"Assessing pesticide leaching at the regional scale: a case study for atrazine in the Dyle catchment/

Leterme, Bertrand

ABSTRACT

The overall objective of this thesis is to better understand and assess pesticide leaching at the regional scale, using both the analysis of monitoring data and spatially distributed modelling. Atrazine contamination of the Brusselian aquifer (central Belgium) is poorly understood. Considerable uncertainty surrounds whether the pollution is agricultural or non-agricultural in origin. The spatial and temporal covariance of atrazine concentrations was studied by fitting semivariogram models to monitoring data. Correlation ranges were found to be 600 metres and 600-700 days. A non-parametric one-way ANOVA found a strong relationship between mean concentrations and land use, whilst other environmental variables were found to be less important. Higher levels of pollution were detected in areas dominated by urban land use suggesting that atrazine residues in groundwater resulted from non-agricultural applications. Modelling pesticide leaching at the regional scale (Dyle catchment) was used to assess groundwater vulnerability. Different approaches to process soil information were tested with both a linear (modified Attenuation Factor) and a non-linear (GeoPEARL) leaching model. The CI (calculate first, interpolate later) and IC (interpolate first, calculate later) approaches were identical for the linear model, but differences in the amount of leaching were found for the non-linear model. The CI approach would be expected to give better results than IC, but the CA (calculate alone) approach is probably the best method if no spatial output is required. Finally, a methodology was ...

CITE THIS VERSION

Leterme, Bertrand. Assessing pesticide leaching at the regional scale: a case study for atrazine in the Dyle catchment/. Prom. : Vanclooster, Marnik ; Rounsevell, Mark http://hdl.handle.net/2078.1/5345

Le dépôt institutionnel DIAL est destiné au dépôt et à la diffusion de documents scientifiques émanant des membres de l'UCLouvain. Toute utilisation de ce document à des fins lucratives ou commerciales est strictement interdite. L'utilisateur s'engage à respecter les droits d'auteur liés à ce document, principalement le droit à l'intégrité de l'œuvre et le droit à la paternité. La politique complète de copyright est disponible sur la page Copyright policy

DIAL is an institutional repository for the deposit and dissemination of scientific documents from UCLouvain members. Usage of this document for profit or commercial purposes is strictly prohibited. User agrees to respect copyright about this document, mainly text integrity and source mention. Full content of copyright policy is available at Copyright policy
List of Figures

2.1 Overview of the main processes governing the environmental fate of pesticides. 21

3.1 Location of the study area in Belgium. 46

3.2 Land use in the Dyle catchment. Sources: SIGEC (1999) and Landsat TM image (1999). The red line shows the location of the hydrogeological section displayed in Figure 3.3. 47

3.3 Hydrogeological section between Louvain-la-Neuve and Wavre. Source: DGRNE (2002). 48

3.4 Soil types in the Dyle catchment (scale 1:20,000). 49

3.5 Soil map with a white mask on non-arable areas. 50

4.1 (a) Location of the Brusselian unconfined sandy aquifer in Belgium. (b) Location of the 97 monitoring stations supplying measurements of atrazine concentration in the Brusselian aquifer. The rectangle delineates the location of Figure 4.2. 55

4.2 Example of spatial declustering weights (the rectangle in Figure 4.1(b) shows its location within the study area). 60

4.3 (a) Spatial and (b) temporal semivariograms of atrazine concentrations in groundwater. Dashed lines show the spherical and exponential (with a nugget effect) models that were fitted to the calculated semi-variances (points). 65
4.4 Influence of the amount of censored data and three different substitution constants (DL/2, DL and zero) on the fit of (a) spatial and (b) temporal correlation ranges using semi-variograms models on a simulated data set. Note that the vertical axes do not start at zero. 67

4.5 (a) Cumulative density function and (b) histogram of the complete set of atrazine concentration data. Dashed line is the null hypothesis of a lognormal distribution. Note the logarithmic scale of x-axes. 69

4.6 (a) Cumulative density function and (b) histogram of the complete set of atrazine concentration data after the application of the spatial and temporal declustering algorithms. Dashed line is the null hypothesis of a lognormal distribution. Note the logarithmic scale of x-axes. 71

4.7 Multiple comparison of mean ranks for (a) arable and (b) urban land use. The horizontal bar gives the confidence interval of the treatment mean rank. 76

5.1 Z at the point resolution (cell size = 2.5). Exponential covariance model with parameters 3 (= sill) and 80 (= range). 82

5.2 Z at the block resolution (cell size = 10), obtained from the spatial aggregation of Figure 5.1. 83

5.3 X_1 at the point resolution (cell size = 2.5), obtained from the linear model inversion (Eq.5.3). 84

5.4 X_{nl} at the point resolution (cell size = 2.5), obtained from the non-linear model inversion (Eq.5.4). 85

5.5 Location of the 50 samples collected in the study area. 85

5.6 Cumulative density functions of Z (point and block supports) and the CA method applied to the linear or non-linear model. Results are identical for both the linear and non-linear models because there is no model error; i.e. the two models give the same output. 90
5.7 Histogram of the 80th percentile of the CA method, calculated using a bootstrap procedure ($n = 500$).

5.8 Block support of the (a) ‘validation data set’ Z and (b) CI1 approach for both the linear and non-linear models, assuming that the semivariogram of the output variable Z is perfectly known. Results are identical for both the linear and non-linear models because there is no model error; i.e. the two models give the same output.

5.9 (a) Root Mean Square Error (RMSE) and (b) Mean Absolute Error (MAE) for the CI1 approach. Note that the disagreement due to quantity is almost null.

5.10 Cumulative density function and confidence interval (95%) for the output at block resolution of the CI1 approach for both the linear and non-linear models (dashed line), assuming that the semivariogram of the output variable Z is perfectly known. The CDF of the ‘true’ data is displayed by the solid line.

5.11 Spatial correlation range fitted to the point data in the CI2 approach, given as a function of the sample size. The dash-dotted line marks the ‘true’ correlation range ($= 80$) that was used to generate the original data set.

5.12 Block support of the (a) ‘validation data set’ Z and (b) CI2 approach for both the linear and non-linear models, fitting an exponential semivariogram model to a sample of the output variable.

5.13 (a) Root Mean Square Error (RMSE) and (b) Mean Absolute Error (MAE) for the CI2 approach.

5.14 Cumulative density function and confidence interval (95%) for the output at block resolution of the CI2 approach for both the linear and non-linear models (dashed line), fitting an exponential semivariogram model to the output variable. The CDF of the ‘true’ data is displayed by the solid line.
5.15 Block support of the (a) ‘validation data set’ \(Z \) and (b) CI2 approach for both the linear and non-linear models, fitting an exponential semivariogram model to a sample of the output variable, with a different seed number.

5.16 (a) Root Mean Square Error (RMSE) and (b) Mean Absolute Error (MAE) for the CI2 approach with a different seed number.

5.17 Cumulative density function of the median, 5\(^{th}\) and 95\(^{th}\) percentiles of 20 simulations for the IC1 approach at block resolution with the linear model (dashed line), knowing the exact semivariogram model. The CDF of the ‘true’ data is displayed by the solid line.

5.18 Block support of the (a) ‘validation data set’ \(Z \) and (b) IC2 approach for the linear model, fitting an exponential semivariogram model to a sample of the input variable \(X_l \).

5.19 (a) Root Mean Square Error (RMSE) and (b) Mean Absolute Error (MAE) for the IC2 approach with the linear model.

5.20 Covariance function fit to the non-linear transformation of the original covariance function, as described by Eq. (5.13).

5.21 Block support of the (a) IC1 approach for the non-linear model, numerically deriving the covariance function from the original model for each distance class; and (b) CI1 approach, knowing the exact semivariogram model.

5.22 (a) Root Mean Square Error (RMSE) and (b) Mean Absolute Error (MAE) for the IC1 approach with the non-linear model.

5.23 Difference between the CI and IC approaches (CI−IC) for the non-linear model, on the (a) point and (b) block supports.

5.24 Cumulative density function of the 5\(^{th}\) percentile and median of 20 simulations for the IC1 approach at the block resolution with the non-linear model (dashed line), deriving a covariance function from the original model. The 95\(^{th}\) percentile curve is not visible on this plot because it starts from about 1000 on the x-axis and extends over several orders of magnitude. The CDF of the ‘true’ data is displayed by the solid line.
5.25 Block support of the (a) IC1 approach for the non-linear model, numerically deriving the covariance function from the original model for each distance class; and (b) IC2 approach for the non-linear model, fitting an exponential semivariogram model to a sample of the input variable X_{nl}.

6.1 Land use and spatial distribution of the soil profiles in the study area (including a buffer zone of 4 km). Only the soil profiles located on arable land were selected in the Aardewerk database.

6.2 Linear regression with $[\rho_b \times f_{OC}]$ as the dependent variable and f_{OC} as the independent variable. The regression fit is shown with all data (dashed line; $N = 394$ and $R^2 = 0.87$) and without the outlier plotted at $f_{OC} = 0.16$ (solid line; $N = 393$ and $R^2 = 0.97$).

6.3 Maps showing the relative leaching index calculated by the linear AF$_T$ model. (a) CI approach and (b) difference between IC and CI. White areas are non-arable land.

6.4 Multiple resolution budget of components of information based on (a) Root Mean Square Error and (b) Mean Absolute Error. Eq. 5.5 to 5.10 are used to compare the maps of the CI and IC approaches for the AF$_T$ model, as a function of the level of spatial aggregation.

6.5 Maps showing the relative leaching index calculated by the non-linear GeoPEARL model. (a) CI approach and (b) difference between IC and CI. White areas are non-arable land.

6.6 Multiple resolution budget of components of information based on (a) Root Mean Square Error and (b) Mean Absolute Error. Eq. 5.5 to 5.10 are used to compare the maps of the CI and IC approaches for the GeoPEARL model, as a function of the level of spatial aggregation.

6.7 Cumulative density function of relative leaching scores calculated with the AF$_T$ method.
6.8 Cumulative density function of relative leaching scores calculated with the GeoPEARL model. .. 131

7.1 Parameterisation of OM content and texture for the simulation profiles. ... 140

7.2 Organic matter content (%) in the surface horizon. White areas are non-arable land. ... 141

7.3 Average OM content profile observed in the study area and fit to the data from 0.25 m to the bottom of the soil profile. . 142

7.4 Cumulative density functions and lognormal fits of DT50 values for atrazine using site-specific data (squares; Pussemier et al., 1997) or the Dutch national database (circles; Dorgelo, 2006). ... 145

7.5 (a) 80th percentile of the annual average concentrations at 1 m depth for the deterministic GeoPEARL assessment. (b) Maximum simulated values of the 80th percentile of the annual average concentrations of atrazine (\(\mu\text{g}/L\)) at 1 m (Monte Carlo analysis; \(N = 100\) simulations). White areas are non-arable land. ... 149

7.6 Cumulative density functions of the results of the Monte Carlo simulations with \(N = 100\). The vertical dash-dotted line indicates the regulatory limit of 0.1 \(\mu\text{g}/L\). Note that the \(y\)-axis starts at the 80th percentile. .. 151

8.1 (a) 80th percentile of the annual average concentrations of atrazine (\(\mu\text{g}/L\)) at 1 m depth for the deterministic GeoPEARL assessment. (b) Median simulated value of the 80th percentile of the annual average concentrations of atrazine (\(\mu\text{g}/L\)) at 1 m depth, on a total of 150 MC simulations. 168

8.2 Scatter plot of the 80th percentile of the annual average concentrations of atrazine (\(\mu\text{g}/L\)) at 1 m depth: median simulated value in the MC simulations vs. deterministic GeoPEARL assessment. .. 169
8.3 Lower, median and upper cumulative density functions of the results of the Monte Carlo simulations. Note that the y-axis starts at the 70th percentile. 170