The main difference between the bulk and silica-dispersed Ni-Co-Mo catalysts prepared by citrate or sol-gel methods as well as impregnation, is related to the fact that it is possible to stabilize the beta-Ni$_{1-x}$Co$_x$MoO$_4$ phase throughout the whole composition range in the dispersed catalysts. Moreover, the catalytic data emphasize the advantage of using mixed Ni-Co molybdates in comparison with simple Ni or Co molybdates and also the fact that a higher activity is reached when these active phases are dispersed in a silica matrix. In the second part, we reported on the synthesis, characterization ...

Document type: Thèse (Dissertation)

Référence bibliographique

Maione, Andrea. Pure and modified nickel and cobalt molybdates as catalysts for the oxidative dehydrogenation of propane. Prom.: Devillers Michel
Summary

Chapter I: Introduction 1

I General context 2
 I.1 Purpose of the work 2
 I.2 Literature survey 3
 I.2.1 Advantages in using alkanes as feedstock 4
 I.2.2 Dehydrogenation versus Oxidative dehydrogenation 6
 I.2.2.1 Major industrial aspects 6
 I.2.2.2 ODH of paraffins to olefins 9
 I.3 Hydrocarbon activation 12
 I.4 Selectivity in hydrocarbon oxidation catalysis 13
 I.5 Effect of additives on the physico-chemical and catalytic properties of oxide catalysts in selective oxidation reactions 16

I.6 Catalysts in propane oxidative dehydrogenation 18
 I.6.1 Molybdenum-based catalysts 19
 I.6.1.1 General context 19
 I.6.1.2 Ni and Co molybdates 20
 I.6.1.2.1 Crystal structure 20
 I.6.1.2.2 Effect of the preparation method on the structure and catalytic performances of bulk catalysts 21
 I.6.1.2.3 The effect of the support 22
 I.6.1.2.4 Catalytic activity 23
 I.6.1.3 Molybdena supported on different oxides 27
 I.7 Lanthanides in catalytic oxidation 28

I.8 Methodology of the thesis 30
 I.8.1 Solid solutions of Ni and Co molybdates in silica-dispersed and bulk catalysts prepared by sol-gel, impregnation and citrate method: characterization and catalytic activity in propane oxidative dehydrogenation 30
 I.8.2 Modified Ni and/or Co molybdates by bismuth and/or lanthanides: characterization and catalytic activity in propane ODH 32
 I.8.3 Preparation and Catalytic Activity of Ni-Co molybdates supported on alumina, magnesia, titania, zirconia and mixed alumina-magnesia 34
Chapter II: Experimental

II. Experimental 36

II.1 Catalysts prepared by citrate method 36
 II.1.1 General principles 36
 II.1.2 Preparation of Ni-Co molybdates 36
 II.1.3 Preparation of M-Ln(Bi)-Mo catalysts (M = Ni, Co; Ln = La, Ce, Pr, Sm, Tb) 37
 II.1.4 Preparation of α-Bi$_2$Mo$_3$O$_12$ and Pr$_2$Mo$_3$O$_12$ 37

II.2 Catalysts prepared by sol-gel method 38
 II.2.1 Preparation of Silica-dispersed Ni-Co molybdates 38
 II.2.2 Preparation of Ni(Co)-Ln(Bi)-Mo-Si, Ni-Co-Ln(Bi)-Mo-Si and Ni-Co-Ln-Ln'(Bi)-Mo-Si (Ln, Ln' = La, Ce, Pr, Sm, Tb) 39
 II.2.3 Preparation of Alumina-dispersed Ni-Co molybdates 39
 II.2.4 Preparation of Magnesia-dispersed Ni-Co molybdates 40
 II.2.5 Preparation of Ni-Co molybdates dispersed on a mixed Al$_2$O$_3$-MgO support 40
 II.2.6 Preparation of Silica-supported α-Bi$_2$Mo$_3$O$_12$, β-Bi$_2$Mo$_2$O$_9$ and CeO$_2$ 41
 II.2.7 Preparation of pure supports by sol-gel method 42
 II.2.7.1 Preparation of Silica 42
 II.2.7.2 Preparation of Alumina 42
 II.2.7.3 Preparation of Magnesia 42
 II.2.7.4 Preparation of Al$_2$O$_3$-MgO 42

II.3 Catalysts prepared by Impregnation 43

II.4 Pure Phases prepared by Ceramic Method 43

II.5 Description of the analytical techniques 44
 II.5.1 Thermogravimetric analysis (TGA) 44
 II.5.2 X-ray diffraction (XRD) 44
 II.5.3 X-ray photoelectron spectroscopy (XPS) 44
 II.5.4 Raman spectroscopy 46
 II.5.5 U.V.-visible diffuse reflectance spectroscopy (UV-Vis DRS) 46
 II.5.6 Specific surface area measurements (BET), pore size distribution and total pore volume (BJH) 46

II.6 Catalytic testing and reaction conditions 47

II.7 Expression of the catalytic results 49

Chapter III: A General View of Structural and Catalytic Results 51

III.1 Overview of the structural and textural results 52
 III.1.1 Introduction 52
 III.1.2 Solid solutions of Ni and Co molybdates in silica-dispersed and bulk catalysts prepared by sol-gel, impregnation and citrate method 53
 III.1.2.1 Citrate prepared catalysts 53
 III.1.2.1.1 X-ray diffraction and BET specific surface areas 53
 III.1.2.1.2 Raman spectroscopy 57
III.1.2.2 Catalysts prepared by sol-gel and impregnation method 57
III.1.2.2.1 X-ray diffraction and BET specific surface areas 57
III.1.2.2.2 General comments on specific surface area and porosity measurements 58
III.1.2.2.3 X-ray photoelectron spectroscopy 60
III.1.2.2.4 Raman spectroscopy 62
III.1.2.2.5 Discussion of the structural and physico-chemical aspects 65

III.1.3 Preparation of Ni-Co molybdates supported on alumina, magnesia, titania, zirconia and mixed alumina-magnesia 68
III.1.3.1 Alumina-, magnesia- and mixed Al$_2$O$_3$-MgO-dispersed catalysts prepared by impregnation and sol-gel methods 68
III.1.3.1.1 X-ray diffraction 69
III.1.3.1.2 General comments on specific surface area and porosity measurements 70
III.1.3.1.3 X-ray photoelectron spectroscopy 73
III.1.3.2 Titania- and zirconia-supported catalysts prepared by impregnation 74
III.1.3.2.1 X-ray diffraction, Raman spectroscopy and S$_{BET}$ measurements 75
III.1.3.2.2 X-ray photoelectron spectroscopy 76

III.1.4 Ni and/or Co molybdates modified by bismuth and/or lanthanides 77
III.1.4.1 Characterization of (Ni,Co)-Ln(Bi)-Mo-catalysts prepared by the citrate method 77
III.1.4.1.1 X-ray diffraction and BET specific surface areas 77
III.1.4.1.2 Raman spectroscopy 80
III.1.4.2 Characterization of (Ni,Co)-Ln(Bi)-Mo-Si (1:1:2.5:20) prepared by the sol-gel method 82
III.1.4.2.1 X-ray diffraction and BET specific surface areas 82
III.1.4.2.2 X-ray photoelectron spectroscopy 82
III.1.4.2.3 Raman spectroscopy 83
III.1.4.3 Characterization of Ni-Co-Ln(Bi)-Mo-Si (1:1:1:2.5:20) and Ni-Co-Ln-Ln'(Bi)-Mo-Si (1:1:1:2.5:20) prepared by the sol-gel method 83
III.1.4.3.1 X-ray diffraction and specific surface areas 83
III.1.4.4 Discussion 84
III.1.4.4.1 Stabilization of the β-MMoO$_4$ (M = Ni or Co) by incorporation of lanthanide ions and formation of quaternary phases 84
III.1.4.4.2 Overall picture of the multiphase catalysts 84

III.1.5 Conclusions 87

III.2 Overview of the catalytic results 88
III.2.1 Introduction 88
III.2.2 Silica-dispersed solid solutions of Ni and Co molybdates 90
III.2.2.1 Influence of Ni/Co composition 90
III.2.2.2 Influence of Silica loading 92
III.2.2.3 Comparison between catalysts prepared by impregnation and sol-gel method 93
III.2.2.4 Comparison with the catalysts from the literature 94
III.2.2.5 On the catalytic performances of solid solutions of Ni and Co molybdates supported on silica 96
III.2.3 Catalytic behaviour of alumina-supported Ni and Co molybdates 101
III.2.4 Catalytic behaviour magnesia-supported Ni and Co molybdates 102
III.2.5 Catalytic behaviour of Al₂O₃-MgO-supported Ni and Co molybdates 104
III.2.6 Catalytic behaviour of TiO₂-supported Ni and Co molybdates 105
III.2.7 Catalytic behaviour of ZrO₂-supported Ni and Co molybdates 106
III.2.8 Selectivity-conversion relationships 106
III.2.9 General comments and remarks on the role of the support 108
III.2.10 Influence of the acid-base properties 108
III.2.11 Discussion of the catalytic results of Al₂O₃-, MgO- and Al₂O₃-MgO-supported Ni and Co molybdates prepared by impregnation and sol-gel method 111
III.2.12 Discussion of the catalytic results of TiO₂- and ZrO₂-supported Ni and Co molybdates prepared by impregnation method 114
III.2.13 Catalytic performances of Ni and Co molybdates modified by lanthanides 115
III.2.13.1 Catalytic performances of “non-stoichiometric” Ni-Co-Ln(Bi)-Mo-Si (1:1:1:2.5:20) 115
III.2.13.2 Catalytic performances of “non-stoichiometric” Ni-Co-M-M'(Bi)-Mo-Si (1:1:1:1:2.5:20) 116
III.2.14 On the catalytic behaviour of modified mixed Ni and Co molybdates (Ni:Co:Ln(Bi):Mo:Si, 1:1:1:2.5:20) 120
III.2.14.1 Ionization Energy 120
III.2.14.2 Absolute Hardness 122
III.2.14.3 Redox Potential 123
III.2.15 On the catalytic behaviour of multi-modified mixed Ni and Co molybdates (Ni:Co:Ln:Ln’:Mo:Si, 1:1:1:1:2.5:20) 125
III.2.15.1 Ionization Energy 125
III.2.15.2 Absolute Hardness 128
III.2.15.3 Redox Potential 130
III.2.16 Conclusions 132
Chapter IV: Conclusions and Perspectives

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV.1</td>
<td>Conclusions</td>
<td>136</td>
</tr>
<tr>
<td>IV.2</td>
<td>Perspectives</td>
<td>140</td>
</tr>
</tbody>
</table>

Appendix I: Literature Survey and Theoretical Concepts

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.1</td>
<td>Major classes of catalysts for propane ODH</td>
<td>146</td>
</tr>
<tr>
<td>I.1.1</td>
<td>Vanadium based catalysts</td>
<td>146</td>
</tr>
<tr>
<td>I.1.1.1</td>
<td>V-Mg-O and VOx/Al2O3 catalysts</td>
<td>146</td>
</tr>
<tr>
<td>I.1.1.2</td>
<td>ZrO2-supported VOx catalysts</td>
<td>147</td>
</tr>
<tr>
<td>I.1.1.3</td>
<td>Other supported Vanadium catalysts</td>
<td>147</td>
</tr>
<tr>
<td>I.1.2</td>
<td>Niobium-based catalysts</td>
<td>148</td>
</tr>
<tr>
<td>I.1.2.1</td>
<td>Nb-V oxide catalysts</td>
<td>148</td>
</tr>
<tr>
<td>I.1.2.1.1</td>
<td>Structural characterizations</td>
<td>148</td>
</tr>
<tr>
<td>I.1.2.1.2</td>
<td>Preparation methods</td>
<td>150</td>
</tr>
<tr>
<td>I.1.2.2</td>
<td>Nb-V-Mo catalysts</td>
<td>150</td>
</tr>
<tr>
<td>I.1.2.2.1</td>
<td>Major crystalline phases</td>
<td>150</td>
</tr>
<tr>
<td>I.1.2.2.2</td>
<td>Catalytic activity</td>
<td>151</td>
</tr>
<tr>
<td>I.1.2.3</td>
<td>Nb-V-Sb catalysts</td>
<td>151</td>
</tr>
<tr>
<td>I.2</td>
<td>Sol-gel method and its potentiality in catalysis</td>
<td>152</td>
</tr>
<tr>
<td>I.2.1</td>
<td>General principles</td>
<td>152</td>
</tr>
<tr>
<td>I.2.2</td>
<td>Application of the sol-gel method to the preparation</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>of supported molybdate catalysts</td>
<td></td>
</tr>
<tr>
<td>I.2.3</td>
<td>Sol-gel preparation of mixed supports</td>
<td>156</td>
</tr>
<tr>
<td>I.3</td>
<td>Overview of the basic physico-chemical concepts used</td>
<td>156</td>
</tr>
<tr>
<td>I.3.1</td>
<td>Ionization energy (IE)</td>
<td>156</td>
</tr>
<tr>
<td>I.3.2</td>
<td>Standard enthalpy of oxide formation</td>
<td>157</td>
</tr>
<tr>
<td>I.3.3</td>
<td>Acido-basicity: the absolute hardness</td>
<td>158</td>
</tr>
<tr>
<td>I.3.4</td>
<td>Acido-basicity: the optical basicity of catalyst oxygen</td>
<td>159</td>
</tr>
<tr>
<td>I.4</td>
<td>Basic concepts on the role of the acido-basicity in</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>catalytic oxidation</td>
<td></td>
</tr>
</tbody>
</table>

Appendix II: Experimental

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>III.1</td>
<td>Characterization of bulk Ni, Co and mixed Ni-Co molybdates prepared by the citrate method</td>
<td>172</td>
</tr>
<tr>
<td>III.1.1</td>
<td>Thermal behaviour</td>
<td>172</td>
</tr>
</tbody>
</table>
Appendix IV: Ni and/or Co Molybdates Modified by Bismuth and/or Lanthanides: Characterization and Catalytic Activity in Propane ODH

IV.1 Characterization of M-Ln(Bi)-Mo-catalysts prepared by the citrate method
IV.1.1 Thermal behaviour
IV.1.2 X-ray photoelectron spectroscopy
IV.1.3 Raman spectroscopy
IV.1.4 UV-visible diffuse reflectance spectroscopy

IV.2 Characterization of M-Ln(Bi)-Mo-Si (1:1:2.5:20) prepared by the sol-gel method
IV.2.1 Thermal behaviour
IV.2.2 X-ray diffraction and BET specific surface areas
IV.2.3 X-ray photoelectron spectroscopy
IV.2.4 Raman spectroscopy

IV.3 Characterization of Ni-Co-Ln(Bi)-Mo-Si (1:1:1:2.5:20) and Ni-Co-Ln-Ln’(Bi)-Mo-Si (1:1:1:1:2.5:20) prepared by the sol-gel method
IV.3.1 Thermal behaviour
IV.3.2 X-ray diffraction and specific surface areas
IV.3.3 Raman spectroscopy and X-ray photoelectron spectroscopy

IV.4 Catalytic Results
Contents

IV.4.1 Catalytic performances of “stoichiometric” M-Ln(Bi)-Mo-Si (M= Ni, Co) (1:1:2.5:20) 209
IV.4.2 Catalytic performances of “non-stoichiometric” Ni-Co-Ln(Bi)-Mo-Si (1:1:1:2.5:20) 212
IV.4.3 Catalytic performances of “non stoichiometric” Ni-Co-M-M’ (Bi)-Mo-Si (1:1:1:2.5:20) 213

IV.5 Characterization of used catalysts 216
IV.5.1 X-ray diffraction 216
IV.5.2 X-ray photoelectron spectroscopy 216

IV.6 On the catalytic performances of Ni and Co molybdates modified by bismuth and/or lanthanides 219

IV.6.1 Explanation of the catalytic behaviour of modified Ni or Co molybdates (Ni(Co):Ln(Bi)Mo:Si, 1:1:2.5:20) by the hypothesis of a single multicomponent phase 219
IV.6.2 On the catalytic behaviour of modified mixed Ni and Co molybdates (Ni:Co:Ln(Bi)Mo:Si, 1:1:1:2.5:20) 221
IV.6.2.1 Heat of formation of the oxides 222
IV.6.2.2 Absolute ardness 224
IV.6.2.3 Redox Potential 224
IV.6.3 On the catalytic behaviour of multi-modified mixed Ni and Co molybdates (Ni:Co:Ln:Ln’:Mo:Si, 1:1:1:1:2.5:20) 225
IV.6.3.1 Ionization Energy 226
IV.6.3.2 Redox Potential 226

Appendix V: Preparation and Catalytic Activity of Ni-Co Molybdates Supported on Alumina, Magnesia, Titania, Zirconia and Mixed Alumina-Magnesia 229

V.1 Alumina-, magnesia- and mixed Al₂O₃-MgO-dispersed catalysts prepared by impregnation and sol-gel methods 230
V.1.1 Characterization of the pure supports 230
V.1.2 Thermal behaviour of all sol-gel precursors 231
V.1.3 X-ray diffraction and Raman spectroscopy 233
V.1.4 Specific surface area and porosity measurements 235
V.1.5 X-Ray photoelectron spectroscopy 235

V.2 Titania- and zirconia-supported catalysts prepared by impregnation 238
V.2.1 Characterization of the pure supports 238
V.2.2 X-ray diffraction, Raman spectroscopy and S_BET measurements 238
V.2.3 X-ray photoelectron spectroscopy 241

V.3 Catalytic performances 242
V.3.1 Catalytic behavior of alumina-supported Ni and Co molybdates 242
V.3.2 Catalytic behavior of magnesia-supported Ni and Co molybdates 242
V.3.3 Catalytic behavior of Al₂O₃-MgO-supported Ni and
Contents

Co molybdates 245

V.3.4 Catalytic behavior of TiO$_2$-supported Ni and Co molybdates 247

V.3.5 Catalytic behavior of ZrO$_2$-supported Ni and Co molybdates 247

V.4 Evaluation of the catalytic performances of Ni:Co:Mo:Supp with respect to the amount of Mg included in the formulation 249

V.5 Al$_2$O$_3$-, MgO- and Al$_2$O$_3$-MgO-supported Ni and Co molybdates prepared by impregnation and sol-gel method 250

V.6 TiO$_2$ and ZrO$_2$-supported Ni and Co molybdates prepared by impregnation 253

Publications and Communications at International Meetings 255

References 257