This thesis studies Production Scheduling in a multistage hybrid flowshop facility. It first states the general Production Planning and Scheduling problem and highlights some drawbacks of classical solutions. A theoretical decomposition-based approach is introduced whose main issue is to overcome non-efficient capacity utilization. By using Branch and Bound methods, an in-depth analysis of the scheduling part of the system is then carried out throughout the study and development of upper and lower bounds as well as branching schemes. Already-existing and new heuristics are presented and compared on different shop floor configurations. Five different heuristic approaches are studied. By scheduling the HFS one stage at a time the first approach uses different stage sequencing orders. The second and third approaches are mainly list heuristics. The second approach uses ideas derived from the multistage classical flowshop with a single machine per stage, while the third approach uses clas...
SCHEDULING THE HYBRID FLOWSHOP: BRANCH AND BOUND ALGORITHMS

Ph.D. Thesis

Omar Moursli

Jury Members:

Professor A. ARTIBA
Facultés Universitaires Catholiques de Mons (FUCAM), BELGIUM
Professor S. E. ELMAGHRABY
North Carolina Sate University (NCSU), USA
Professor P. CHEVALIER
Professor C. DELPORTE
Professor M. MARCHAND, President of the jury
Professor Y. Pochet, Supervisor
Institut d’Administration et de Gestion (IAG), BELGIUM

February 1999
Cet ouvrage constitue le 329ᵉ volume de la nouvelle série des publications (thèses) de la Faculté des Sciences économiques, sociales et politiques de l'Université catholique de Louvain dont la liste peut être consultée sur le site WEB:
http://www.espo.ucl.ac.be/doctorats.espo.html
To my family

and to Anne-Catherine
Abstract

This thesis studies Production Scheduling in a multistage hybrid flowshop facility. It first states the general Production Planning and Scheduling problem and highlights some drawbacks of classical solutions. A theoretical decomposition-based approach is introduced whose main issue is to overcome non-efficient capacity utilization. By using Branch and Bound methods, an in-depth analysis of the scheduling part of the system is then carried out throughout the study and development of upper and lower bounds as well as branching schemes.

Already-existing and new heuristics are presented and compared on different shop floor configurations. Five different heuristic approaches are studied. By scheduling the HFS one stage at a time the first approach uses different stage sequencing orders. The second and third approaches are mainly list heuristics. The second approach uses ideas derived from the multistage classical flowshop with a single machine per stage, while the third approach uses classical dispatching priority rules. The fourth and fifth approaches, respectively, use random scheduling and local search techniques. Statistical analysis is carried out in order to compare the heuristics and to select the best of them for each shop configuration.

Already-existing and new lower bounds on the single stage subproblem are also presented and compared. Three new lower bounds are developed: a dual heuristic based bound, a partially preemptive bound and a heuristic for the so-called subset bound. Some of these lower bounds use a network flow algorithm. A new version of the “Preflow Push” algorithm which runs faster than the original one is presented. The best lower bounds are selected based on numerical tests.

Two branch and bound algorithms are presented, an improved version of the sequence enumeration method and a generalization of the so-called interval branching method, along with several bounding strategies. Based on the upper and lower bound studies, several branch and bound algorithms are presented and compared using numerical tests on different shop floor configurations.

Eventually, an Object Model for Scheduling Algorithm Implementations (OMSAI), that has been used for the computer implementation of the developed algorithms, is presented.
Acknowledgments

This dissertation could not have been achieved without the help of many people. I am deeply grateful to all of them, and in particular to:

Professor Yves Pochet for his encouragement and friendship throughout these years, and for having made me discover Combinatorial Optimization;

Professor Salah E. Elmaghraby, for his guidance, encouragement and the precious time he spent reviewing some of my papers and this thesis;

Professor Abdelhakim Artiba for his friendship, support and for having introduced me to production management research;

All members of my committee (Professors Philippe Chevalier, Christian Delporte and Maurice Marchand) for the precious time they spent reading this thesis and for their fruitful comments.
GENERAL TABLE OF CONTENTS

INTRODUCTION .. i

CHAPTER I: PRODUCTION PLANNING AND SCHEDULING OF THE HYBRID FLOWSHOP 1

CHAPTER II: THE HYBRID FLOWSHOP SCHEDULING PROBLEM 27

CHAPTER III: UPPER BOUNDS ... 53

CHAPTER IV: LOWER BOUNDS .. 95

CHAPTER V: BRANCH AND BOUND METHODS .. 135

CONCLUSION ... 175

APPENDIX: AN OBJECT MODEL FOR SCHEDULING ALGORITHM IMPLEMENTATIONS 1