"Etude du rôle des feedbacks visuels dans la supervision de l'orthographe grammaticale"

Veys, Emilie

ABSTRACT

Various cognitive control processes are generally assumed to take place in the production of written language. The studies reported in this thesis aimed at assessing the extent to which visual information is involved in such control operations that might underlie the production of number agreement. Sentences with various linguistic characteristics and target agreements were dictated to French speaking university students who were simply asked to write them down. They were required to do this in different conditions according to whether they could see what they were writing or not, and according to whether they were constrained by an additive cognitive load or not. Using a pen tablet allowed us to record and to analyze their writing online. Thanks to different measures based on errors, pauses (with the assumption that long pauses could reflect a pre-graphic control of the agreement), corrections (with the assumption that such corrections could reflect a post-graphic control of the agr...
Chapitre VI :
Processus de contrôle des accords grammaticaux :
quelles mesures pour évaluer leur utilisation ?

6.1. Introduction

Les résultats de l'expérience précédente ont montré que les processus de contrôle de la production des accords grammaticaux sont affectés par la suppression du feedback visuel sur la trace écrite. Nous avons inféré ces conclusions à partir de l'analyse des erreurs produites par les scripteurs. Pour pouvoir aller plus loin dans la compréhension des mécanismes en jeu dans le contrôle des accords grammaticaux, il fallait réfléchir à des moyens méthodologiques plus spécifiques pour identifier l’activité des processus de contrôle chez les scripteurs. Ce sont les hypothèses et la conception théorique de Levelt (1983 ; 1989) qui nous ont guidé sur ce terrain.

Si ces comportements apparaissent dans le décours temporel de la parole, nous avons fait l’hypothèse qu’il devait être possible de mettre en évidence des comportements similaires dans le décours temporel de l’écriture. Nous avons donc réfléchi à des moyens d’identifier des comportements comparables aux blocages et aux autocorrections de la parole dans les productions écrites au
niveau des accords grammaticaux. L'enregistrement on-line de l'écriture à l'aide d'une tablette graphique et d'un logiciel de capture de l'écriture est apparu comme la solution la plus adéquate pour obtenir des informations précises sur le décours temporel de l'écriture. Techniquement, un enregistrement on-line de l'activité d'écriture ne pose pas de difficulté majeure, mais encore fallait-il déterminer quels indices comportementaux pouvaient être utilisés pour repérer les processus de contrôle. En plus des erreurs d'accord « résiduelles » (i.e. les erreurs qui restent observables une fois la transcription terminée) qui sont habituellement utilisées dans les études sur l'accord grammatical, la possibilité de revoir et d'analyser les productions écrites nous a permis d'évaluer la vitesse d'écriture et de définir trois autres mesures destinées à mettre en évidence les contrôles des accords. Il s'agit :

- des pauses qui apparaissent avant ou pendant la transcription des accords et qui traduisent l'utilisation d’un contrôle pré-graphique de l’accord (cf. sous-chapitre 6.3 ci-dessous) ;
- des erreurs corrigées après avoir été transcrêtes qui révèlent des contrôles post-graphiques (cf. sous-chapitre 6.4 ci-dessous);
- des erreurs commises (qu’elles aient ensuite été corrigées ou non) qui peuvent être plus nombreuses que les erreurs résiduelles si des corrections post-graphiques ont eu lieu.

6.2. Le matériel d’enregistrement de l’écriture

Nous avons utilisé une tablette graphique et un logiciel de capture de l’écriture pour obtenir un enregistrement des productions écrites des participants de nos études. La tablette graphique était une tablette Wacom© Intuos 3 de format A4. Normalement, la tablette fonctionne avec un stylo à pointe sèche. Elle est reliée à un ordinateur et fonctionne en transmettant continuellement la position actuelle du stylo à sa surface. Pour les expériences décrites dans les chapitres 7 et 8, nous avons utilisé le stylo à pointe sèche pour toutes les conditions d'écriture dans lesquelles nous souhaitions supprimer la trace écrite. Pour les conditions expérimentales dans lesquelles il était nécessaire que les participants puissent voir ce qu'ils écrivaient, nous avons utilisé un second stylo avec une pointe à encre. Pour protéger la surface de la tablette et pour délimiter
lairement la surface sur laquelle les participants devaient écrire, nous avons placé une feuille sur la tablette avec quatre lignes correspondant à la zone d’écriture. Lorsque les participants écrivaient avec le stylo à encre, ils disposaient d’un ensemble de feuilles blanches avec les quatre lignes, collées entre elles et fixées à la tablette par une seul côté. Les participants avaient pour consigne de tourner la page sur laquelle ils venaient d’écrire lorsqu’ils avaient terminé. De cette manière ils disposaient d’une page vierge pour chaque nouvel item sans qu’il soit nécessaire d’enlever la feuille utilisée et d’en fixer une nouvelle après chaque item, ce qui aurait considérablement allongé les temps de passation.

Le logiciel d’enregistrement de l’écriture que nous avons utilisé est le logiciel ‘Capturé!’, développé par la société canadienne Microbe, qui propose des solutions informatiques en éducation, en linguistique et en psychologie. Il s’agit d’un logiciel de capture d’images qui enregistre régulièrement (toutes les 80, 60 ou 20 millisecondes) une image de l’écriture produite dans son champ d’enregistrement. Lorsqu’on fait ensuite défiler la séquence des images, on obtient la progression de l’écriture par tranche de 20 à 80 millisecondes selon la modalité choisie. Enregistrer autant d’images à la seconde impose que l’ordinateur que l’on utilise dispose d’un processeur et d’une mémoire vive suffisamment performants ainsi que d’une capacité de stockage relativement importante.

‘Capturé!’ est assez simple d’utilisation. Dans l’option d’enregistrement de données, il suffit d’encoder le nom du fichier dans lequel les images de la séquence d’écriture seront enregistrées et de sélectionner la fréquence d’enregistrement (20, 60 ou 80 millisecondes). Une fois ces informations validées, une touche permet de démarrer l’enregistrement et une autre de l’arrêter lorsque le participant a terminé la transcription. Dans l’option d’analyse des données enregistrées, le logiciel donne la possibilité de faire défiler la séquence d’images à différentes vitesses vers l’avant ou vers l’arrière et de s’arrêter sur une des images. Comme on peut le voir sur la figure XI, le temps correspondant en millisecondes est systématiquement affiché et peut être édité.
On détermine la durée en calculant simplement la différence entre les deux valeurs temporelles correspondant à la zone d’écriture qui nous intéresse. Par ailleurs, lorsqu’il y a des autocorrections, l’enregistrement permet d’une part, de les mettre en évidence même en l’absence de rature indiquant qu’il y a eu une correction et d’autre part, d’identifier clairement ce que le scripteur avait écrit avant de corriger et donc ce qu’il a corrigé exactement.

6.3. **Identifier les processus de contrôle pré-graphiques à travers les comportements de blocages au cours de la transcription**

Si les scripteurs ont recours à des processus de contrôle pré-graphiques, nous avons fait l’hypothèse que cela se traduirait par des pauses juste avant ou pendant la production des flexions grammaticales. Nous postulons qu’une pause de 250 ms ou plus, observée juste avant ou pendant la transcription graphique d’une flexion grammaticale indique qu’un traitement cognitif coûteux est en cours et que ce traitement porte sur l’accord grammatical à produire. Mesurer la fréquence des pauses de ce type dans les productions orthographiques des adultes nous permettra d’évaluer l’utilisation des
processus de contrôle pré-graphique des accords. Ensuite, en comparant la fréquence des pauses dans différentes conditions expérimentales, nous pourrons évaluer l'impact de différentes variables sur l'utilisation des processus de contrôle pré-graphiques.

Le seuil de 250 ms est une limite arbitraire que nous avons fixée à cette valeur pour deux raisons. La première, c'est que le matériel informatique que nous avons utilisé lors de la première expérience avec la tablette (cf. chapitre 7) ne permettait pas d'enregistrer en dessous de 80 ms. Pour une question de fiabilité, il nous semblait que nous ne pouvions pas fixer le seuil en dessous du triple de la fréquence d'enregistrement. La seconde raison est qu'il s'agit du seuil utilisé par Zozzor & Pioliat (1998) dans leur étude des pauses associées à la production des accords grammaticaux, qui faisait en quelque sorte jurisprudence en la matière.

Dans les études qui seront présentées ultérieurement, nous avons évalué la fréquence des pauses égales ou supérieures à 250 ms selon la formule suivante :

\[
P \text{ pauses} = \frac{N \text{ pauses}}{N \text{ cibles}} \times 100
\]

Où

- \(P \text{ pauses} \) = le pourcentage d'accords pour lesquels le scripteur a marqué une pause supérieure ou égale à 250 millisecondes ;
- \(N \text{ pauses} \) = le nombre d'accords cibles pour lesquels on observe une pause ;
- \(N \text{ cibles} \) = le nombre de mots porteurs d'un accord cible qui ont été transcrits.

Dans des tâches de dictées de phrases telles que celles que nous avons utilisées, on ne pouvait se contenter de prendre comme dénominateur le nombre d'accords cibles dictés. En effet, ce nombre risquait d'être supérieur au nombre d'accords que les participants ont effectivement retranscrits et donc de sous-estimer la proportion. Pour exclure de la proportion de pauses les mots cibles dictés mais non rappelés ou transformés par les participants, il était donc indispensable de calculer cette proportion en fonction du nombre de mots porteurs d'un accord cible effectivement produits par chaque participant.
Bien qu’il soit délicat d’illustrer en une image l’analyse réalisée sur un mouvement d’écriture, la figure XII tente de montrer, avec la même phrase que celle visible dans la figure XI, la manière dont les pauses sont identifiées. La figure XII comporte deux séquences de dix captures d’images telles que le logiciel ‘Capturé!’ les enregistre.

Figure XII : Exemple de deux séquences de 10 enregistrements successifs des productions écrites par le logiciel ‘Capturé!’
A gauche se trouve le temps écoulé entre le début de l’enregistrement et le moment de capture de l’image. A droite, on peut voir l’image de la production écrite enregistrée au moment correspondant. Le trait progresse ainsi de ligne en ligne par tranche de 20 ms environ. La première séquence de 10 images montre la formation progressive de la seconde partie du « e » du mot « fermet ». A la fin de la formation de la lettre, on n’observe plus aucun mouvement d’écriture pendant 359 ms avant que le mouvement ne se poursuive. Ce délai pendant lequel toutes les captures d’images sont identiques correspond à une pause et est matérialisé par les trois points verticaux. Ensuite, la deuxième séquence de dix images montre la poursuite du mouvement d’écriture avec le début de la formation de la lettre n. Les différences entre deux images sont parfois très tenues, surtout pour les enregistrements à une fréquence de 20 ms. Lorsqu’on « lit » les images avec le logiciel, la succession des images au même emplacement dans la fenêtre de visualisation donne l’impression de repasser le film de l’écriture, même au ralenti. De cette manière, les différences même faibles sont perceptibles. Par contre, sur une image comme celle de la figure XII où les enregistrements successifs de la phrase sont placés en dessous de l’autre, ces différences sont parfois très difficiles à identifier. C’est pourquoi nous avons placé sur l’image une ligne de repère verticale et deux agrandissements.

6.4. Identifier les processus de contrôle post-graphiques à travers les comportements d’autocorrection au cours de la transcription

Pour évaluer les processus de contrôle post-graphiques, nous avons utilisé les autocorrections des erreurs. Si les scripteurs corrigen une erreur d’accord, on peut postuler qu’ils ont dû exercer un contrôle sur cet accord après l’avoir transcrit. Grâce à l’utilisation des données temporelles enregistrées avec la tablette graphique, nous avons tenté de quantifier l’utilisation des processus de contrôle post-graphiques sur les accords grammaticaux. Comme pour les pauses, l’évaluation de la fréquence des autocorrections d’erreurs nous permettra de mettre en évidence l’existence de contrôles dans l’activité de production écrite et également de comparer leur fréquence dans différentes conditions expérimentales.
Dans les études qui seront présentées ultérieurement, nous avons évalué la fréquence des autocorrections selon la formule suivante :

\[
P \text{corrections} = \frac{\text{N corrections}}{\text{N erreurs}} \times 100
\]

Où

\begin{itemize}
 \item P corrections = le pourcentage d'erreurs d'accord que le scripteur a corrigées ;
 \item N corrections = le nombre d'erreurs d'accord cibles pour lesquels on observe une autocorrection ;
 \item N erreurs = le nombre d'accords cibles transcrits avec une erreur.
\end{itemize}

6.5. Limites de ces mesures

Il est évident que l'évaluation par les pauses ne permet pas d'identifier l'ensemble des traitements de contrôle pré-graphiques que les scripteurs peuvent produire. En effet, elle ne permet d'identifier l'activation des processus de contrôle que lorsqu'ils apparaissent au moment de la transcription graphique des flexions grammaticales. On peut postuler qu'il s'agit d'un moment privilégié pour le faire mais il est probable que les scripteurs peuvent mobiliser les processus de contrôle à d'autres moments et même parallèlement à des transcriptions graphiques plus précoces. De plus le seuil de 250 ms que nous avons fixé est totalement arbitraire et ne permet probablement pas d'identifier tous les cas d'activation des processus de contrôle pré-graphiques. Il est donc souhaitable de réfléchir à des moyens d'affiner la mesure des contrôles pré-graphiques. Nous aurons d'ailleurs l'occasion de revenir ultérieurement sur ce sujet et de formuler des propositions pour améliorer la sensibilité de la mesure.

Par ailleurs, les autocorrections ne constituent pas non plus une évaluation exhaustive dans la mesure où elles ne permettent pas d'identifier le recours aux processus de contrôle post-graphiques s'ils ne donnent pas lieu à une correction, soit parce qu'il n'y avait pas d'erreur, soit parce que le processus a échoué et que l'erreur n'est pas corrigée.
Chapitre VII :
Contrôle des accords grammaticaux : plusieurs sources d’informations perceptives sont-elles impliquées ?

7.1. Introduction

En mettant cette étude exploratoire au point, notre objectif était double. Premièrement nous voulions déterminer si les deux indices de l’utilisation des processus de contrôle des accords définis au chapitre précédent (i.e. les pauses et les autocorrections) s’observent effectivement dans les productions grammaticales des scripteurs. Notre deuxième objectif était d’évaluer le rôle d’un éventail plus large d’informations perceptives que celles issues de la trace écrite comme feedback pour contrôler la production des accords grammaticaux (i.e. la perception visuelle et la perception kinesthésique du mouvement d’écriture).

Grâce aux données récoltées avec la tablette graphique et le logiciel de capture de l’écriture manuscrite comme décrit dans le chapitre 6, nous avons tenté de mettre en évidence des pauses et des autocorrections dans les productions des participants. Si, comme nous en faisons l’hypothèse, de tels comportements sont identifiables dans les productions orthographiques des adultes, nous disposerons d’une preuve supplémentaire que les scripteurs contrôlent les accords grammaticaux qu’ils produisent. De plus, en comparant ces données avec les taux d’erreurs nous pourront formuler des hypothèses plus précises concernant les relations qu’il pourrait y avoir entre de ces contrôles et le degré d’exactitude de l’orthographe grammaticale.

Par ailleurs, si les mesures que nous avons définies dans le chapitre précédent s’avèrent pertinentes, elles nous permettront ensuite de comparer l’occurrence des pauses et des autocorrections (i.e. des processus de contrôle) dans les différentes conditions de suppression des informations perceptives de l’écriture
et éventuellement de mettre en évidence des différences entre ces conditions. Conformément aux résultats obtenus dans l'expérience précédente (cf. chapitre 5), nous faisons l'hypothèse que la suppression des feedbacks perceptifs affectera le fonctionnement du contrôle des accords grammaticaux. Dans ce cas, les scripteurs devraient exercer moins de contrôle sur leurs productions et par conséquent commettre plus d'erreurs lorsque qu'une ou plusieurs sources d'informations perceptives sont supprimées qu’en situation d’écriture ordinaire.

Dans leur modèle de la révision, Butterfield & al. (1996) insistent sur le fait que même si elle se manifeste dans le texte réel, la révision est avant tout une activité mentale. Ce modèle de même que le modèle plus récent de Hacker & al. (2009) prévoient explicitement que le scripteur tient continuellement à jour une représentation mentale du texte qu'il est en train de produire et des activités mentales qui y sont associées. Malgré l'importance que les auteurs accordent à cette représentation mentale dans le mécanisme de contrôle des productions écrites, ils ne nient pas le rôle du texte réel. La trace écrite (et la lecture) reste un stimulus (et un processus) important parce qu'il permet aux scripteurs de compléter et de mettre à jour la représentation mentale de ce qu'ils transcrivent. C'est ensuite sur la base de cette représentation que les processus de détection, d'évaluation et de correction des erreurs (i.e. les processus de monitoring et de contrôle) peuvent s'effectuer. Si la trace écrite est certainement une source perceptive importante pour alimenter cette représentation interne, on peut penser que d'autres informations perceptives sont également susceptibles d'être utilisées. Au moins deux sources d'informations perceptives distinctes des informations visuelles issues de la trace écrite sont disponibles lorsqu'on écrit : la perception visuelle des mouvements d'écriture décrits par la main et la pointe du stylo d'une part, et la perception cinesthésique issue de l'exécution motrice de l'écriture d'autre part. Nous faisons l'hypothèse que, comme la trace écrite, ces différentes informations perceptives peuvent constituer des feedbacks utiles au contrôle des accords grammaticaux.

Par ailleurs, comme le suggèrent Chesnet & Alamargot (2005), les scripteurs privés des informations visuelles habituellement disponibles sont susceptibles de mettre en place des mécanismes de compensation. De tels mécanismes ont d'ailleurs été mis en évidence notamment dans la production du geste graphique (Smyth, 1989 ; Van Doorn & Keuss, 1992) et de la rédaction de texte
(Olive & Piolat, 2002). De ce point de vue, le rôle de ces autres sources d'informations pourrait être d'autant plus important que la trace écrite est supprimée, parce qu'elles pourraient permettre au scripteur de suppléer au moins partiellement la perte des informations visuelles sur la trace écrite. Si tel est le cas, la suppression conjointe de plusieurs feedbacks devrait induire une augmentation plus importante des erreurs d'accord que quand les feedbacks sont supprimés de manière isolée.

7.2. Méthodologie

Participants
26 étudiants francophones inscrits en 2ème année de psychologie à l'Université Catholique de Louvain ont participé à l'étude. Un des participants a dû être retiré de l'échantillon parce qu'il présentait un profil de performance atypique par rapport au reste de l'échantillon, avec nombre anormalement élevé d'erreurs d'orthographe grammaticale (correspondant au percentile 98) dans la condition d'écriture ordinaire. Notre échantillon se compose donc de 25 participants dont 17 filles et 8 garçons âgés de 18 à 22 ans.

Matériel
Classiquement, les études sur l'accord grammatical en français utilisent des phrases avec une structure syntaxique « Nom1 de Nom2 Verbe ». Pour cette étude comme pour l'étude précédente (cf. chapitre 5), nous avons volontairement choisi de ne pas nous limiter à un seul type d'accords ou à une structure syntaxique particulière. Les phrases de notre étude se composent donc de différentes structures syntaxiques avec une diversité d'accords grammaticaux (e.g. Trois coureurs approchent de la ligne d'arrivée acclamés par une foule de spectateurs.’; ‘Les exercices du livre d'arithmétique posent souvent de réelles difficultés aux élèves.’). Les 36 phrases que nous avons utilisées comptaient toutes 12 ou 13 mots et 72 à 74 lettres. Au total, elles comportaient 157 accords cibles dont 90 accords non-verbaux (noms et adjectifs) et 67 accords verbaux (verbes à l'indicatif présent, au participe passé et à l'infinitif). Tous les accords cibles étaient des accords pluriels (et/ou féminins pour les adjectifs et les participes passés). Il faut encore noter que lorsqu’un adjectif ou un participe passé est accordé au féminin pluriel, chacune
des deux flexions a été comptabilisée comme un accord cible. Toutes les phrases peuvent être consultées dans l’annexe 6).

Pour tester les effets de la suppression des feedbacks visuels et kinesthésiques sur le contrôle des accords grammaticaux, nous avons défini 6 conditions expérimentales qui permettent d'évaluer séparément et conjointement les effets de la suppression du feedback visuel sur la trace écrite, du feedback visuel sur le mouvement de la main qui écrit et du feedback kinesthésique des mouvements d'écriture. La première condition est la situation contrôle, les participants sont en situation d'écriture ordinaire, sans contrainte particulière. Cette condition sert de ligne de base. La deuxième condition était destinée à supprimer isolément le feedback visuel sur la main qui écrit. Pour cela, les participants ont écrit avec la main sous un cache placé sur la tablette graphique. Grâce à un écran placé face à eux et relié à la tablette graphique, ils avaient accès au feedback visuel sur la trace écrite au fur et à mesure qu’ils écrivaient. Dans la troisième condition, nous avons supprimé l’accès à la trace écrite en demandant aux participants d’écrire avec le stylet à point sèche de la tablette. Dans la quatrième condition, le feedback kinesthésique a été supprimé en remplaçant la tablette par un clavier. Dans cette situation, les informations kinesthésiques issues du geste graphique ne sont pas disponibles. Dans les deux dernières conditions, nous avons supprimé simultanément deux feedbacks. Dans la cinquième condition, nous avons supprimé à la fois le feedback kinesthésique et le feedback visuel sur la trace en demandant aux participants d’utiliser le clavier mais sans accès à l’écran et donc sans feedback visuel sur la trace. Enfin, dans la sixième et dernière condition, les participants étaient invités à écrire à nouveau sous le cache placé sur la tablette mais sans avoir accès à leur écriture sur l’écran. Ils étaient donc privés des deux feedbacks visuels (i.e. mouvement de la main et trace écrite). Une condition dans laquelle nous aurions supprimé les trois feedbacks simultanément en demandant aux participants de taper sous un cache et sans l’écran n’était pas envisageable. En effet, les participants n’étant pas des dactylographes, ils n’auraient tout simplement pas pu écrire dans cette situation.

Chaque participant a été testé dans les six conditions que nous venons de décrire. A partir des 36 phrases décrites ci-dessus, nous avons constitué six blocs de chacun six phrases destinées à être dictées. Les blocs de phrases
présentées dans les différentes conditions ont été randomisés de sorte que toutes les phrases ont alternativement été présentées dans les différentes conditions expérimentales. Pour les quatre conditions d’écriture manuscrite, les productions écrites ont été enregistrées avec le logiciel ‘Capturé!’ à une fréquence de 80 ms.

Procédure

Chaque participant a reçu les consignes de l’expérience par écrit. Comme dans l’étude précédente, elle leur a été présentée comme une tâche de mémoire avec un rappel par écrit dans différentes conditions de contraintes sur l’écriture. Les participants n’étaient donc pas informés que c’est leur performance orthographique qui est visée dans l’expérience.

Avant de commencer chaque condition d’écriture, une phrase d’entraînement était proposée pour permettre aux participants de se familiariser avec la procédure, le matériel dicté et la situation expérimentale. Les phrases ont été dictées une par une. Chaque phrase a été lue aux participants à deux reprises. Ils avaient pour consigne d’attendre la fin de la deuxième lecture avant de commencer à transcrire. Nous avons pris cette précaution pour éviter qu’il y ait trop d’erreurs de rappel et donc de perte de données parmi les accords cibles.

Correction et Mesure

A l’origine, les phrases dans leur ensemble comportaient 157 flexions grammaticales cibles. Parmi ces accords, certains ont induit un nombre important d’erreurs toutes conditions confondues. Pour éviter que les effets observés ne soient dus qu’à certains accords, nous avons retiré ceux qui ont induit en moyenne (pour l’ensemble des conditions expérimentales) plus de 30% d’erreurs (i.e. les items qui se situent au-delà du percentile 92). Douze items ont ainsi été retirés de l’échantillon dont 1 accord d’adjectif, 4 accords de noms, 6 accords de participes passés et 1 accord de verbe à l’indicatif présent). Les scores ont été calculés en tenant compte uniquement des 145 accords cibles restants.

Depuis les travaux de Got & Fayol (1991), les études sur la production des accords grammaticaux utilisent généralement le nombre d’erreurs résiduelles comme mesure pour évaluer l’échec des processus de contrôle. A cette mesure,
nous avons ajouté les erreurs commises ainsi que les deux mesures d'identification des pauses et des autocorrections (i.e. des processus de contrôle pré- et post-graphique) définies dans le chapitre précédent. Nous avons donc utilisé 4 mesures:

- les erreurs commises,
- Les erreurs résiduelles,
- les flexions pour lesquelles les participants ont marqué une pause égale ou supérieure à 250 ms, et
- les erreurs auto-corrigées.

Pratiquement, nous avons recensé, pour chaque participant, le nombre de mots porteurs d'un accord cible effectivement produit. Nous avons ensuite calculé, la proportion d'erreurs commises, d'erreurs résiduelles et de pauses. Enfin, les autocorrections n'ont pas été calculées en fonction du nombre d'accords cibles produits mais en proportion du nombre d'erreurs commises comme décrit dans le chapitre 6.

7.3. Résultats

Toutes les analyses ont été faites en prenant comme variable aléatoire les participants (F1) puis les items (F2). Etant donné que les résultats obtenus concordent, nous ne mentionnerons plus que les valeurs de la première analyse dans les résultats ci-dessous.

Une première analyse de variance à un facteur (disponibilité des feedbacks) en mesures répétées a été réalisée sur l'ensemble des accords cibles pour les erreurs commises, les erreurs résiduelles (6 niveaux) et pour les pauses (4 niveaux). Pour les deux conditions d'écriture sur clavier, nous ne disposions pas des données temporelles permettant de mettre les pauses en évidence. L'analyse statistique sur les pauses n'a donc pu être réalisée que sur les quatre conditions d'écriture manuscrite.

Pour les erreurs commises, l'analyse statistique ne montre pas d'effet de la suppression des feedbacks perceptifs, [F(5,120)= 1,989 ; n.s. ; MSe = 0,004]. Par contre, en ce qui concerne les erreurs d'accord résiduelles, l'analyse de variance
met en évidence un effet significatif de la suppression des feedbacks [F(5,120)=2,5 ; p= 0,034 ; MSe = 0,004]. Les comparaisons pairées ont été testées avec un ajustement des comparaisons multiples de Bonferroni et aucune de ces comparaisons n’est significative. Les valeurs moyennes (et les écart-types) pour les deux mesures et pour chaque condition sont présentées dans le tableau VI.

<table>
<thead>
<tr>
<th></th>
<th>Erreurs commises</th>
<th>Erreurs résiduelles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avec tous les feedbacks</td>
<td>6,17 (7,08)</td>
<td>5,54 (6,31)</td>
</tr>
<tr>
<td>Sans feedback sur la main</td>
<td>8,69 (12,57)</td>
<td>6,97 (10,85)</td>
</tr>
<tr>
<td>Sans feedback sur la trace écrite</td>
<td>6,79 (10,89)</td>
<td>6,16 (9,66)</td>
</tr>
<tr>
<td>Sans feedback kinesthésique</td>
<td>7,93 (12,86)</td>
<td>7,77 (12,93)</td>
</tr>
<tr>
<td>Sans feedback kinesthésique et sur la trace</td>
<td>9,5 (12,58)</td>
<td>9,19 (12,72)</td>
</tr>
<tr>
<td>Sans feedback sur la main et sur la trace</td>
<td>11,06 (12,59)</td>
<td>10,67 (12,63)</td>
</tr>
</tbody>
</table>

Tableau VI : Pourcentages moyens (et écart-types) d’erreurs commises et d’erreurs résiduelles en fonction du type de feedback(s) supprimé(s).

L’analyse statistique des pauses égales ou supérieures à 250 ms n’est pas non plus significative, bien qu’elle s’approche du seuil de significativité [F(3,72)=2,296; p=0,085 ; MSe = 0,006]. Les valeurs moyennes (et les écart-types) sont reprises dans le tableau VII.

<table>
<thead>
<tr>
<th></th>
<th>pauses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avec tous les feedbacks</td>
<td>13,71 (11,48)</td>
</tr>
<tr>
<td>Sans feedback sur la main</td>
<td>12,45 (11,49)</td>
</tr>
<tr>
<td>Sans feedback sur la trace écrite</td>
<td>9,19 (8,97)</td>
</tr>
<tr>
<td>Sans feedback sur la main et sur la trace</td>
<td>8,81 (7,09)</td>
</tr>
</tbody>
</table>

Tableau VII : Pourcentages moyens (et écart-types) d’erreurs commises et d’erreurs résiduelles en fonction du type de feedback(s) supprimé(s).

Enfin, en ce qui concerne les erreurs corrigées, les scores ont été calculés en proportion des erreurs commises. Lorsqu’un participant n’a pas commis d’erreur dans une ou plusieurs des conditions expérimentales, on ne peut calculer ce score et il doit être exclu de l’échantillon. Nous n’avons pu calculer un score pour les erreurs corrigées dans chacune des 6 conditions.
expérimentales que pour 5 des 25 participants. Etant donné ce nombre restreint de participants ainsi que le très faible taux d’erreurs dans certaines des conditions (1 à 10 erreurs), nous avons renoncé à calculer une statistique pour cet indice. On note toutefois que la proportion d’erreurs corrigées est très faible puisque sur les 284 erreurs commises par l’ensemble des participants pour l’ensemble des conditions, seules 24 ont été corrigées, soit 8,45 % des erreurs. Par ailleurs, plus de 45 % des corrections post-graphiques apparaissent dans la condition de suppression isolée du feedback sur la main qui écrit alors que les 55% restants se distribuent de manière relativement équitables entre les autres conditions (2 à 4 corrections par condition).

Une analyse plus détaillée a ensuite été menée en comparant la condition d’écriture ordinaire à la condition de suppression des deux feedbacks visuels qui est la condition qui engendre le taux d’erreurs le plus élevé. En outre, nous avons distingué les accords de noms et d’adjectifs des accords de conjugaison. Ces derniers étant plus complexes, nous voulions évaluer s’ils subissaient de la même manière les effets de la suppression des informations perceptives.

L’impact de la suppression conjointe des feedbacks visuels sur la trace et sur la main a été évalué avec une ANOVA à deux facteurs : 2 (noms/adjectifs *versus* conjugaisons) x 2 (avec *versus* sans les feedbacks visuels sur la trace et sur la main), avec mesures répétées sur les deux facteurs. Pour les erreurs commises comme pour les erreurs résiduelles, l’analyse statistique met en évidence un effet significatif du type d’accord [respectivement F(1,24)=6,382; p=0,019; MSe = 0,011 et F(1,24)=7,396; p=0,012; MSe = 0,011] et de la disponibilité des feedbacks visuels [respectivement F(1,24)=6,544; p=0,017; MSe = 0,008 et F(1,24)=7,136; p=0,013; MSe = 0,008] mais il n’y a pas d’interaction entre les deux facteurs [respectivement F(1,24)=0,441; n.s.; MSe = 0,009 et F(1,24)=0,115; n.s.; MSe = 0,009]. Par ailleurs, aucune des comparaisons multiples testées avec un ajustement de Bonferroni ne sont significatives. Les valeurs moyennes (et les écart-types) pour chaque condition sont présentées dans la figure XIII et le tableau VIII pour les erreurs commises et dans le tableau IX pour les erreurs résiduelles.
Figure XIII : Pourcentages moyens d'erreurs commises en fonction de la disponibilité des feedbacks visuels et du type d'accord.

<table>
<thead>
<tr>
<th></th>
<th>Accords des noms et des adjectifs</th>
<th>Accords des verbes et des participes passés</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avec feedback visuel</td>
<td>4,37 (6,6)</td>
<td>8,43 (12,6)</td>
</tr>
<tr>
<td>Sans feedback visuel</td>
<td>7,73 (11,27)</td>
<td>14,25 (17,26)</td>
</tr>
</tbody>
</table>

Tableau VIII : Pourcentages moyens d'erreurs commises (et écart-types) en fonction de la disponibilité des feedbacks visuels et du type d'accord.

<table>
<thead>
<tr>
<th></th>
<th>Accords des noms et des adjectifs</th>
<th>Accords des verbes et des participes passés</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avec feedback visuel</td>
<td>3,41 (5,89)</td>
<td>8,43 (12,6)</td>
</tr>
<tr>
<td>Sans feedback visuel</td>
<td>7,48 (11,38)</td>
<td>13,81 (17,19)</td>
</tr>
</tbody>
</table>

Tableau IX : Pourcentages moyens d'erreurs résiduelles (et écart-types) en fonction de la disponibilité des feedbacks visuels et du type d'accord.

En ce qui concerne les pauses, l’analyse statistique montre un effet significatif du type d'accord [F(1,24)=25,949; p<0,001; MSe = 0,016] et du feedback [F(1,24)=8,476; p=0,008; MSe = 0,01], ainsi qu’une interaction entre les deux facteurs [F(1,24)=5,952; p=0,022; MSe = 0,01]. Les valeurs moyennes (et écart-types) pour chaque condition sont présentées dans la figure XIV et le tableau X. Les comparaisons pairées entre les 4 conditions ont été testées avec un ajustement des comparaisons multiples de Bonferroni. Les résultats montrent que la suppression des feedbacks visuels n’induit une diminution significative de la fréquence des pauses que pour les accords de conjugaison (p=0,023). Par ailleurs, la disponibilité des feedbacks visuels induit significativement plus de
pauses pour les accords de conjuguaison que pour les accords de noms et
d'adjectifs (p<0,001). Par contre, lorsque les feedbacks visuels sont supprimés,
cette différence n'est plus significative.

![Diagramme de la figure XIV]

Figure XIV : Pourcentages moyens de pauses en fonction de la disponibilité des
feedbacks visuels et du type d'accord.

<table>
<thead>
<tr>
<th></th>
<th>Accords des noms et des adjectifs</th>
<th>Accords des verbes et des participes passés</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avec feedback visuel</td>
<td>6,67 (5,89)</td>
<td>24,55 (18,36)</td>
</tr>
<tr>
<td>Sans feedback visuel</td>
<td>5,72 (11,38)</td>
<td>13,78 (14,01)</td>
</tr>
</tbody>
</table>

Tableau X : Pourcentages moyens de pauses supérieures ou égales à 250 ms (et écart-types) en fonction de la disponibilité des feedbacks visuels et du type d'accord.

L'interaction entre le type d'accord et la disponibilité des informations visuelles
pour les pauses montre que seuls les accords de conjuguaison sont affectés par
la suppression des feedback visuels. Ce résultat nous a incité à refaire l’analyse
statistique sur la mesure des pauses pour les 4 conditions expérimentales mais
en ne tenant compte que des données sur les accords de conjuguaison. Les
résultats montrent un effet significatif de la variable feedback [F(3,72)=3,212;
p=0,028; MSe = 0,016]. Les valeurs moyennes (et les écart-types) sont
présentées dans la figure XV et le tableau XI. Une seule des comparaisons
parées qui ont été testées avec un ajustement des comparaisons multiples de
Bonferroni est significative. Il s'agit de la différence entre la condition avec tous
les feedbacks disponibles et la condition où les deux feedbacks sont supprimés
(p = 0,023).
Figure XV : Pourcentages moyens de pauses en fonction de la disponibilité des feedbacks visuels.

<table>
<thead>
<tr>
<th></th>
<th>Pauses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avec tous les feedbacks</td>
<td>24,55 (18,36)</td>
</tr>
<tr>
<td>Sans feedback sur la main</td>
<td>19,96 (19,79)</td>
</tr>
<tr>
<td>Sans feedback sur la trace écrite</td>
<td>17,26 (16,79)</td>
</tr>
<tr>
<td>Sans feedback sur la main et sur la trace</td>
<td>13,78 (14,01)</td>
</tr>
</tbody>
</table>

Tableau XI : Pourcentages moyens (et écart-types) de pauses en fonction du type de feedback(s) supprimé(s).

Pour résumer ces résultats assez nombreux, on retiendra principalement que :

1) Lorsqu’on considère l’ensemble des conditions expérimentales et des accords cibles, il n’y a pas d’effet significatif de la suppression des feedbacks sur les erreurs commises mais bien sur les erreurs résiduelles qui sont les moins fréquentes lorsque tous les feedbacks sont disponibles. En ce qui concerne les pauses, l’effet est quasi significatif lorsqu’on prend en compte tous les accords et il est significatif lorsqu’on ne tient compte que des accords de conjugaison.

2) Lorsqu’on compare la condition d’écriture sans suppression de feedback avec la condition dans laquelle les deux feedbacks visuels sont supprimés et que l’on distingue en outre les accords non-verbaux (noms et adjectifs) des accords verbaux, les résultats montrent un effet significatif de la suppression des feedbacks ainsi que du type d’accord pour les erreurs commises, les erreurs résiduelles et les pauses. Pour cette dernière mesure,
on observe en plus une interaction entre les deux facteurs. Les erreurs
commises et les erreurs résiduelles sont significativement plus fréquentes
pour les accords verbaux et lorsque les feedbacks visuels sont supprimés.
Par contre, la suppression des feedbacks visuels induit une diminution
significative des pauses mais uniquement pour les accords de conjugaison.

7.4. Discussion

L’objectif de cette étude était double. Le premier était de mettre à l’épreuve les
mesures spécifiques que nous avons mises au point pour révéler l’utilisation de
processus de contrôle des productions grammaticales chez les scripteurs. Ces
mesures basées sur des comportements identifiables et quantifiables
comparables à ceux que l’on observe chez les locuteurs, s’inspirent des
observations et de la proposition théorique de Levelt (1983 ; 1989).

Les études sur la production des accords grammaticaux utilisent classiquement
comme mesure, le nombre d’erreurs laissées par les scripteurs. Ces erreurs
puissent être interprétées comme étant le résultat d’un échec des processus de
contrôle. Selon ce raisonnement, l’existence des erreurs résiduelles révèle le
défaut d’efficience des processus de contrôle et par conséquent, elles
démontront aussi leur existence. Cette démonstration par l’absurde est fondée
sur l’impossibilité d’expliquer les erreurs que l’on observe dans les productions
grammaticales des adultes sans postuler l’existence des processus de contrôle.
Il s’agit cependant d’une preuve très indirecte, c’est la raison pour laquelle nous
avons cherché à définir des indices moins indirects (cf. chapitre 6) pour mettre
en évidence les contrôles lors de la production d’accords grammaticaux.

Grâce à une analyse du décours temporel de l’écriture des scripteurs experts de
cette étude, nous avons pu mettre en évidence l’existence de ces comportements
spécifiques (i.e. des pauses et des autocorrections) qui traduisent la mise en
œuvre de contrôles respectivement pré- et post-graphiques. Ces observations
apportent des arguments supplémentaires et surtout moins indirects à
l’hypothèse que les scripteurs adultes disposent de processus de contrôle des
productions grammaticales. Ces processus leur permettent de détecter, de
diagnostiquer et de corriger les erreurs générées par le système de production
du langage tant avant qu’après la transcription graphique. Il semble cependant que les deux processus ne soient pas aussi fréquents l’un que l’autre.

Le contrôle pré-graphique semble être un comportement assez fréquent dans les productions grammaticales écrites des adultes francophones. En effet, des pauses supérieures à 250 ms ont pu être identifiées pour pratiquement un accord de conjugaison sur quatre en situation d’écriture ordinaire. Par ailleurs, nos résultats montrent que des facteurs comme l’accès aux feedbacks visuels ou le type d’accord grammatical influencent la fréquence d’apparition des pauses (i.e. des contrôles pré-graphiques). Ces résultats demandent évidemment à être confirmés mais l’analyse du décours temporel de l’écriture et l’identification des pauses semble être une mesure pertinente pour évaluer l’utilisation de processus de contrôle pré-graphiques des accords grammaticaux.

En ce qui concerne les autocorrections, elles existent mais semblent être relativement peu fréquentes. En effet, elles ne concernent en moyenne qu’un peu plus de 8% des erreurs commises. Par ailleurs, près de la moitié des autocorrections sont apparues dans la condition expérimentale de suppression isolée du feedback sur la main qui écrit. Pour pouvoir analyser de manière plus approfondie le processus de contrôle post-graphique, il est nécessaire d’obtenir un échantillon d’erreurs plus important. Ce sera l’un des objectifs des deux expériences que nous présenterons dans le chapitre suivant.

Le second objectif de cette étude était d’évaluer le rôle de différents feedbacks perceptifs sur le contrôle des accords grammaticaux. La diminution de la fréquence des pauses lorsqu’on supprime les feedbacks perceptifs indique que les contrôles pré-graphiques sont influencés par la présence des feedbacks visuels (au moins pour les accords de conjugaison). Cependant, l’absence d’effet pour les erreurs commises suggère que même si lesscripteurs adultes produisent plus de contrôle pré-graphique en présence des feedbacks visuels, cela ne leur permet pas de transcrire significativement moins d’erreurs d’accord. Les différences de proportions d’erreurs résiduelles et de pauses entre les différentes conditions confirment que les processus de contrôle sont affectés par suppression des informations perceptives normalement présentes dans l’écriture. Cependant, les résultats ne nous permettent pas de distinguer plus précisément les différentes conditions expérimentales entre elles. L’analyse
complémentaire qui visait à comparer la condition de suppression des feedbacks visuels sur la main et sur la trace avec la condition d’écriture ordinaire nous permet néanmoins d’affiner un peu notre analyse.

Nous avons formulé l’hypothèse que la suppression d’un ou plusieurs des feedbacks perceptifs devrait induire une augmentation des erreurs simultanément à une diminution des contrôles (i.e. des pauses et des autocorrections). Le manque de données disponibles pour les autocorrections ne nous permettra pas de nous prononcer à propos de l’impact de la perte des informations perceptives de l’écriture sur les contrôles post-graphiques des accords. Par contre, les statistiques montrent que les erreurs commises et les erreurs résiduelles sont significativement plus fréquentes, lorsqu’on supprime les feedbacks perceptifs. De plus, comme on pouvait s’y attendre, il y a également plus d’erreurs commises et résiduelles sur les accords verbaux que sur les accords non-verbaux. Ces effets s’accompagnent d’une diminution significative de la fréquence des pauses égales ou supérieures à 250 ms mais uniquement pour les accords de conjugaison. Enfin, en situation d’écriture ordinaire, les accords non-verbaux sont l’objet de beaucoup moins de contrôle pré-graphique (6,67 % d’accords de noms et d’adjectifs sont précédés d’une pause) que les accords de conjugaison (24,55 %).

Il semble donc que les informations visuelles ne jouent pas le même rôle pour le contrôle pré-graphique des noms et d’adjectifs que pour celui des accords de conjugaison. Il faut toutefois apporter une nuance à cette conclusion. En effet, si les accords de noms et d’adjectifs sont plus simples que les accords de conjugaison comme en témoignent les taux d’erreurs commises, les traitements cognitifs pour leur contrôle sont peut-être moins lourds et nécessiteraient donc moins de temps. Dans ce cas, avec une limite de temps de pause fixée à 250 ms, on se situe peut-être à un seuil fréquemment dépassé pour le contrôle pré-graphique des accords de conjugaison, mais trop élevé par rapport au temps généralement nécessaire au contrôle pré-graphique des accords de noms et d’adjectifs. Ce problème peut sans doute être résolu en remplaçant les pauses par une mesure du temps d’écriture de la flexion grammaticale (cf. chapitre 9 pour une discussion plus approfondie).
En ce qui concerne les accords de conjugaison, c’est dans la condition où les feedbacks sont disponibles (condition d’écriture ordinaire) qu’on observe le pourcentage d’erreurs commises le plus faible et le pourcentage de pauses le plus élevé. Cette observation correspond à notre prédiction puisque lorsque les feedbacks visuels sur la trace écrite et sur la main sont supprimés conjointement, le nombre de contrôles pré-graphiques est divisé par trois et le nombre d’erreurs multiplié par deux. En d’autres termes, la suppression des feedbacks visuels diminue la fréquence des contrôles pré-graphiques et se traduit par une augmentation des erreurs commises.