In humans, nutrient deprivation and extreme endurance exercise both activate autophagy. We hypothesized that cumulating fasting and cycling exercise would potentiate activation of autophagy in skeletal muscle. Well-trained athletes were divided into control (n = 8), low-intensity (LI, n = 8), and high-intensity (HI, n = 7) exercise groups and submitted to fed and fasted sessions. Muscle biopsy samples were obtained from the vastus lateralis before, at the end, and 1 h after a 2 h LI or HI bout of exercise. Phosphorylation of ULK1(Ser317) was higher after exercise (P < 0.001). In both the fed and the fasted states, LC3bII protein level and LC3bII/I were decreased after LI and HI (P < 0.05), while p62/SQSTM1 was decreased only 1 h after HI (P < 0.05), indicating an increased autophagic flux after HI. The autophagic transcriptional program was also activated, as evidenced by the increased level of LC3b, p62/SQSTM1, GabarapL1, and Cathepsin L mRNAs observed after HI but not after LI. The increased autophagic flux after HI exercise could be due to increased AMP-activated protein kinase α (AMPKα) activity, as both AMPKα(Thr172) and ACC(Ser79) had a higher phosphorylation state after HI (P < 0.001). In summary, the most effective strategy to activate autophagy in human skeletal muscle seems to rely on exercise intensity more than diet. -Schwalm, C., Jamart, C., Benoit, N., Naslain, D., Prémont, C., Prévet, J., Van Thienen, R., Deldicque, L., Francaux, M. Activation of autophagy in human skeletal muscle is dependent on exercise intensity and AMPK activation.

CITE THIS VERSION

Legends to supplementary figures

Supplementary figure S1. Representative western blots for A) AktSer473 and AktTotal; B) AktThr308 and AktTotal; C) 4E-BP1Thr37/46 and 4E-BP1Total; D) ULK1Ser757 and ULK1Total; E) AMPKThr172 and AMPKTotal; F) ACCSer79 and ACCTotal; G) ULK1Ser317 and ULK1Total; H) LC3b I and LC3b II; I) p62/SQSTM1 and GAPDH.

Supplementary figure S2. Changes in A) ULK1Total, B) FoxO1/3aThr24/32 and C) FoxO3aTotal in response to concentric endurance exercise as a function of intensity, nutritional state and time. Data were collected at baseline, before, immediately after and 1 h after cycling exercise at low (55 % VO2 peak, LI) or high intensity (70 % VO2 peak, HI) or in control conditions (CTRL). D) Representative western blots for FoxO1/3aThr24/32 and FoxO3aTotal. Values are presented as the means ± SEM. $P < 0.05, $$P < 0.01$ vs control group (exercise effect); ¶$P < 0.05$ vs low intensity (intensity effect); *$P < 0.05, **P < 0.01$ vs fed (nutrition effect); #*$P < 0.05, ###$P < 0.001$ vs pre-exercise (time effect).